
Lightweight Method-level Energy Consumption
Estimation for Android Applications

Qiong Lu1,3, Tianyong Wu2,3, Jiwei Yan2,3, Jun Yan†1,2, Feifei Ma†2, Fan Zhang4
1Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences
4Beijing University of Technology

Email: {luqiong13,yanjun}@otcaix.iscas.ac.cn, {wuty, yanjw, maff}@ios.ac.cn

Abstract—The energy consumption problem is a hot topic in
Android communities. The high energy cost caused by improper
development brings lots of complaints from users. An effective
and efficient energy consumption analysis technique can guide
the developers to improve the energy efficiency of their apps.
Existing researches on this problem focus on either system entity
level that gives the energy consumption of the hardware, or
source line level that calculates the energy cost of source codes.
With the consideration of accuracy and cost of analysis, this
paper proposes a lightweight and automatic approach to estimate
the method-level energy consumption for Android apps. We
construct a statistical model from a set of energy values obtained
by Dalvik bytecode based instrumentation and software-based
measurement, to predict the energy consumption of execution
sequences of methods. The experiments on several real-world
apps show that the proposed techniques have low overhead while
persisting acceptable accuracy.

I. INTRODUCTION

Android application market is expanding rapidly. This

expansion is mainly driven by the development of mobile

apps, which provide users with more interesting and diverse

functionality. However, one of the most frustrating things is

that these applications often require a large amount of battery

power, which drains the battery life quickly and brings a lot of

complaints from users. Besides, millions of apps were often

developed in an energy oblivious manner, so optimizing the

energy consumption of apps is of critical importance.

To reduce Android applications’ energy consumption, re-

searches have explored some techniques on the platform layer

[20]. However, their improvements are not sufficient enough

for reducing the energy cost since a poorly written app will

still die the battery life out. Hence, it is also significant to

optimize the energy cost of Android apps, in which how to

analyze the energy consumption distribution in an app is a

considerable problem. It can help developers to know how the

battery is utilized inside an app and guide them to improve

the energy efficiency.

For the application level, several techniques were put for-

ward to estimate the energy consumption on the components

and source lines. Some researches focus on the energy cost of

Supported in part by National Natural Science Foundation of China (Grant
No. 91418206) and the National Key Basic Research (973) Program of China
(Grant No. 2014CB340701).

† Corresponding author.

program entities, including WIFI, GPS, etc. [7]. Although their

approaches can provide a high-level cognition to developers,

the information seems not enough to map to the code. The

developers can not easily find the root causes of energy

hotspots [6] to optimize apps via these types of techniques.

To address this issue, D. Li et al. focus on estimating the

energy consumption at the source line level [13] that is a

fine-grained work and need the testers to design a set of use

cases. However, due to the complexity of real-world apps, it is

expensive to build a set of representative input scenarios with

high coverage of source lines.

In addition, through communicating with developers in

several Internet companies in China, we find that they also

focus on the energy consumption related to the execution

sequences that consist of methods, which can mirror the

app’s behavior and explain how the energy flows inside an

app. Therefore, we believe that the method (the basic unit

in the program development) energy estimation appears to

be more reasonable. Furthermore, most developers only care

about the energy hole methods, rather than the accurate energy

consumption values that are difficult to obtain. Hence, it moti-

vates us to propose our approach, a new lightweight approach

estimating Android applications’ runtime energy consumption

at the method level, providing developers with helpful hints

for apps’ understanding and tuning.

In this paper, we combine the software-based measurement

with statistical modeling to estimate the Android applications’

energy consumption. Compared to the hardware-based energy

measurement (e.g., [12], [21]) that records the energy con-

sumption of the whole device, the software-based one can

profile the app under test with small background noise. In

order to obtain the information about execution sequences,

we design a Dalvik bytecode based instrumentation technique

to mark all the methods. After we execute the app under the

monitoring by an energy measurement software, we can get the

energy data along with the corresponding runtime sequences.

Next, we employ a linear regression analysis to generate a

prediction model that maps the energy consumption to the

methods, and refine it by taking a feedback way to improve the

prediction accuracy. Finally, we figure out the method energy

consumption distribution and high cost parts in apps.

