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Abstract—Monkey, which is integrated with the Android sys-
tem, becomes the most widely used test input generation tool,
owing to the simplicity, effectiveness and good compatibility.
However, Monkey is based on coordinates of screen and oblivious
to the widgets and the GUI states, which results in a great
many ineffective events that have no contribution to the test.
To address the major drawbacks, this paper parses the events
of 200 test sequences generated by Monkey into human-readable
scripts and manually investigate the effects of these events. We
find three types of patterns on the ineffective events, including no-
ops, single and combination of effect-free ones, and summarize
them into ten rules for sequence reduction. Then, we implement
a tool CHARD to match these patterns in real-world traces and
prune the redundant events. The evaluation on 923 traces from
various apps covering 16 categories shows that CHARD can
process 1,000 events in a few seconds and identifies 41.3% events
as ineffective ones. Meanwhile, the reduced sequence keeps the
same functionality with the original one that can trigger the
same behaviors. Our work can be applied to lessen the diagnose
effort for record-and-replay, and as a preprocessing step for other
works on analyzing sequences. For instance, CHARD can remove
72.6% ineffective events and saves 67.6% time of delta debugging
in our experiments.

Index Terms—Android Testing, Monkey, Event Trace Reduc-
tion, Record-and-replay

I. INTRODUCTION

Android applications (apps) are becoming increasingly

prevalent nowadays. The number of available apps in the

Google Play [1] Store was most recently placed at 2.6 million

apps in December 2018, after surpassing one million in July

2013 [18]. The most popular ones among them tend to

be feature-rich, which puts forward higher requirements on

testing. However, due to some characteristics of Android apps,

such as the fragmentation of devices and the event-driven

nature, it is exhausting to test them manually.

Heterogeneous automated testing tools for Android have

been developed by practitioners and researchers. According

to the thorough empirical study [3] by Choudhary et al., the

simple tool Monkey [6] is a winner among the popular tools,

while other complex techniques fail to outperform Monkey in

ease of use, compatibility, code coverage, and fault detection.

However, Monkey has two major limitations: (1) a large

number of events are redundant such that it usually takes
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an exceptional long test sequence as the price to reach high

code coverage; (2) events generated by Monkey are low-level

events which are hardly human-readable. These drawbacks

increase the time cost to replay the test sequences when

Monkey triggers a crash or reaches a special state. Moreover,

developers are exhausted in inspecting the test trace during

replaying, in order to understand the behaviors and low-level

test events generated by the random test tool. Thus, reducing

test sequences is important and essential.

Event trace reduction techniques are proposed to simplify

test sequences. The basic idea is to set a target in advance

and reduce target-irrelevant events using various techniques.

Delta debugging (DD) [8] is a widely used algorithm, which

uses an iterative process to repeat the reduction until it ob-

tains a minimally sized subtrace. For Android test sequences,

researchers use variants of DD to adapt to the characteristics

of Android platform [4], [10]. Nonetheless, DD techniques

are very time consuming, because they usually require re-

executing the reduced sequences in the iteration process.

To reduce test sequences for Android applications in a faster

way, we propose our approach based on the comprehension of

events. According to the runtime details, such as system logs

and the change of application state before and after a test event,

we can infer the effectiveness of events. However, only the

logs generated by Monkey is inadequate to understand what

the event does. To understand the ineffective events better,

we conduct a comprehensive manual study on 200 real traces

each of which has 1,000 events, from 40 popular open-source

apps. By manually reducing events repeatedly, we summarize

the patterns of ineffective events, including no-ops, single and

combination of effect-free ones, which can be leveraged to

help the automatic test sequence reduction.

In this paper, based on the results of the above study,

we extract execution information and build the sequence and

event model. We define rules for patterns of ineffective events

to reduce test sequences. For effect-free combination, we

use extended finite state machines (EFSMs) to conduct the

reduction. In order to deal with the nested combinations,

we add a stack to the automaton. Additionally, we design a

readable natural language format to describe each event for

improving the comprehensibility.

To evaluate the proposed approach, we implement the

approach into a tool CHARD (CompreHensibility And Re-
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Duction) to analyze and reduce the test sequences generated

by Monkey. CHARD is evaluated with two datasets, of which

the first contains 890 test sequences from 74 Android apps

covering 16 categories, and the other contains 33 test se-

quences with crashes collected from the related study [10].

