
Science of Computer Programming 162 (2018) 132–147
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Lightweight energy consumption analysis and prediction for

Android applications

Yan Hu a, Jiwei Yan b,d, Dong Yan c,d, Qiong Lu c, Jun Yan b,c,d,∗
a School of Software, Dalian University of Technology, China
b State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
c Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, China
d University of Chinese Academy of Sciences, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2017
Received in revised form 29 April 2017
Accepted 10 May 2017
Available online 22 May 2017

Keywords:
Android application
Energy consumption analysis
Energy prediction
Linear regression

The energy consumption problem is a hot topic in Android communities. The high energy
cost caused by improper development brings lots of complaints from users. An effective
and efficient energy consumption analysis technique can guide Android developers to
improve the energy efficiency of their apps. Existing researches on this problem focus
on either system entity level that gives the energy consumption of the hardware, or
source line level that calculates the energy cost of source codes. With the consideration
of accuracy and cost of analysis, this paper proposes a lightweight and automatic approach
to analyze and predict the energy consumption for Android apps. We conduct the study
from a method-level and API-level perspective. The method-level analysis gives developers
facts about the energy consumption of the user methods in their apps, while the API-level
analysis shows the energy consumption of Android APIs, which can help them make good
decisions about how to choose appropriate APIs to improve the energy efficiency of an
Android app. We construct a statistical model from a set of energy values obtained by
Dalvik bytecode based instrumentation and software-based measurement, to predict the
energy consumption of method sequences or API sequences. The experiments on several
real-world apps show that the proposed techniques have low overhead while persisting
acceptable accuracy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Android application (app) market is expanding rapidly. This expansion is mainly driven by the development of mobile
apps, which provide users with more interesting and diverse functionalities. However, one of the most frustrating things
is that these applications often require a large amount of battery power, which drains the battery quickly and brings a lot
of complaints from users. Besides, millions of apps were often developed in an energy-oblivious manner, so optimizing the
energy consumption of apps is of critical importance.

To reduce Android applications’ energy consumption, researchers have explored some techniques on the platform layer
[1]. However, their improvements are not sufficient for reducing the energy cost since a poorly written app will still die
the battery out. Hence, it is very important to optimize the energy cost of Android apps. In order to perform energy

* Corresponding author at: State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China.
E-mail address: yanjun@ios.ac.cn (J. Yan).
http://dx.doi.org/10.1016/j.scico.2017.05.002
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:yanjun@ios.ac.cn
http://dx.doi.org/10.1016/j.scico.2017.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2017.05.002&domain=pdf

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 133
optimization, one thing we must do first is to analyze the energy consumption distribution in an app. It can help developers
to know how the battery is utilized inside an app and give them hints about how to improve the app’s energy efficiency.

For the application level, several techniques were put forward to estimate the energy consumption on the components
and source lines. Some researches focus on the energy cost of program entities, including Wifi, GPS, etc. [2]. Although their
approaches can provide a high-level cognition to developers, the information seems not enough to map to the code. The
developers can not easily find the root causes of energy hotspots [3] to optimize apps via these types of techniques. To
address this issue, D. Li et al. focus on estimating the energy consumption at the source line level [4] that is a fine-grained
work and need the testers to design a set of use cases. However, due to the complexity of real-world apps, it is expensive
to build a set of representative input scenarios with high coverage of source lines.

In addition, through communicating with developers in several Internet companies in China, we find that they also
focus on the energy consumption related to the execution sequences that consist of methods, which can mirror the app’s
behavior and explain how the energy flows inside an app. Therefore, we believe that the method and API (the basic unit in
the program development) energy estimation appears to be more reasonable. Furthermore, most developers only care about
the energy hole methods and APIs, rather than the accurate energy consumption values that are difficult to obtain. Hence,
it motivates us to propose our approach, a new lightweight approach estimating Android applications’ runtime energy
consumption at the method and API level, providing developers with helpful hints for apps’ understanding and tuning.