In our experiments, we have applied our approach to several

2016 10th International Symposium on Theoretical Aspects of Software Engineering

978-1-5090-1764-5/16 $31.00 © 2016 IEEE

DOI 10.1109/TASE.2016.27

144

Android applications and our results reveal that the proposed

techniques are able to estimate and predict the energy cost of

each method and execution sequences. Our results also suggest

that the granularity level of our model is reasonable, where the

overhead brought by our instrumentation technique is less than

3% that has little influence on the measurement values, and the

average error of prediction values is no more than the source

line level.
The rest of this paper is organized as follows. In Section

II, we briefly introduce some related concepts and definitions.

Details of our approach are discussed in Section III. Then

we present some experiments and evaluate our approach in

Section IV. The related work and conclusion are in Section V

and VI, respectively.

II. BACKGROUND

In this section, we describe some background knowledge

that will be used in the following parts. Firstly, we introduce

some definitions related to the energy consumption. In order

to get runtime information, we propose a Dalvik bytecode

instrumentation technique. Thus, in the second subsection, we

explain some backgrounds about Dalvik. At last, we introduce

the linear regression used in our energy model construction.

A. Method Energy Consumption
There are many trivial factors and external environment

influencing the energy consumption of Android applications,

such as the user operations, temperature, running on different

devices, etc. So the energy consumption measurement values

of the same method sequence may be different in two execu-

tions. Thus, we need to ignore these minor factors and just give

a rough estimation among methods, which is more interesting

to developers. We assume that the outside environments (e.g.,

the temperature, the location, the battery power voltage, etc.)

are stable, the screen brightness is set fixed and the users’

operations are normal with no deliberate delay.
An application on the same Android device executes the

same sequence of methods that may have different energy

consumption because of the differences of execution logic

(different program paths) inside methods. In our approach,

we define the method energy consumption as average of

all the possible executions. Formally speaking, a method
energy consumption w = (m, ins) denotes average energy

consumption by method m which contains the instruction set

ins. It only involves basic instructions but not the nested

invocation methods. For example, as shown in Fig. 1, The

energy consumption of method a() involves the energy

consumpiton of the three instructions in a() excluding that of

method b(). Furthermore, we define the method sequence
energy consumption e = (s,Ms) denotes average energy

consumption by method sequence s which contains the set of

methods Ms. Without consideration of measurement errors,

we have e =
∑

m∈Ms
w.

B. Dalvik
The Android application is actually an Android Package

(apk) file, which is a type of archive file with .apk as the

1 public void a (){
2 int x;
3 x = 3;
4 b() ;
5 }
6 private void b(){
7 // other codes
8 }

Fig. 1. A Java Code Snippet

filename extension. The source codes of an Android app are

commonly compiled to Dalvik bytecodes, that is a register-

based instruction set. Our instrumentation is based on smali,

a dex format of Dalvik bytecodes. The smali file is composed

of several statements, which comply with a series of rules,

with the keyword .class, .locals, and so on. We only

care about the methods, starting with .method and ending

with .end method, between which the instructions form

a method block. There are two kinds of registers used by

smali, the local register and the parameter register. In a

method, .locals represents the number of used local regis-

ters and .param represents that of parameter registers.

The code snippet in Fig. 2 is an example of a simplified

smali method. As shown in Fig. 3, the local variables in the

example are stored at v0 and v1, which are the local registers,

and the method parameter is stored at v2, which is a parameter

register. By the way, the parameter variables are always stored

at the last registers.

1 .method protected onCreate(Landroid/os/Bundle;)V
2 . locals 2
3 .param p1, ‘‘ savedInstanceState ’ ’
4 // other bytecodes
5 .end method

Fig. 2. A Smali Code Snippet

�������	
��	���
�������	
��	���
�����		���	
��	���

��
��
��

Fig. 3. Register Distribution

Note that the straightforward instrumentation may result

in apps crash at runtime due to the collision of registers.

Therefore, we apply several more local registers to store

the variables of instrumentation to avoid using the local

registers that have been occupied. Moreover, it is necessary

to distinguish the local registers and the parameter ones, since

the parameter registers always rank in the final.