The evaluation shows that CHARD can reduce test sequences

effectively, correctly, efficiently.

The main contributions of this work are summarized as

follows:

1) Through the manual study on test sequences of Monkey,

we distinguish the removable events and summarize the

patterns of the ineffective events;

2) Based on the above findings, we give event model and

ten reduction rules to shorten them;

3) We implement the proposed techniques into a prototype

tool CHARD and evaluate its effectiveness, correctness,

and efficiency with real-world sequences.

The remainder of this paper is organized as follows. The

Monkey and our empirical study are introduced in Section

II. Then we present the ineffective patterns in Section III. In

Section IV, we use a case study to show the execution of our

approach. The evaluation of our tool CHARD is demonstrated

in Section V. We discuss the related work and conclude our

work in the last two Sections.

II. EVENT SEQUENCES FOR ANDROID APPS

In this section, we introduce Monkey sequence reduction

problem and our findings on the types of ineffective events.

A. Monkey Sequence Reduction Problem

Because of the event-driven characteristic of Android ap-

plications, the interactions between the users and a specific

application k form a sequence of user events. In this sequence,

each event depends on the execution of the previous one. We

first give a definition of the user event sequence.

Definition 1. (User Event Sequence). A user event sequence

U(k) = E1 · · ·Em

for an Android app k is a sequence composed by m (m > 0)
separate user events, each of which is an atomic operation that

can not be split.

We then formalize a user event in U(k) as follows.

Definition 2. (User Event). A user event E is a tuple

(src, des, act) that denotes an entry in the user event sequence

U(k), where

• src and des are the statuses before and after the event

is triggered. The status of app can be described as a

triple (att, win,wdt), where att, win and wdt are the

corresponding activity, window and widget respectively.

In the sequence U(k), the des of an event is the src of

next one.

• act denote the action of this event, which changes the

status of the app k from src to des. The action is a tuple

(obj, tp), where obj is an object to be operated which

may be a widget item or a system key, and tp is the type

of the operation that originates from Android reference,

including Touch, Motion, Rotation, Nav, Flip,

Trackball, PinchZoom, MajorNav, Appswitch,

SysOp. [14]

Monkey, which is currently integrated with the Android sys-

tem, is regarded as the current state-of-practice for automated

software testing [13]. Monkey supports all the types of event

actions declared in Definition 2, which will be translated into

a set of low-level events during the execution. For example,

a Touch event is composed by ACTION DOWN and AC-
TION UP. Thus, we introduce the definition of Monkey event

sequence.

Definition 3. (Monkey Event Sequence). A Monkey event

sequence M which has n low-level Monkey events can be

formalized as:

M = e1e2e3 · · · en
We observed that Monkey event sequence has natural

boundaries between actions (refer to Section IV). Therefore,

we can rearrange the n low-level events into m high-level user

events E and form a user event sequence after conducting M
on app k:

M = (e1 · · · )1 · · · (· · · en)m = E1 · · ·Em = UM (k).

This rearrangement accomplishes the translation from a Mon-

key event sequence M to user event sequence UM (k), which

makes the test sequence more user-friendly.

Furthermore, we find that the translated user event se-

quence contains a large number of ineffective events (see

Section II-B), which increases the test efforts. Thus, this user

event sequence UM (k) can be optimized into a new refined

one UR
M (k) by removing ineffective events.

In summary, our work in this paper is to solve the Monkey
sequence reduction problem, i.e.,

M→ UR
M (k).

The key challenge is how to understand user events and reduce

the ineffective ones, which will be addressed in the rest of this

Section.

B. Ineffective Event

Because Monkey does not automatically generate a script

to record the test sequences, we define a script format to

record the information. We enhance Monkey into MonekyRR

to record script automatically and replay the test sequence in

this script format. In the rest paper, we use MonekyRR to

implement experiments, which can automatically record a test

sequence by a script and replay the reduced script.

In order to investigate the properties of the test sequences

generated by Monkey, we conduct an empirical study manu-

ally. We collect 40 apps covering 14 categories from a widely

used website F-Droid [5], which are listed in Figure 1. Finally,

we use MonekyRR to generate test sequences for each app

and reduce them manually. According to our investigation, we

find two types of ineffective events that should be removed,

including no-ops and redundant events. The results of our

empirical study are shown in Figure 1. The #NE and #RE
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Fig. 1: The Distribution of Ineffective Events

represent the proportions of no-ops and redundant events,

respectively.