In this paper, we combine the software-based measurement with statistical modeling to estimate the Android appli-
cations’ energy consumption. Compared to the hardware-based energy measurement (e.g., [5,6]) that records the energy
consumption of the whole device, the software-based one can profile the app under test with small background noise. In
order to obtain the information about execution sequences, we design a Dalvik bytecode based instrumentation technique
to mark all the methods and APIs. After we execute the app under the monitoring of an energy measurement software, we
can get the energy data along with the corresponding runtime sequences. Next, we employ a linear regression analysis to
generate a prediction model that maps the energy consumption to the methods and Android APIs, and refine it by taking
a feedback way to improve the prediction accuracy. Finally, we figure out the method energy consumption distribution and
high cost parts in apps.

In our experiments, we apply our approach to several Android applications and our results reveal that the proposed
techniques are able to estimate and predict the energy cost of each method and execution sequences. Our results also
suggest that the granularity level of our model is reasonable, where the overhead brought by our instrumentation technique
is less than 3% that has little influence on the measurement values, and the average error of prediction values is no more
than the source line level.

The main contributions described in this paper are as follows.

• We propose a lightweight instrumentation technique in the register-based Dalvik bytecode instead of the source code.
• We propose an automatic approach to construct an accurate model to estimate the energy consumption of the methods,

which can be used to predict the energy cost of the execution sequences.
• We extract API traces from method sequences, and build an API level energy model, which can be used to predict the

energy cost of API traces.
• We conduct experiments on several real-world apps. The proposed approach can achieve acceptable prediction accuracy

with low overhead.

The rest of this paper is organized as follows. In Section 2, we briefly introduce some related concepts and definitions.
Details of our approach are discussed in Section 3. We explain the implementation of our approach in Section 4. Then we
present the design of experiments and evaluate our approach in Section 5. The related works and conclusion are in Section 6
and 7, respectively.

2. Background

In this section, we present some background knowledge that will be used in the following parts. Firstly, we introduce
the Dalvik virtual machine that is an essential part of Android app runtime, and the instrumentation technique to get run-
time information. Then we describe the energy consumption of Android methods and APIs in the following two subsections.
Next, we show how the Android GUI exploration works and introduce the Android power monitoring tool in the follow-
ing subsection. Finally, we will introduce the linear regression used in our energy model construction and corresponding
algorithms.

2.1. Dalvik bytecode

The Android application is actually an Android Package (APK) file, which is a type of archive file with .apk as the file-
name extension. The source codes of an Android app are commonly compiled to Dalvik bytecode, which is a register-based
instruction set. Our instrumentation is based on smali, a dex format of Dalvik bytecode. The smali file is composed of
several statements, which comply with a series of rules, with the keyword .class, .locals, and so on. Take method
as an example, it starts with .method and ends with .end method, between which the instructions form a method

134 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Fig. 1. A Smali code snippet.

Fig. 2. Register distribution.

Fig. 3. A Java code snippet.

block. There are two kinds of registers used by smali, the local register and the parameter register. In a method, .locals
represents the number of used local registers and .param represents that of parameter registers.

The code snippet in Fig. 1 is an example of a simplified smali method. As shown in Fig. 2, the local variables in
the example are stored in v0 and v1, which are the local registers, and the method parameter is stored in v2, which is a
parameter register. By the way, the parameter variables are always stored in the last registers.

Note that the straightforward instrumentation may result in apps crashing at runtime due to the collision of registers.
Therefore, we apply several more local registers to store the variables of instrumentation to avoid using the local registers
that have been occupied. Moreover, it is necessary to distinguish the local registers and the parameter ones, since the
parameter registers always rank in the final.

2.2. Method energy consumption

There are many trivial application-specific and runtime environment factors that can influence the energy consumption of
Android applications, such as user behavior, device temperature, different mobile devices with variant hardware platforms,
etc. As such, even the energy consumption measurement values of the same method sequence could be different in two
executions. In order to estimate app energy consumption effectively, diving too deep into those details is not a good option.
Therefore, we decide to give a rough estimation at the method level, by ignoring the pre-mentioned minor factors. We
assume that the outside environments (e.g., the temperature, the location, the battery power voltage, etc.) are stable, the
screen brightness is set fixed and the users’ operations are normal with no deliberate delay.