C. Linear Regression Analysis

Let �x = (x1, x2, . . . , xn) be arguments of a system and

for a pair (�x, y) where y is the dependent variable, a linear

145

regression model assumes that the relationship between y and

�x is linear. Assuming that A = (a1, a2, . . . , an) denote the

coefficients, the model takes the form y = a1x1+a2x2+ · · ·+
anxn = �xAT . We often have multiple pairs of experimental

data. Let X = (�x1, �x2, . . . , �xm)T and Y = (y1, y2, . . . , ym)T

be m pairs of arguments and dependent variables, respectively.

The vector form of the above equation can be written as

Y = XAT .

A solution to fit a proper assignment of A is the simu-

lated annealing (SA) algorithm [11], which is a probabilistic

technique for approximating the global optimum of a given

function.

III. APPROACH

In this paper, we aim to estimate the energy consumption

at the method level for Android applications. We propose a

lightweight and automatic approach to generate a prediction

model to map the energy consumption to the methods. The

model can also be used to predict the energy cost of a specific

execution sequence.

Fig. 4 shows the architecture of our approach. There are

five main modules : (1) APK Instrumentation, (2) Runtime

Monitoring, (3) Data Preprocessing, (4) Energy Modeling, and

(5) Feedback.

(1) APK
Instrumentation

(2) Runtime
Monitoring

(3) Data
Preprocessing

(4) Energy
Modeling

Android
Executable Application Energy Model

(5) Feedback

Accuracy
Convergence

no

yes

Fig. 4. Architecture of our approach

Our approach takes an Android executable application as

input. First of all, we instrument probes into the apk file to

track the executed methods. Then, we run the instrumented

application on the Android device to get the runtime path

information and energy measurement data, which are stored

in the log files and database, respectively. Next, we use these

raw data to count the corresponding methods’ invocation times

and calculate the energy consumption in each run, which are

the inputs to the energy modeling component. We use linear

regression analysis to model the energy consumption that can

predict the energy cost of a given execution sequence. A

feedback approach that is an optional step, is used to optimize

the effect of the energy model by adjusting the training data

from a small reserved set. If the accuracy of the model is

acceptable, we use it to predict energy consumption. Or else,

we feed the results back to the energy model to optimize it.

After several rounds, the model will be stable and output the

feasible predicted values.

A. APK Instrumentation

The input of the first step is an executable Android app. To

obtain the information of the runtime execution sequences, we

need to insert probes into the original Android app to collect

messages about how the app executes from the log file.

Our approach is based on the Dalvik bytecodes instead of

the source codes, which may be not available for analyzers

sometimes. Though there are some tools that can decompile

the bytecodes to source codes, they cannot work well on all

apps. Therefore, instrumentation on the bytecodes is a more

reasonable and generic choice.

The main difficulty lies in the register-based Dalvik instruc-

tion set for the straightforward instrumentation approach may

result in apps crash at runtime. We provided an effective and

lightweight method for the Dalvik bytecode instrumentation,

that is applicable to real world apps. We only modify the

smali files, that are decompiled from the Dalvik bytecodes,

without changing any other things of the original application.

Fig. 5 shows the process of apk instrumentation. Since

our approach is at the method level, we take method as an

instrumentation unit. Firstly, we need to unpack and decompile

the Android application to extract its smali and resource

files. To collect information about the methods executed when

the app is running, we need to insert probes about method

information to the smali files. By traversing the smali
files, we identify all the methods excluding the system ones

(original Android APIs) and the R file. Then under the premise

of not violating the register rules, we insert our probes at the

entry points of the methods. The probes are a set of tuples in

the form of {c, m}, where c denotes the class name, and m
denotes the method name. After this is done, we repackage

all the smali and resource files to an executable Android

application, which is embedded with the path information.

�	������	

����	�
����	��

���	��
����	��

����	�
����	��

���	��
����	��

�	�����
	

����������	�!���	
����������

����!�	�	����������
��	�!���	�����������

Fig. 5. APK Instrumentation

We illustrate how we insert probes into the example code in

Fig. 2. Assume that the probes we need to insert would occupy

two local registers, we should apply two more new registers.

Just add the value after .locals to 2 if the total number

of registers does not exceed 16. However, if not, we use the

instruction /range to expand the registers’ index scope and

then map each register identification to the new one. As shown

in Fig. 7, since the parameter variable should be stored in the

last register, it will occupy v4 instead of v2. So when we refer

to the new registers, we should use v2 and v3, rather than

v3 and v4. Fig. 6 shows the method after instrumentation.