1) No-ops Events: By matching each event with its be-

havior, we find that many events are no-ops events. A no-

ops event E is an event that does not link to any widget or

operates on a widget with an unacceptable type of event, i.e.,

the action E.act is invalid. According to the Android response

mechanism, these events are not intercepted or consumed, i.e.,

the Android system does not respond to them. The approach to

identifying a no-ops event is to analyze whether the execution

of this event triggers any differences in the status of activity or

window and the attribute of widgets. If there is no difference,

the event will be defined as a no-ops event.

After reducing no-ops events, the average rate of operational

events is approximately 65.9%. There are several special cases.

Aagtl is a map application with a full-screen map, leading

that 99% events are operational. AKA is an app that needs

to download sources firstly, and this action is often refused

for the non-responsive server. The home page will be blank,

which causes the extremely low operational rate 19.6%.

2) Redundant Events: After filtering out the no-ops events,

we find that there are many other events that can be further

reduced without sacrificing the effectiveness of the whole test

sequence. We say one or more events Ei · · ·Ej (j ≥ i) are

redundant if they contain at least one valid action while their

executions keep the status of the app (Ei.src = Ej .des).

The redundant events are also regarded as ineffective events

for they have no contribution to the code coverage or do

not change the environment. By investigation, we classify the

redundant events into two categories: single effect-free events
(i = j) and effect-free combinations (i < j).

The single effect-free event contains rejected event and

optional event. A rejected event is an event which is abandoned

in Monkey. Due to its setting, Monkey only allows testing in

the package of the apps under test. Thus, activities out of the

specific packages are rejected to be opened by Monkey. For

example, when the HOME button is triggered or BACK on the

MainActivity will lead to jumping to a target beyond the

scope of testing. Optional events denote a set of special system

events, which are redundant to most of the apps while being

essential in some kind of apps. For instance, the operations of

volume buttons are unimportant for most applications, which

are cut out by default. However, some applications overwrite

the functions of the volume button, e.g., e-book uses them to

turn pages.

An effect-free combination contains two or more effective

events, of which the last one completely counteracts the effect

of the former. For example, an event in the sequence opens a

new window, while the next one closes the window by clicking

the back button on the phone without impact on the other

events. In this case, these two events compose an effect-free

combination Contrary Pair and should be removed in general.

Though each event in the pattern is effective, the combination

of these events is redundant in most cases. According to the

experience of manual reduction, we summarize the combina-

tions in Table I. After reducing ineffective events, the Rest
represents the effective events, whose rate is approximately

34.1%.

C. Significance Levels of Events

During the manual record-reduce-replay process, we find

that reducing different event affect differently on the change of

a test sequence. For example, if we directly delete a window-

opening event, which will influence its following events, it will

cause a wrong state. That is to say, the following events will be

triggered in the wrong window. Thus, the result of executing

the reduced sequence will be completely different from the

original one. In contrast, when a no-ops event is removed, the

reduced sequence has the same runtime behavior as before.

Thus, according to the differences that the deletion could

make, we define four levels of the significance:

TABLE I: Types of Ineffective Events

Type Name Description
Rejected event HOME button

Single Effect-free Event press BACK button on the MainActivity
Optional Event VOLUME-UP button, VOLUME-DOWN button, CALL button

open a dialog window, and cancel it immediately or close it by click invalid region
Contrary Pair open an activity, and back immediately

select one item of checkboxs, and disable it
Effect-free Combination Last Effective select an item in a group of radios, and select another immediately

click a text box with no input, and click it again
Text Slide open a window of long text, slide the text without log and exit in the end
Hidden Menu click window to open hidden menu bar, select one option to open a window, then close it
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• Essential – The execution of the event changes the

activity or window, bringing about complete changes in

the current layout.

• Major – The event triggers functionalities of the applica-

tion.

• Minor – The event operates widgets or Android system.

• Trivial – The event is no-ops.

The levels help developers to judge whether to delete the event

or not and customize the different reduction strategies.

For describing significance level, we define a function � :
E → {Essential, Major, Minor, Trivial}. Each level has its

criteria showed in Table II. If an event satisfies more than one

criterion, the higher level will be chosen.