An application on the same Android device executes the same sequence of methods that may have different energy
consumption because of the differences of execution logic (different program paths) inside methods. In our approach, we
define the method energy consumption as average of all the possible executions. Formally speaking, a method energy
consumption w(m) denotes average energy consumption by method m which contains the instruction set including basic
instructions but not the nested invocation methods. For example, as shown in Fig. 3, the energy consumption of method
a() involves the energy consumption of the three instructions in a() excluding that of method b(). Furthermore, we
define the method sequence energy consumption e(s) denoting average energy consumption by method sequence s which
contains the set of methods Ms . Without consideration of measurement errors, we have

e(s) =
∑

m∈Ms

w(m).

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 135
2.3. API energy consumption

The execution of the instrumented Android bytecode yields an execution sequence of program elements. In the previous
subsection, we regard each element as a method call. Besides, we can make use of other program elements, such as API
calls, to model the energy consumption of the execution sequence. Android APIs are major sources of energy consumption,
and developers often pay much attention to the usage of them during the energy profiling and optimization phase in
energy-aware development of Android apps.

M.L. Vásquez et al. [7] conducted an empirical study on the effect of API patterns to the energy consumption of Android
applications. More than 100 energy-greedy Android APIs are collected from the benchmark applications in the experiments.
The experimental results show that energy-greedy Android APIs are the main sources of power consumption for Android
apps. In this paper, typical energy greedy Android APIs are divided into several categories according to their functionalities,
including GUI and image manipulation, database, activity and context, services, Web, media and animation, datastructure
manipulation, file manipulation, geo location, and networking. APIs related to GUI and image manipulation represent 60
percent of the energy greedy APIs.

Developers care about the energy consumption of Android APIs, as discussed in paper [7]. They have discussions about
API energy consumption related topics on forums like StackOverflow [8]. The work shows that API energy consumption
data is very useful in detecting energy related bugs, and also helpful to Android app energy optimization. GUI refreshing,
database management, and Web related APIs like the constructors of WebView class, are found to be energy greedy.

2.4. Android GUI exploration

Most Android apps come with GUI interfaces. In order to reveal more behaviors of Android apps, we must use automatic
tools to control the GUI, and make them generate variant traces.

Many researchers have explored the topic of Android GUI exploration. The methods include random testing, heuristic
guided, and symbolic execution based ones. In our work, we will adopt the random testing technique, as other guided
exploration techniques will add more runtime overhead, which is inappropriate for energy measurement.

Monkey [9] is the most basic random method for Android GUI testing. It is a generic built-in Android instrumentation.
It randomly sends emulated events to the Android runtime, and does not need to worry about the state transition of GUI
models. It also does not require any code knowledge and does not require any control over a specific app.

Robotium [10] is a popular Android UI testing framework. In order to perform Robotium based testing, a test app should
be created and be associated to the app under test. The two apps are installed into the mobile device, and should be
running in the same process. Thus, it is able to retrieve the UI structure of the app’s current view, and send key strokes or
tap events to control UI interactions by executing Robotium test scripts.

Monkey and Robotium can both be used to generate the event inputs to serve the purpose of generating a wide variety
of method and API sequences. However, some drawbacks of Robotium make it not appropriate for our energy analysis task,
which will be discussed in Subsection 5.2.

2.5. Android power monitoring tool

Power measurement is required for Android energy modeling. There are several ways to measure power consumption on
mobile platforms:

1. read power or energy related data directly from mobile phone hardware. This is the most accurate method, but is
restricted by specific phone hardware architecture;

2. read data from /proc and /sys files. It is very restricted in that data can only be read at the sampling points, not
realtime;

3. read from the BatteryStats class. This method can only estimate power consumption at a very coarse level. It is
also difficult to control the data sampling rate.

As pure software measurement approaches, like 2 and 3, is not very accurate, hardware based approaches are needed
where accurate energy consumption data is required. One ideal option is that we simulate battery with real-life power
source, and then measure the energy consumption in real-time. In this way, the result should be very accurate. However,
setting up the power monitoring hardware environment would be very costly. Another way is to use specific hardware tool
to connect to the mobile device, and collect detailed energy consumption data. Monsoon power monitor [11] is an example.
But the hardware monitor is still very expensive.