146

1 .method protected onCreate(Landroid/os/Bundle;)V
2 . locals 4
3 .param p1, ‘‘ savedInstanceState ’ ’
4 // My Instrumentation
5 // other bytecodes
6 .end method

Fig. 6. Smali Codes After Instrumentation

�������	
��	���
�������	
��	���
�����		���	
��	���

��
��
��

Fig. 7. Register Identification Mapping Process

After this step, we obtain a modified Android app carrying

the path information we need. It will write the executed

method sequences into the log files for further analysis when

the app runs on the real device.

B. Runtime Monitoring

At the first step, we have got an instrumented application

with the path information tracing instructions. In this step,

we execute the instrumented app and measure the energy

consumption of each run.

Fig. 8 shows the framework of this step, which is composed

of the runtime controller and the runtime measurement. The

controller is built on the computer, while the measurement

is on the phone. We install the instrumented apk file on the

Android device under the control of the computer, which will

monitor its entire execution and capture the method sequences

information. At the same time, we execute the application on

the cell phone and measure the energy consumption. When

the app stops running, a log file recording the runtime path

information and a database recording the energy information

will be generated. The whole process is totally automatic

without any user interactions.

������	�����"	��"��	#��	�	���$�����

�!���	�$������	� �!���	�%	��!�	�	�

�!���	���
���&�

��	�
'�%	��!�	�	��*���

Fig. 8. Runtime Monitoring

Note that the cell phone is controlled via wireless con-

nection instead of cable connection, which could charge the

battery and disturb the measurement of power consumption of

the application under test.

We employ a random testing tool Monkey, a popular com-

mand line tool to test Android apps, as the controller. Monkey

will automatically generate pseudo-random stream of events

and send them to the phone, simulating user input like touch,

gesture, and so on. For the runtime measurement, we employ

another tool, Trepn profiler 5.1 [5] provided by Qualcomm.

Trepn uses an interface of the Linux kernel to take a closer

look at the power management IC on a supported chip to

measure energy consumption. Compared with other energy

measurement apps, Trepn can profile not only the energy

consumption of Android system, but also that of the individual

Android app, which helps us get rid of some of the background

influence to a certain extent.

As shown in Fig. 8, after this step finishes, we’ll get the

executed method sequences information in the log files and

the energy consumption information in Trepn’s database. We

will perform some further analysis based on these raw data in

the following steps.

C. Data Preprocessing

Since the raw data collected in the second step contains a

large amount of irrelevant information brought by Monkey and

Trepn for our processing, we need to do some arrangements.

Specifically, in the log files, the generated runtime information

has several categories, including our instrumentation path

information and some others. We count the executed method

invocation times at each run and format them as a set of fea-

tures that can be used in the next step. In Trepn’s database, we

extract the average battery power measurement, and multiply

by time as the energy consumption of one test, ignoring data

of memory, network, etc. With these preprocessed data, we

construct a training data set and a small reserved data set for

modeling in the next step.

D. Energy Modeling

In this step, we employ a linear regression analysis to

produce a mapping of each method’s energy cost.

After the data preprocessing step, we get a number of

features. Let xi,j denote the invocation times of the jth

(1 ≤ j ≤ n) method in the ith test and ei denote the energy

consumption for the same test. We can define the feature of

the ith test as {xi,1, xi,2, . . . , xi,n, ei}. With m executions,

let X = (xi,j)m×n be the method invocation times matrix,

E = (e1, e2, . . . , em)T be the average energy measurement

values vector. Assume that W = (w1, w2, . . . , wn) is a

coefficient vector to represent the energy cost of each method.

We have the linear equation E = XWT that describes the

relationship between the method invocation times and energy

measurement values. In theory, solving this equation will get

the assignments of coefficient vector W , which forms the core

of the energy model.