III. PATTERNS FOR INEFFECTIVE EVENTS

We define ten patterns to represent the ineffective events,

which should be removed. Every pattern has a corresponding

rule to delete it. There are three types of ineffective events that

need to be removed: no-ops events, single effect-free events,

and effect-free combinations.

A. No-ops Events

The events in level Trivial are no-ops events. Thus, we

define the following pattern.

• Pattern 1.1 E � �(E) = Trivial.

According to the criteria in Table II, we can obtain the

significance level for each event. If an event is Trivial, i.e.,

satisfies Pattern 1.1, this event will be removed.

B. Single Effect-free Events

Single effect-free events include rejected events and optional

events. For the two types of rejected events in Table I, we

define two patterns to identify them.

• Pattern 2.1 E � act.tp ∈ {SysOp,Nav,MajorNav},
act.obj = HOME.

• Pattern 2.2 E � act.tp ∈ {SysOp,Nav,MajorNav},
act.obj = BACK, src.act = MainActivity.

For optional events, the best way to identify whether the

events are effective is to enable users to configure them. We

also have a default rule to judge by the level of events, which

is safe but imprecise. If the level of an optional event is Major

or Essential, this optional event may be useful in the app and

should not be deleted.

• Pattern 2.3 E � act.tp ∈ {SysOp,Nav,MajorNav},
act.obj = CALL, �(E) = Minor.

TABLE II: Criteria of Event Significance Level

�(E) Criteria
E.act.tp ∈ {Rotation,Appswitch, P inchZoom}

Essential ∨E.des.win �= E.src.win
∨E.des.att �= E.src.att

Major GetLog(E) �= null
E.act.tp ∈ {SysOp,MajorNav,Nav, Trackball}

Minor ∨ E.act.obj �= null
Trivial other

• Pattern 2.4 E � act.tp ∈ {SysOp,Nav,MajorNav },
act.obj ∈ {VOLUME_UP,VOLUME_DOWN}, �(E) =
Minor.

If an event satisfies any item in Pattern 2, this event is single

effect-free and will be removed.

C. Effect-free Combinations
We use extended finite state machine (EFSM) [2] to describe

each type of the combinations in Table I.

Definition 3. (Extended finite state machine). The extended

finite state machine is a tuple M = (Q,Σ, I, V, C,Λ), where

• Q is a finite set of states,

• Σ is a finite set of operations (also called events),

• I ⊂ Q is the set of initial states,

• V is the set of state variables and every variable is a

global variable,

• C is a finite set of conditions,

• Λ is a finite set of transitions. A transition is q
e[g]/a−−−−→ q′,

where q, q′ ∈ Q, e ∈ Σ, g ∈ C is a condition and a is an

action. A variable x affected in the transition specification

q
e[g]/a−−−−→ q′ will be denoted x′ in state q′. All parts of a

transition label are optional.

According to the progress of event reduction, we define

two operations in Σ and two variables in V . The read(i)
will input E in the test event sequence to the EFSM.

The delete(m,n) will delete the subsequence from event

labelled m to event labelled n. Variable start and end
record the position of a pair or subsequence that need to be

deleted in the original test event sequence. Σ = {read(i),

delete(m,n)}. V = {start, end}. The four EFSMs are

shown in the Figure 2.

As we can see in Figure 2(a), there are two conditions c1
and c2. The c1 is the condition that an event has the property

of the first event in Contrary Pair, and the c2 is the condition

that an event and its former one compose Contrary Pair. We

conclude and keep these conditions for each property in a

collection. There are three actions, start = i (end = i) is

used to record the start (end) event that may need to be deleted,

while i′ = i+1 indicates that the value of i plus one after this

transition. Especially, in the transition from S1 to S0 on the

condition ¬c2, there is no action i′ = i + 1, for keeping the

current event unchanged, in case that this event has another

property of Contrary Pair that may match the next event.

Thus, we use the four extended finite state machines in

Figure 2 to conduct reduction for effect-free combinations

respectively. In a few complex cases, the Contrary Pair may be

nested by itself. We use the idea of the pushdown automaton

to deal with these cases. A pushdown automaton [17] is a

finite state machine with an infinite stack. The stack helps

to reduce the complexity of the algorithm to deal with the

nested Contrary Pair. Thus, we declare a stack and define the

operations of the stack on our extended finite state machine

in Figure 3.