Luckily, as the SnapDragon CPU provider, Qualcomm provides Trepn profiler [12]. It is a power and performance profiling
application, which can be installed on target mobile devices to monitor the CPU usage and energy consumption. Trepn can
monitor the energy consumption for a single Android app, which suites our approach very well. Therefore, it is chosen as
our energy measurement tool.

136 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Fig. 4. The workflow of our approach.

2.6. Linear regression analysis

We use linear regression (LR) algorithms to generate the energy model. In this subsection, we will give a brief description
of LR methods.

Let �x = (x1, x2, . . . , xn) be arguments of a system and for a pair (�x, y) where y is the dependent variable, a linear
regression model assumes that the relationship between y and �x is linear. Assuming that A = (a1, a2, . . . , an) denote the
coefficients, the model takes the form y = a1x1 + a2x2 + · · · + anxn = �xAT . We often have multiple pairs of experimental
data. Let X = (�x1, �x2, . . . , �xm)T and Y = (y1, y2, . . . , ym)T be m pairs of arguments and dependent variables, respectively.
The vector form of the above equation can be written as

Y = X AT .

The Simulated Annealing (SA) algorithm [13] can generate a solution to fit a proper assignment of A, which is a prob-
abilistic technique for approximating the global optimum of a given function. Algorithm LARS Lasso [14] and Bayesian
Regression [15] can also help to solve a linear model.

3. Approach

In this paper, we aim to perform energy consumption analysis and prediction of Android applications. Firstly, in order
to given reasonable energy estimation, we propose a lightweight approach to generate energy consumption models at both
method and API level. We then use the energy model to predict the energy cost of a specific execution sequence, which
consists of a set of methods or Android APIs. In this section, we will explain the workflow of our approach in the first
subsection, and give detailed descriptions of the six components in our approach from subsection 3.1 to subsection 3.5.

3.1. Workflow of our approach

Generating energy models is of first priority in our approach. Fig. 4 shows the workflow of our energy model generation
process. The process consists of five modules: (1) APK Instrumentation, (2) Runtime Monitoring, (3) Data Preprocessing,
(4) Energy Modeling, (5) Feedback and (6) Prediction.

In our approach, we do not require the source code of Android applications, but perform analysis on a set of Android
APK files (the Android executable file). First of all, we statically instrument method monitoring probes into the APK file
to track and log the sequences of method invocations. Then we install the instrumented application into the device, run
the application and get the runtime path information and energy consumption data, which are stored in log files and
the energy profiler’s database, respectively. Next, we parse the collected raw data, and count the corresponding methods’
invocation times. The energy consumption of each run is also calculated, based on the measured energy data stored in
energy consumption database. The method invocation and energy consumption statistics serve as inputs to the energy
modeling component.

We use linear regression analysis to model the energy consumption that can predict the energy cost of a given execution
sequence. That sequence can be method level or API level. To predict the energy cost of an API sequence, we transfer a
given method trace to API trace by the function call relationship.

The feedback approach that is an optional step, is used to optimize the effect of the energy model by adjusting the
training data from a small reserved set. If the accuracy of the model is acceptable, we use it to predict energy consumption.
Or else, we feed the results back to the energy model to optimize it. After several rounds, the model will be stable and
output the feasible energy prediction values.

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 137
Fig. 5. Runtime monitoring.

3.2. Runtime monitoring

After the first step, we instrument an Android application with path profiling instructions. In this step, we will install
the instrumented application into a physical device, execute it several times and measure the energy consumption of each
run.

The runtime monitoring process is illustrated in Fig. 5. The monitoring task is fulfilled with the interaction between two
major components: the runtime controller and the runtime measurement module.

The controller is built on the computer, while the measurement module is on the phone. We install the instrumented
APK file on the Android device under the control of the computer, which will monitor its entire execution and capture the
method sequences information. At the same time, we execute the application on the cell phone and measure the energy
consumption. When the app stops running, a log file recording the runtime path information and a database recording the
energy information will be generated. The whole process is totally automatic without any user interactions.

Note that the cell phone is controlled via wireless connection instead of cable connection, which could charge the battery
and disturb the measurement of power consumption of the application under test.