However, from the preliminary experimental results, we

observe that due to the improper initial values and the large

number of the coefficients in the model, the straightforward

solving of the equation is hard. So we try to fit a set of optimal

solutions instead. It is feasible that wi (1 ≤ i ≤ n) is in

range of [0,min ei
xij

], since the energy cost of each method

is non-negative and less than the total energy consumption of

147

an execution. To get the global optimum solution as much as

possible, we employ the simulated annealing (SA) algorithm

for the linear regression analysis. Given W a group of initial

values, the SA algorithm randomly changes the value of an

element in the matrix and iteratively moves from the current

candidate solution S to a new candidate solution S′. It accepts

bad solutions by the probability e−(c(S′)−c(S))/KT , where

c(S′) and c(S) are calculated by

c(S) =
1

2m

m∑

i=1

(ES − E)2.

In the acceptance probability function, K is Boltzmann’s

constant, and T stands for the temperature, a global time-

varying parameter. Formula c(S) represents the cost of the

candidate solution S.

Finally, we obtain an energy model, which maps the energy

consumption to the methods and can be used to predict the

energy cost of the specific execution sequences.

E. Feedback

We perform a feedback approach to optimize the effect

of the energy model by using the reserved data set. If the

prediction accuracy of the energy model is not satisfactory,

we replace a case in the training data set with a reserved one

in each iteration. Then we can get a new prediction model

and compare it to prior one. If the model is better, we accept

the change. Otherwise, we rollback the replacement and try

another reserved case. This feedback process will terminate

when the accuracy of prediction is acceptable or the iteration

times reach the upper bound.

The reason for introducing the feedback mechanism is that

the size of training data set designed artificially may be not

feasible. In addition, from the results of our experiments IV-E,

a set of 250 cases is enough to get an acceptable accuracy

model for our instances. We can start from a small set of

training data and adjust it gradually if needed.

IV. EVALUATIONS

We implemented our approach in Python language with

some ADB [1] scripts. The apk instrumentation part uses

Androguard [3], a static analysis tool for Android apps, to

construct the control flow graph of the Dalvik bytecodes to

help find the location of instrumentation. We employ APKTool

[2] to decompile and repackage the Android apk files and

SignApk [4] to conduct the re-signature process if needed.

A. Experimental Setup

We ran the experiments on a Xiaomi 2S cellphone, with its

CPU 1.7GHz, 2GB RAM, and the battery capacity 2000mAh.

We choose Trepn running on the device to measure the energy

consumption and employ Monkey to control the execution on

a Windows 7 desktop platform containing an Intel (R) Core

(TM) i7 CPU 2.93GHz with 8GB RAM.

Table I lists the six popular applications from a Chinese

Android market, most of which have been downloaded more

than one hundred thousand times. These apps cover five com-

monly addressed categories and can be valid representatives of

the different profiles of energy consumption. We also give the

category, size, number of classes (#C) and number of methods

(#M). We choose these applications from various categories to

enrich our experiments.

TABLE I
EXPERIMENTAL APPLICATIONS

App Category Size (B) #C #M

Saolei Game 475K 132 724

Piano Game 721K 449 2838

CRadio Media 1568K 668 4252

CNTV Video 7961K 905 6700

SogouBrowser Browser 8417K 2970 18542

SogouReader Reader 7446K 3331 22519

To evaluate the accuracy of our energy model, we adopt two

statistical metrics, the multiple correlation coefficient (R2) and

the average relative error (ARE).

In statistics, the R2 is a well-known measure of how

well a given variable can be predicted by other variables.

It is the correlation between the variable’s values and the

best predictions, which can be computed from the predictive

variables. In our cases, the given variable to be predicted is

the energy consumption of the i’th execution (êi), and the set

of other variables are each method’s energy consumption. The

formula of R2 is defined as follows.

R2 =

∑
(êi − e)2∑
(ei − e)2

where the êi denotes the energy consumption calculated for

the i’th execution sequence based on our energy model. The ei
denotes the measured energy consumption of the i’th execution

sequence at runtime and e is the average of all the measured

ones. The R2 takes values between 0 and 1 with a higher value

close to 1 indicating a better predictability.

The ARE gives an indication of how good a prediction is

relative to measurement value. The lower ratio of ARE, the

more accurate the model is. The formula is shown as

ARE =
1

n

∑ |êi − ei|
ei

B. Instrumentation Overhead

Since it is hard to measure the energy consumption of the

instrumentation code directly, in order to estimate the overhead

of instrumentation, we compare the number of instructions of

the apps’ bytecodes before and after instrumentation, and we

also did several groups of experiments to compare the average

execution time of two versions of apps under the same event

sequences. We set 20,000 as the number of random events

for an execution sequence. Table II shows the overhead. The

first column shows the app name, followed by the number of

instructions before and after instrumentation (i.e., #Instruction

bef. and aft.) and its overhead On, calculated by On = (aft−
bef)/bef. The last main column shows the execution time,

148

where Tb and Ta denote the average time consumption by

each application before and after instrumentation respectively,

and Ot = (Ta − Tb)/Tb denotes the corresponding overhead

of execution time.