S0 is the initial state. The initial stack is empty. The

condition c is that the top event of the stack matched the
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S0 S1

S2

read(i)[c1]/{start = i, i′ = i+ 1}

read(i)[¬c1]/{i′ = i+ 1}

delete(start, end)

read(i)[¬c2]

read(i)[c2]/{end = i, i′ = i+ 1}

(a) Pattern 3.1 for Contrary Pair

S0 S1 S2

S3

read(i)[c1]/{start = i, i′ = i+ 1}

read(i)[¬c1]/{i′ = i+ 1}

delete(start, end)

read(i)[c2]/{end = i− 1, i′ = i+ 1}

read(i)[¬c2]
read(i)[c2]/{end = i− 1, i′ = i+ 1}

read(i)[¬c2]/{i′ = i+ 1}

(b) Pattern 3.2 for Last Effective

S0 S1

S2

read(i)[c1]/{start = i, i′ = i+ 1}

read(i)[¬c1]/{i′ = i+ 1}

delete(start, end)

read(i)[¬c2 ∧ ¬c3]
read(i)[c2]/{i′ = i+ 1}

read(i)[c3]/{end = i, i′ = i+ 1}

(c) Pattern 3.3 for Text Slide

S0 S1 S2

S3

read(i)[c1]/{start = i, i′ = i+ 1}

read(i)[¬c1]/{i′ = i+ 1}

delete(start, end)

read(i)[c2]/{i′ = i+ 1}
read(i)[¬c2]

read(i)[¬c3]

read(i)[c3]/{end = i, i′ = i+ 1}

(d) Pattern 3.4 for Hidden Menu

Fig. 2: Patterns for Effect-free Combinations

current event E, i.e., they are Contrary Pair that should be

removed. If E satisfies c, S1 is reached and the top event in

the stack will be popped. Otherwise, S2 is reached and the

current event will be pushed into the stack. After running the

automaton, the nested Contrary Pairs are removed. The events

in the stack are the left events.

D. Readable Natural Language Interpreter
To improve the readability of the reduced test sequence, we

use readable natural language to describe an atomic event. The

natural language format is defined as follows:

Line i − j is a 〈type〉 event that 〈action〉, causing

〈result〉, level 〈level〉.
Line i−j represents the certain event in the Monkey script.

The 〈type〉 is the type for the event. The 〈action〉 describes

the behaviour of the event, e.g., clicking a button named OK
or pressing BACK button. The 〈result〉 describes the change

from src to des, which lists the changes caused by this event,

such as opening an Activity or triggering functions of the app.

The 〈level〉 will be replaced by the value �(E).
According to this description, developers having knowledge

of this application could repeat the test case manually and even

find the exceptional events according to the result of events.

IV. CASE STUDY

To better introduce our approach, we use a case study to

show the execution and results of our tool.

S0 S1

S2

read(i)[c]/{i′ = i+ 1}

read(i)[¬c]/{i′ = i+ 1}
push(i)

pop

Fig. 3: Pattern 3.5 for the nested Contrary Pair

AGREP is an open-source text search Android application,

which is available from Google Play and has more than ten

thousand downloads. Its entry page is shown in Figure 4(a).

When the user clicks on the button “Target Extensions”, the

page will jump to Figure 4(b). We use Monkey to generate

100 events on it and display part of the result in the following

list.

1 : Swi tch : # I n t e n t ; a c t i o n = a n d r o i d . i n t e n t . a c t i o n .MAIN
; c a t e g o r y = a n d r o i d . i n t e n t . c a t e g o r y .LAUNCHER;
l a u n c h F l a g s =0 x10200000 ; component= j p . s b l o .
pandora . aGrep / . S e t t i n g s ; end

2 S l e e p i n g f o r 300 m i l l i s e c o n d s
3 : Send ing Touch (ACTION DOWN) : 0 : ( 4 6 1 . 0 , 2 4 0 . 0 )
4 : Send ing Touch (ACTION UP) : 0 : ( 4 5 4 . 2 6 3 , 2 2 9 . 4 2 8 )
5 S l e e p i n g f o r 300 m i l l i s e c o n d s
6 : Send ing Touch (ACTION DOWN) : 0 : ( 2 6 8 . 0 , 1 4 5 . 0 )
7 : Send ing Touch (ACTION UP) : 0 : ( 2 6 8 . 9 5 1 , 1 4 0 . 6 6 3 )
8 S l e e p i n g f o r 300 m i l l i s e c o n d s
9 : Send ing Touch (ACTION DOWN) : 0 : ( 1 4 0 . 0 , 1 8 1 . 0 )