We employ a random testing tool Monkey, a popular command line tool to test Android apps, as the controller. Monkey
will automatically generate pseudo-random stream of events and send them to the phone, simulating user inputs like touch,
gesture, and so on. We can also use Robotium to control Android apps. However, as Robotium requires the installation of a
control app on the device, it may cause extra power consumption, which can be rather unpredictable. Therefore, we finally
choose Monkey as the controller.

For the energy measurement at runtime, we employ a tool that is specifically designed for power analysis of mobile
applications: Trepn profiler 5.1 [12] provided by Qualcomm. Trepn uses an interface of the Linux kernel to take a closer
look at the power management IC on a supported chip to measure energy consumption. Compared with other energy
measurement apps, Trepn can profile not only the energy consumption of Android system, but also that of the individual
Android app, which helps us get rid of some of the background influence to a certain extent.

As shown in Fig. 5, after this step finishes, we will get the executed method sequences information in the log files and
the energy consumption information in Trepn’s database. We will perform some further analysis based on these raw data
in the following steps.

3.3. Data preprocessing

Since the raw data collected in the second step contains a large amount of irrelevant information brought by Monkey and
Trepn for our processing, we need to do some arrangements. Specifically, in the log files, the generated runtime information
has several categories, including our instrumentation path information and some others. We count the executed method
invocation times at each run and format them as a set of features that can be used in the next step. In Trepn’s database,
we extract the average battery power measurement, and multiply by time as the energy consumption of one test, ignoring
data of memory, network, etc. With these preprocessed data, we construct a training data set and a small reserved data set
for modeling in the next step.

3.4. Energy modeling

In this step, we employ a linear regression algorithm on preprocessed energy monitoring data to derive an energy model.
After the data preprocessing step, we get a number of features. Let xi, j denote the invocation times of the jth (1 ≤ j ≤ n)

method in the ith test and ei denote the energy consumption for the same test. We can define the feature of the ith test as
{xi,1, xi,2, . . . , xi,n, ei}. With m executions, let X = (xi, j)m×n be the method invocation times matrix, E = (e1, e2, . . . , em)T be
the average energy measurement values vector. Assume that W = (w1, w2, . . . , wn) is a coefficient vector to represent the
energy cost of each method. We have the linear equation E = X W T that describes the relationship between the method
invocation times and energy measurement values. In theory, solving this equation will get the assignments of coefficient
vector W , which forms the core of the energy model.

138 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Fig. 6. Function calls in a method.

As we have discussed in Section 2.6, several algorithms can be used to solve the linear model. However, from the
preliminary experimental results, we observe that due to the improper initial values and the large number of the coefficients
in the model, the straightforward solving of the equation is hard. So we try to fit a set of optimal solutions instead. It is
feasible that wi (1 ≤ i ≤ n) is in range of [0, min ei

xi j
], since the energy cost of each method is non-negative and less than

the total energy consumption of an execution. To get the global optimum solution as much as possible, we employ the
Simulated Annealing (SA) algorithm for the linear regression analysis. Given W a group of initial values, the SA algorithm
randomly changes the value of an element in the matrix and iteratively moves from the current candidate solution S to a
new candidate solution S ′ . It accepts bad solutions by the probability e−(c(S ′)−c(S))/K T , where c(S ′) and c(S) are calculated
by

c(S) = 1

2m

m∑
i=1

(E S − E)2.

In the acceptance probability function, K is Boltzmann’s constant, and T stands for the temperature, a global time-varying
parameter. Formula c(S) represents the cost of the candidate solution S . The contrast experiment between SA and other
algorithms please refer to section 5.5.

Finally, we obtain an energy model, from which we can get an estimation of the energy consumption of each method in
a specific application.

3.5. API-level prediction

In power-aware Android app development, developers tend to pay lots of attention to the task of choosing appropriate
Android APIs. Android APIs are the hot spots in Android applications, in terms of energy consumption. Energy greedy
Android APIs, like those related to file IO, network IO, GUI rendering, GPS, etc., will greatly affect the energy consumption
of a user method in the target Android application. Therefore, it is useful to predict the energy consumption at API level.
We can simply apply the energy model similar to that of subsection 3.4 on the sequence of API calls, and predicate energy
consumption value of the new run of the application.