TABLE II
OVERHEAD OF INSTRUMENTATION

App
#Instruction Time

bef. aft. On Tb(s) Ta(s) Ot

Saolei 25447 25985 2.1% 77.66 80.48 3.6%

Piano 102049 104191 2.0% 69.27 70.32 1.5%

CRadio 149476 152153 1.7% 114.73 118.95 3.6%

CNTV 233186 237820 1.9% 62.05 64.54 4.0%

SogouBrowser 739369 752799 1.8% 135.08 138.34 2.4%

SogouReader 950227 966410 1.7% 79.45 81.60 2.7%

From the two tables, we observe that only about 2%

instructions are inserted into the original apps. On average,

the instrumented versions take within an average about 3%

more time than the original one. Therefore, these results are

fairly satisfactory and indicate that the instructions added by

our instrumentation technique have little influence to energy

consumption of apps under test.

C. Analysis Time and Accuracy

To evaluate the efficiency and accuracy of our approach, we

ran the subject apps on the phone and measured the time, then

calculated the accuracy of the produced energy model.

The same as experiments in the former subsection, we also

set 20,000 as the number of random events for an execution

sequence. For the energy modeling, we take 250 executions

as a training set with 20 cases as the reserved set to feedback.

Table III summarizes the overall experimental results. The

analysis time is shown in the second major column and the

analysis accuracy in the last. We consider two aspects of the

approach’s analysis time, time to instrument each application

Ti and time to perform the energy modeling Tm. For the

analysis accuracy, we consider R2 and ARE to measure how

well the energy model can predict for the training set.

TABLE III
ANALYSIS TIME AND ACCURACY

App
Analysis Time Analysis Accuracy

Ti(s) Tm(s) R2 ARE(%)

Saolei 1 35 0.85 3.9

Piano 3 48 0.83 4.2

CRadio 4 64 0.87 8.3

CNTV 10 69 0.91 8.4

SogouBrowser 31 143 0.88 7.7

SogouReader 44 162 0.94 7.3

From Table III, we observe that even when the application

size is large (i.e., SogouBrowser, SogouReader), the analysis

time is still within several minutes. And the values of R2 range

from 0.83 to 0.94 with an average of 0.88, which shows that

the predicted energy consumption by our model fit well to

the measured ones. The values of ARE range from 3.9% to

8.4% with an average of 6.63%, which shows that the value of

predicted energy consumption is close to the measured ones.

Overall, these data indicate that our model behaves well.

D. Cross Validation

In addition to evaluating the analysis accuracy via the

statistical methods described above, we also adopt cross vali-

dation, a technique for assessing how the results of a statistical

analysis will generalize to an independent data set, to estimate

how accurately the predictive model will perform in practice.

We randomly partitioned all the preprocessed data into

2 subsets, one is retained as test data set for testing the

model, and the remaining samples are used as training data

that produce the energy model. Then by applying the trained

energy model to the test data, we would obtain a set of energy

costs. Fig. 9 compares the predicted energy consumption and

the ones measured by Trepn. For each application, we list 50

groups of comparison experiments, with the solid line repre-

senting the measured energy consumption and the dotted line

representing the predicted ones. Each group of experiments

are listed along the X-axis and the two different energy cost

values in mAh (since the battery supplies a constant power

voltage) are shown on the Y-axis.

As can be seen from Fig. 9, the trend of the two lines in each

application is very close. For a quantitative analysis, we show

the average relative error (ARE) and the standard deviation

(STDEV) of 50 experiments in each application in Table IV.

TABLE IV
CROSS VALIDATION ACCURACY

App ARE (%) STDEV (%)

Saolei 14.2 6.4

Pinao 12.5 8.7

CRadio 15.7 12.1

CNTV 15.6 14.1

SogouBrowser 16.7 15.2

SogouReader 17.8 12.0

As shown in the table, the values of ARE range from

12.5% to 17.8% with an average of 15.41%. The results

indicate that our approach predict the execution sequence

energy consumption well with the STDEV averaging 11.42%.