10 : Send ing Touch (ACTION UP) : 0 : ( 1 4 2 . 7 3 4 , 1 7 9 . 5 2 0 )
11 S l e e p i n g f o r 300 m i l l i s e c o n d s
12 : Send ing Key (ACTION DOWN) : 4
13 : Send ing Key (ACTION UP) : 4
14 S l e e p i n g f o r 300 m i l l i s e c o n d s
15 : Send ing Touch (ACTION DOWN) : 0 : ( 3 5 6 . 0 , 4 4 3 . 0 )
16 : Send ing Touch (ACTION UP) : 0 : ( 3 4 4 . 8 1 9 , 4 4 0 . 8 6 3 )
17 S l e e p i n g f o r 300 m i l l i s e c o n d s
18 : Send ing Key (ACTION DOWN) : 5
19 : Send ing Key (ACTION UP) : 5

As we can see, this test sequence is poorly human-readable.

According to our study, the events in line 3 and 4 consist of

an atomic event that touches on the blank area, which is a

no-ops event. The following two events in line 6-10 achieve

clicking the same text box twice and compose an effect-free

combination named Last Effective in which only the last event

should remain. Lines 18 and 19 consist of an event that will

open the phone call page, which is an optional event and

should be deleted from this app. There are also many effect-

free combinations named Contrary Pair. For example, two

events that one after another click on the same checkbox.

We convert the original 100 events into 43 atomic events

totally, with 18 no-ops and 11 redundant. After analysis, the
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(a) (b)

Fig. 4: Application aGrep

test sequence can be reduced to 14 events. We can correctly

replay the reduced event trace saving 65% time. The readable

report is shown in the following list.

1 l i n e 1−1 i s a Appswi tch e v e n t t h a t opens t h e e n t r y
page o f { j p . s b l o . pandora . aGrep } , c a u s i n g open
a c t i v i t y ( . S e t t i n g s ) , l e v e l E s s e n t i a l .

2 l i n e 9−10 i s a Touch e v e n t t h a t c l i c k s on E d i t T e x t
wi th t h e t e x t ” Searchword ” , l e v e l Minor .

3 l i n e 12−13 i s a SysOp e v e n t t h a t KEYCODE BACK,
c a u s i n g c l o s e keyboard , l e v e l E s s e n t i a l .

4 l i n e 15−16 i s a Touch e v e n t t h a t c l i c k s on
CheckBox w i th t h e t e x t ” I g n o r e C a s e ” , c a u s i n g
t r i g g e r program e x e c u t i o n and g e n e r a t e logs ,
l e v e l Major .

V. EVALUATION

To evaluate the proposed approach, we set up the following

research questions:

• RQ1: (Effectiveness): How many events can be reduced

for various apps?

• RQ2: (Correctness): Will the reduction influence the

execution result?

• RQ3: (Efficiency): To what extent can it save the time on

reduction for the crashed test sequences?

A. Implementation

We implement a tool coined as CHARD (CompreHensibility

And ReDuction) to achieve the proposed approach, and build

the automatons in Java language.

The overall design of our system is shown in Figure 5.

We use tool InsDal [11] to instrument all the methods of the

app under test. On Android devices, MonekyRR takes this

instrumented app as input and generates a test script and log

file, which is invoked via ADB (Android Debug Bridge). On

PCs, in Rule, there are ten ineffective patterns for reduction.

In Configuration, users can configure these reduction rules.

In Event Comprehension, test sequence model is built by

analyzing the information collected from the log files. In Test
Sequence Reduction, in the guide of Rule and Configuration,

the foregoing kind of ineffective events, including no-ops

events and redundant ones, will be removed from the test

sequence. The outputs of the system are the reduced test

Fig. 5: Overview of Our Approach

sequence, which can be reused via Monkey, and the reports

including the readable test sequence and the progress of

reduction.

B. RQ1: Effectiveness

In the study for RQ1 and RQ2, we collected a set of 74

apps from F-Droid covering 16 categories, aiming to test the

effectiveness and correctness under various situations whatever

kind it may be. We list categories and statistics of sizes in

Figure 6. The average of size is around two thousand KB. In

addition, 35 of the 74 apps are available on the Google Play

store. We also collected such information as the rating of each

app, and the numbers of downloads. The ratings range from

3.6 to 4.8. The average number of downloads is 50,000.