We take a further step to refine the energy model with API call information within each method run. In the runtime
monitoring phase, we have already recorded the traces of method calls during each run of an application. The method trace
can be directly transferred into API call traces. We make use of the decompiled smali files to obtain the API calls related to
each method. In the smali files, invoke instruction is used for calling a method, which can help to construct a function
call graph (FCG) of the target application. According to the package name, the called methods in FCG can be divided into
two groups, user-defined methods and APIs. We filter out the calls of user-defined methods to get the trace of API calls.
Then we put the new trace to linear regression analysis and use the training result to predict the energy consumption of
new API traces. Take Fig. 6 as an example. The part (a) illustrates the invocations in the smali code of a method a(Z). We
remove the user-written method calls and get the trace of API calls shown in part (b), which only contains the calls to APIs.

4. Implementation of energy estimation and prediction

We have implemented our proposed approach in Python language with some ADB [16] scripts. The implementation is
illustrated in Fig. 7.

Our approach does not require the source code of Android apps. We rely on APKTool [17] to decompile APK file and
generate the disassembled code. Then we analyze the disassembled smali code and construct the FCG to obtain the relation

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 139
Fig. 7. Implementation of energy estimation and prediction.

of the user-defined methods and API calls. We also use Androguard [18], a static analysis tool for Android apps, to construct
the control flow graph to help find the proper location of bytecode instrumentation. After instrumenting log statements into
the disassembled code, we use APKTool to repack the Android APK file and use SignApk [19] to conduct the re-signature
process if needed. After that, the instrumented APK file will be installed into an Android device. The Runtime Monitoring
part monitors the execution of the instrumented APK file. In each measurement we should connect the Android device via
wireless, open the power profiling tool Trepn, choose the target app in Trepn, start Trepn measurement and monkey testing,
finish energy measurement and save database file. All these events are automatically executed by sending Android events
using adb shell command sendevent and monkey to the Android device.

5. Evaluations

In this section, we present the experimental study of our proposed energy prediction approach. Firstly, we describe the
setup of the experiments. Next, we compare the Monkey and Robotium based controller scheme to support our choice of
Monkey to control the energy profiling experiments. Then, we present other details of evaluations, including: the overhead
of instrumentation, the size of training set, the accuracy of regression analysis for method and API level prediction, and cross
validation results. Finally, we analyze the method energy consumption distribution, and present the result in subsection 5.7.

5.1. Experimental setup

We run the experiments on a Xiaomi 2S cellphone, with its CPU 1.7 GHz, 2 GB RAM, and the battery capacity 2000 mA h.
We choose Trepn running on the device to measure the energy consumption and employ Monkey to control the execution
on a Windows 7 desktop platform containing an Intel (R) Core (TM) i7 CPU 2.93 GHz with 8 GB RAM.

Table 1 lists the twelve popular applications from a Chinese Android market, most of which have been downloaded more
than one hundred thousand times. These apps cover five commonly addressed categories and can be valid representatives

140 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Table 1
Experimental applications.

App Category Size #C #M

Saolei Game 475 132 724
Piano Game 721 449 2838
CRadio Media 1568 668 4252
CNTV Video 7961 905 6700
SgBrowser Browser 8417 2970 18542
SgReader Reader 7446 3331 22519

App Category Size #C #M

GoChess Game 1462 48 347
Tomcat Game 53085 3953 25576
QtRadio Media 9452 6216 44613
WhtVideo Video 9844 2444 14248
AoyouBrowser Browser 10847 4068 27511
SuningReader Reader 12727 4174 25121

Table 2
Monkey and robotium.

App Time (s) Energy (mA h)

Monkey Robotium Monkey Robotium

Saolei 87 – 11.2 –
Piano 99 1442 12.6 147.3
Cradio 135 – 9.7 –
Cntv 198 7510 10.4 102.6
SgBrowser 154 5123 13.4 159.2
SgReader 205 6125 12.8 128.9

of the different profiles of energy consumption. We also give the category, size (KB), number of classes (#C) and number of
methods (#M).

To evaluate the accuracy of our energy model, we adopt three statistical metrics: the multiple correlation coefficient (R),
average value of relative error (AR E) and the standard deviation (ST D E V) of relative error.