E. Size of Training Set

It is time-consuming to collect the large amount of training

data set from runtime measurement since it needs to execute

the apps under test. In order to statistic the best option of

the size of training set, we conduct 5 groups of experiments

for each app, that adopt 100, 150, 200, 250, 300 cases as

the training set, respectively. We use the same testing set

containing 50 cases to compare the effect of the trained model

for each app. The experimental results are shown in Fig. 10.

The sizes of training sets are listed along the X-axis and

the average relative errors calculated from the model under

the test data are shown on the Y-axis. As can be seen from

149

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
� �����	������	
������������

�������������	
������������

(a) Saolei

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
�

�����	������	
������������
�������������	
������������

(b) Piano

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
� �����	������	
������������

�������������	
������������

(c) CRadio

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
� �����	������	
������������

�������������	
������������

(d) CNTV

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
� �����	������	
������������

�������������	
������������

(e) SogouBrowser

�

�

��

��

��

��

��
�	

�
�
��
��
�
��
��
��
��
��
� �����	������	
������������

�������������	
������������

(f) SogouReader

Fig. 9. Energy Consumption Prediction of Execution Sequences

��� ��� ��� ��� ���

���

���

���

���

	

�

�����������������

�������
�	��
�
������
�����
�������������
�����������

Fig. 10. Influence of Training Data Set Size

the figure, the error is relatively large (20% above) when the

training set is composed of 100 cases. With the increase of the

training data size, the error is in gradual decline and it tends

to be stable after the size is up to 250, that we consider to be

a suggested choice to be able to obtain a better model.

F. Method Energy Consumption Distribution

From our produced energy model, we find out some high-

cost methods, which take an average proportion of 9.65% in

quantity but consume the 80% battery power as shown in Fig.

�� �� ��� ��� ��� ���
��

���

���

���

���

����

��
��
��
��
��

��
�
 �
�
��
!�

�"
��
��
��

�� �#��������$"��������%��&�'�

1 ����(�
1 �!���
1 ��
�'�
1 ��)�*
1 ������+��,���
1 ������
��'��

Fig. 11. Method Energy Consumption Percentage

11. Its X-axis presents the top x% energy-consuming methods,

and the Y-axis shows the corresponding energy consumption

percentage.

In order to analyze the internal structure of these high-

cost methods, we check the top 100 methods’ bytecodes

and conclude the classification results shown in Fig. 12. In

the clock wise order, beginning with the part of 24%, each

part respectively represents the complicated computation, the

database operation, the file-related operation, the frequent

instance initialization, the audio operation, the multiple loops,

150

and some others. Note that the poorly written program code,

such as the reported high-cost methods always contain a large

amount of repeated computing and loops, or initialize instances

frequently, that may result in the app die the battery life out.

����������
���

 ���!���
���

"���
�#�

$�������%�����
���

�����
&�

'���
��

(���	�
���

Fig. 12. Energy Consumption Percentage

V. RELATED WORK

In recent years, many researches aim to estimate the energy

cost of the mobile apps from different points.
Pathak et al. track the activities of energy-consuming entities

(WiFi, GPS etc.) when the app is executing on the mobile

phone [18]. They compute the approximate energy consump-

tion of applications and functions that invoke system calls.

Jindal et al.[9] evaluated the energy consumption of the device

subsystems (e.g., GPU or GPS). It is useful to understand the

hardware and the impact of I/O on the battery lifetime. Howev-

er, understanding the VM services design tradeoffs cannot be

refined based on that approach because the VM is not linked

to the I/O expenses. Hence, the experimental environment

focuses on the energy consumed by the CPU which ranges

between 20-40% of the total device consumption.
Ferrari et al. [8] presents POEM to help developers auto-

matically test and measure the energy consumption of single

application component down to the control flow level. Their

approach focuses on the static analysis of the bytecode and

code injection techniques to obtain measurements with several

levels of granularity (e.g., class level, method level, etc.) while

our approach focuses on dynamic execution techniques at the

method level. Liqat et al. [16] study the energy consumption

with static analysis at ISA and LLVM IR levels, and reflects it

upwards to the higher source code level. Their results suggest

that it is a good choice to estimate the energy consumption on

these levels for conventional programs.
There are also techniques detecting the energy performance

bugs [10], [17], [19], which arise from improper use of

power control APIs and result in battery drainage. There are

also some techniques for detecting display energy hotspots

in Android applications [14], [22]. They believe that the user

interfaces of a mobile app is related to the energy consumption.