After data sets selection, we use MonekyRR to generate

10 sequences for each app with 1000 events. Among them,

there are 132 sequences from 35 apps that abort due to error.

Crashes are caused by 8 kinds of exception, which are listed

in Table III. Column AppC and column SeqC represent the

count of apps and the count of sequences with this type of

exception respectively. Because 4 apps and 2 sequences have

more than one type of errors, the first two values in row

sum are larger than 35 and 132. According to the previous

experiments [10], not all of the crashes are repeatable. Thus,

we repeat each sequence 3 times to confirm its stability and

display the number of successful ones in column Repeat.
In addition, in order to check our approach could deal

with long sequences, we pick 15 stable apps to generate 10

Fig. 6: Statistics of Apps in Study for RQ1 and RQ2
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TABLE III: Statistics of Sequences with Bugs

Type AppC SeqC Repeat
ActivityNotFoundException 2 7 4(5/4/5)
ArithmeticException 1 7 5(6/6/7)
IllegalArgumentException 3 16 13(16/13/16)
NoClassDefFoundError 2 14 12(14/12/14)
NullPointerException 8 26 22(25/22/25)
NumberFormatException 2 10 10(10/10/10)
OutOfMemoryError 1 4 2(2/5/5)
Native crash: Segmentation fault 25 50 2(11/16/10)
Sum 44 134 70(89/88/92)

sequences for each app with 10,000 events. In total, we obtain

890 test sequences in two scales.

Finally, we use CHARD to conduct experiments on these

test sequences with default configurations, using all the 10

rules. After execution of CHARD, a sequence can be inter-

preted to a natural language report which describes the events

in detail and can be reduced and saved in a new script. For

the test sequences, statistics show that 45% events are level

Major that trigger some functionalities of the application, 13%

events are Essential that change the current window of the

app, 24% events are Minor, most of which are input events

on the keyboard, 18% events are Trivial, all of which are no-

ops events. After reduction, all of the events in level Trivial

are deleted according to Pattern 1.1. The deleted events in

other levels are classified by types of ineffective events. The

average rates of different types of ineffective events are shown

in Figure 7. The left pie-chart shows that 58.7% events are left

and 18% events are no-ops. The right pie-chart shows the types

of other 23.3% ineffective events in detail.

According to the results, the rules that we defined could

reduce 41.3% events. Our approach has good performance on

sequence reduction in various apps covering 16 categories in

two scales.

C. RQ2: Correctness

Due to the non-determinism of Android apps, executing

the same sequence twice might result in different results. To

exclude these situations, we have to pick stable sequences

to prove the correctness of our approach. For the sequences

without crashes, it is difficult to choose a standard criterion to

check their consistency. Thus, we use 70 sequences mentioned

in Table III, which are stable and trigger crashes in the end.

The 70 sequences with crashes are from 16 apps. We use

Fig. 7: The Distribution of Different Types

CHARD to reduce them and replay the reduced script by

Monkey. Then, we record the results of the execution and

compare with the former results. The statistics are shown in

Figure 8. The 66 green dots represent the sequences that replay

the former crash successfully. In contrast, the 4 red dots are

failed. These sequences are failed because crashes are related

to execution time. On the one hand, the attributes of some

widgets are changeable with time, such as text and location.

For example, Acal has ads to interfere in the layout. The

changeable widgets in BatHIIT are used for timing. On the

other hand, the time for network loading is uncertain, such as

music player Jamendo.

The event numbers in the sequences before and after re-

duction are shown in Figure 8. The average reduction rate

is around 65.5%. In conclusion, our approach deletes the

ineffective events effectively and could keep the key operations

at the same time.

D. RQ3: Efficiency

As we mentioned earlier, delta debugging (DD) has been

applied to perform event trace reduction. Jiang et al. [10]

proposed a tool named SimplyDroid to enhance the DD

algorithm to simplify crash traces generated by Monkey. The

reduced scripts are the shortest sequences to trigger the same

crash. However, due to the iterative reduction progress, it costs

a long time. Our approach, test sequence reduction based on

comprehension, could help to preprocess the test sequences

and reduce the time of delta debugging.