In statistics, R is a well-known measure of how well a given variable can be predicted using a linear function of a set
of other variables. It is defined as the Pearson correlation coefficient [20] between the variable’s values and the best predic-
tions, which can be computed from the predictive variables. In our cases, the given variable to be predicted is the energy
consumption of the i’th execution (êi), and the set of other predictive variables are each method’s energy consumption. The
formula of R is defined as follows,

R =
∑

(ei − e)(êi − e)√∑
(ei − e)2

∑
(êi − e)2

where the êi denotes the energy consumption calculated for the i’th execution sequence based on our energy model. The
ei denotes the measured energy consumption of the i’th execution sequence at runtime and e is the average of all the
measured ones. The R takes values between 0 and 1 with a higher value close to 1 indicating a better predictability.

Another metric AR E gives an indication of how good a prediction is relative to the measurement value. The lower the
ratio of AR E , the more accurate the model is. The formula is shown as

AR E = 1

n

∑ |êi − ei |
ei

The statistical metric ST D E V can be used to quantify the amount of variation or dispersion of a set of data values. The
lower the value of ST D E V , the closer the data points are to the mean. In this case, we use it to measure the amount of
variation or dispersion of the relative error in each energy prediction. The formula of ST D E V is defined as follows.

ST D E V =
√∑

(
|êi−ei |

ei
− AR E)2

n − 1

5.2. Monkey and robotium

We perform a comparative study of Monkey and Robotium controller, and Table 2 shows their time and energy measured
after executing the same number of events. We set 20,000 as the number of events to be executed. As Robotium can not
be used for random testing directly, we write a script to randomly generate and execute events based on the UI structure
of the target app. In the Monkey testing, we set no throttle time to make it slow down, however, in Robotium testing, we
set a 100 milli seconds of waiting time or else the app will easily crash.

In our experiments, two apps under test fail to run with Robotium instrumentation for energy measurement, while
Monkey works well in all the cases. From the results, we can see that using Robotium will induce more energy overhead.
That explains why we choose to use Monkey as the main controller in the energy modeling and prediction experiments.

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 141
Table 3
Overhead of instrumentation.

App #Instruction Time

bef. aft. O n Tb (s) Ta (s) O t

Saolei 25447 25985 2.1% 77.66 80.48 3.6%
Piano 102049 104191 2.0% 69.27 70.32 1.5%
CRadio 149476 152153 1.7% 114.73 118.95 3.6%
CNTV 233186 237820 1.9% 62.05 64.54 4.0%
SgBrowser 739369 752799 1.8% 135.08 138.34 2.4%
SgReader 950227 966410 1.7% 79.45 81.60 2.7%

Fig. 8. Influence of training data set size.

5.3. Instrumentation overhead

As we have to insert instrumentation code to monitor method invocations, it is necessary to know in advance the
overhead of the instrumentation on energy consumption. However, it is hard to measure the energy consumption of the
instrumentation code directly. In order to estimate the instrumentation overhead, we compare the number of instructions of
the apps’ bytecode before and after instrumentation, and we also did several groups of experiments to compare the average
execution time of two versions of apps under the same event sequences. We set 20,000 as the number of random events
for an execution sequence. Table 3 shows the overhead. The first column shows the app name, followed by the number
of instructions before and after instrumentation (i.e., #Instruction bef. and aft.) and its overhead O n , calculated by O n =
(af t −bef)/bef . The last main column shows the execution time, where Tb and Ta denote the average time consumption by
each application before and after instrumentation respectively, and O t = (Ta − Tb)/Tb denotes the corresponding overhead
of execution time.

From the table, we observe that only about 2% instructions are inserted into the original apps. On average, the in-
strumented versions take within an average about 3% more time than the original one. Therefore, these results are fairly
satisfactory and indicate that the instructions added by our instrumentation technique have little influence on the energy
consumption of the apps under test.

5.4. Size of training set

It is time-consuming to collect a large amount of training data set from runtime measurement since it needs to execute
the apps under test. In order to statistic the best option of the size of training set, we conduct 6 groups of experiments for
each app, that adopt 50, 100, 150, 200, 250, 300 cases as the training set, respectively. We use a testing set containing 50
cases to compare the effect of the trained model for each app. The experimental results are shown in Fig. 8.