Li and Gallagher [15] propose an energy-aware programming

approach, which is guided by an operation-based source-

code-level energy model and can be placed at the end of

software engineering life cycle. These techniques leverage

power modeling and some display transformation approaches,

such as changing the color scheme, to predict and reduce the

energy consumption of an app.

VI. CONCLUSION

Energy consumption is a serious problem for pocket devices.

We investigated this problem and proposed a lightweight and

automatic method-level approach to estimate the energy con-

sumption for Android apps. From the experimental results, we

observe that the method-level estimation is a proper trade-off

between accuracy and efficiency, that is useful to analyze the

energy cost of the real-world and industry-sized applications.
There are some possible ways to improve our approach.

We can make use of a test tool to generate more efficient

and concise test inputs with high coverage. Besides, if we can

generate the feasible execution sequences, then it is possible to

predict the worst case energy consumption for an application,

which will be a valuable metric for evaluating the quality of

an app.

REFERENCES

[1] http://developer.android.com/intl/zh-cn/tools/help/adb.html.
[2] http://ibotpeaches.github.io/apktool/.
[3] https://code.google.com/p/androguard/.
[4] https://code.google.com/p/signapk/.
[5] https://developer.qualcomm.com/software/trepn-power-profiler.
[6] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury.

Detecting energy bugs and hotspots in mobile apps. In FSE 2014, pages
588–598, 2014.

[7] A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In 2010 USENIX Annual Technical Conference, 2010.

[8] A. Ferrari, D. Gallucci, D. Puccinelli, and S. Giordano. Detecting energy
leaks in Android app with POEM. In PerCom Workshops 2015, pages
421–426, 2015.

[9] A. Jindal, A. Pathak, Y. C. Hu, and S. P. Midkiff. Hypnos: understanding
and treating sleep conflicts in smartphones. In EuroSys 2013, pages 253–
266, 2013.

[10] K. Kim and H. Cha. Wakescope: Runtime wakelock anomaly manage-
ment scheme for Android platform. In EMSOFT 2013, pages 27:1–
27:10, 2013.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[12] I. König, A. Q. Memon, and K. David. Energy consumption of the
sensors of smartphones. In ISWCS 2013, pages 1–5, 2013.

[13] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source
line level energy information for Android applications. In ISSTA 2013,
pages 78–89, 2013.

[14] D. Li, A. H. Tran, and W. G. J. Halfond. Nyx: a display energy optimizer
for mobile web apps. In ESEC/FSE 2015, pages 958–961, 2015.

[15] X. Li and J. P. Gallagher. An energy-aware programming approach for
mobile application development guided by a fine-grained energy model.
Technical report, Roskilde University, 2016.

[16] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, J. P. Gallagher,
M. V. Hermenegildo, and K. Eder. Inferring parametric energy consump-
tion functions at different software levels: ISA vs. LLVM IR. 2015.

[17] Y. Liu, C. Xu, S. Cheung, and J. Lu. Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications. TSE, 40(9):911–940,
2014.

[18] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app? fine grained energy accounting on smartphones with Eprof. In
EuroSys 2012, pages 29–42, 2012.

[19] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping
my phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps. In MobiSys 2012, pages 267–280, 2012.

[20] K. Paul and T. K. Kundu. Android on mobile devices: An energy
perspective. In CIT 2010, pages 2421–2426, 2010.

[21] M. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J.
Neely. Energy-delay tradeoffs in smartphone applications. In MobiSys
2010, pages 255–270, 2010.

[22] M. L. Vásquez, G. Bavota, C. E. Bernal-Cárdenas, R. Oliveto, M. D.
Penta, and D. Poshyvanyk. Optimizing energy consumption of GUIs in
Android apps: a multi-objective approach. In ESEC/FSE 2015, pages
143–154, 2015.

151