First, we repeated the experiments of 92 crash traces of

SimplyDroid. 40 traces they used come from variants of

apps, which cannot be obtained. In the rest 52 traces, though

we use the same configuration, due to the different devices

and special characteristics of apps, 19 original scripts cannot

trigger crashes. We remove these traces and pick up 33

successful crash traces.

Second, we use CHARD to deal with these 33 traces of 4

apps, with all the reduction rules. The results are shown in

Figure 9. The original represents the original count of the

atomic event. The reduced represents the count of the left

atomic events after preprocessing by CHARD. The average

reduction rate is 72.6%, and all of these traces replay crash

Fig. 8: Results of Reducing and Replaying
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Fig. 9: Number of Events Before and After Reduction
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Fig. 10: Comparison of Execution Time

successfully. We record the time of the execution. The longest

execution time is 2395 milliseconds to deal with the sixth

sequence of DalvikExplorer. CHARD takes an average

of 1307 milliseconds to deal with 1000 events.

Third, we used SimplyDroid to reduce these scripts pre-

processed by CHARD and recorded the time. The results are

shown in Figure 10. The SimplyDroid represents the original

time used by SimplyDroid. The CHARD represents the sum of

time used by CHARD and SimplyDroid. Our approach could

help SimplyDroid save 67.6% time on average.

Finally, we analyze the reduced scripts generated by Sim-

plyDroid to obtain the rate of different level events. We find

that level Essential accounts for 83% of the events that lead

to the crash. And the rest are 11.5% level Major and 5.5%

level Minor. It’s no surprise that events of level Trivial contain

nothing to the crashes.

In this study, the efficiency of our approach can reflect per-

fectly. CHARD could reduce the sequences in a shorter time

and guarantee the correctness. In addition, the significance

levels we defined show the reasonableness by the statistics

from the final scripts.

VI. RELATED WORK

Besides Monkey, there are many test input generation tools

based on random testing strategy. Dynodroid [12] based on

Monkey has more sophisticated strategies and could trigger

effective events only. PUMA [16] is also based on the same

random exploration as Monkey, and integrates a generic UI

Automator to obtain the information of the layout. Both of

them reduce a lot of redundant events. We improve Monkey

from another aspect. We will not change the original strategy

of Monkey and improve the usability by reducing the test

sequence after execution.

Event trace reduction techniques include delta debugging

and program slicing. Towards the extremely long test cases

with crashes generated by Monkey, SimplyDroid [10] uses

delta debugging (DD) [21] to simplify Android input event

traces. It enhances the DD algorithm and contributes to

adjusting DD with Android. However, the DD can be used

on crashed traces only, and the iteration is time-consuming.

Our approach can pre-process these traces and increases the

efficiency of DD significantly. Program slicing [7] [20] [22]

is another main debugging technique, used in traditional

programs. EFF [23] aims to reduce the event trace for UNIX

by using dynamic slicing technique. JSTrace [19] is a tool

that uses a novel dynamic slicing technique and reduces the

event trace of the web application, aiming to effectively cut

down error reproduction time. However, event trace reduction

focuses on the minimal subset that triggers the same error.

Our approach can keep the same behaviors of the apps, even

though no error occurs.

There are also some works related to reproducing errors and

reduction based on rules, aiming to help developers diagnose

the result and bug reports. AppDoctor [9] is a system for

efficiently and effectively testing apps under various systems

and user actions. It uses heuristic rules to reduce the event

sequence. CRASHSCOPE [15] tests apps by using systematic

exploration and generates a human-readable report showing

the steps to reproduce crashes. Our tool CHARD uses heuristic

rules to reduce and generate readable reports together.

VII. CONCLUSION

For the testing of Android apps, we focus on the widely

used tool Monkey, which randomly generates low-level events

without regard to the state of the app. By investigation, we

find that many events of Monkey are ineffective ones. Thus,

the test reduction is a promising technique for improving the

quality of the test sequences generated by Monkey. We conduct

a two-stage study on the traces for testing real-world apps. For

various apps, the approach can effectively reduce more than

40% events in the traces. In particular, for crash traces, the

approach removes over 65% events and guarantees the replay

of the crash in normal situations. In addition, our approach can

be a pre-processing step for delta debugging, and save 67.6%

time for it. Our tool CHARD can be used to rearrange the

original test cases for replaying by removing the ineffective

events.
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