The sizes of training sets are listed along the X-axis and the average relative errors calculated from the model under the
test data are shown on the Y-axis. As can be seen from the figure, the error is relatively large (30% above) when the training
set is composed of 50 cases. With the increase of the training data size, the error is in gradual decline and it tends to be
stable after the size is up to 250, that we consider being a suggested choice to be able to obtain a better model.

142 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Table 4
Accuracy of training – user method.

App SA BR LL

R ARE STDEV R ARE STDEV R ARE STDEV

Saolei 0.79 6.2% 11.4% 0.40 6.4% 13.3% 0.39 6.3% 13.3%
Piano 0.89 5.7% 5.0% 0.89 5.6% 7.5% 0.85 5.3% 7.1%
CRadio 0.78 10.8% 10.3% 0.60 11.5% 15.6% 0.16 10.5% 14.0%
CNTV 0.66 17.4% 17.7% 0.58 29.5% 83.2% 0.31 3.2% 70.4%
SgBrowser 0.46 22.5% 31.1% 0.12 30.7% 55.6% 0.18 2.8% 51.0%
SgReader 0.82 14.6% 29.3% 0.64 16.7% 32.3% 0.69 2.0 % 33.3%

GoChess 0.46 22.3% 17.2% 0.11 24.5% 32.3% 0.34 19.9% 25.6%
Tomcat 0.65 14.3% 16.0% 0.50 25.5% 77.7% 0.21 17.1% 51.9%
QtRadio 0.90 14.8% 12.9% 0.85 20.1% 26.0% 0.61 1.1% 1.3%
WhtVideo 0.28 33.1% 47.1% 0.20 40.0% 71.3% 0.11 32.1% 59.2%
AoyouBrowser 0.85 9.5% 8.5% 0.20 18.4% 47.9% 0.57 14.0% 28.2%
SuningReader 0.50 20.0% 19.6% 0.69 23.7% 38.9% 0.23 19.4% 31.7%

Table 5
Accuracy of training – API.

App SA BR LL

R ARE STDEV R ARE STDEV R ARE STDEV

Saolei 0.79 5.8% 6.4% 0.42 6.3% 13.3% 0.39 6.3% 13.2%
Piano 0.88 5.9% 5.2% 0.87 5.8% 7.7% 0.83 5.8% 7.7%
Cradio 0.76 11.2% 11.0% 0.62 11.4% 15.4% 0.14 14.6% 19.3%
CNTV 0.65 19.3% 26.7% 0.60 29.6% 83.7% 0.69 29.4% 84.0%
SgBrowser 0.30 24.5% 24.9% 0.06 30.2% 55.3% 0.10 25.9% 48.8%
SgReader 0.62 22.5% 22.1% 0.53 22.7% 35.7% 0.55 26.6% 37.8%

GoChess 0.43 22.7% 17.0% 0.13 24.8% 32.9% 0.04 22.9% 28.6%
Tomcat 0.52 16.5% 19.7% 0.12 26.2% 82.2% 0.04 22.1% 49.0%
QtRadio 0.86 17.6% 14.9% 0.88 21.5% 26.9% 0.80 11.4% 14.1%
WhtVideo 0.26 38.5% 58.9% 0.16 40.0% 71.3% 0.03 25.6% 45.9%
AoyouBrowser 0.81 10.4% 9.2% 0.13 18.3% 43.6% 0.44 10.2% 18.1%
SuningReader 0.50 20.1% 19.6% 0.11 23.5% 38.3% 0.02 15.6% 25.1%

5.5. Accuracy of the regression analysis

To evaluate the efficiency and accuracy of our approach, we ran the target apps on the phone and analyzed the training
accuracy of the produced energy model. We set 20,000 as the number of random events to send by Monkey to generate an
execution sequence. We employ three regression algorithms (Simulated Annealing: SA, Bayesian Ridge: BR, LARS Lasso: LL)
to train energy models. In the experiments of the first six apps, we adopt 250 cases as the training set with 20 cases as the
reserved set to feedback. And as a comparison, we only use 100 cases in the following six apps. For the analysis accuracy,
we consider R , AR E and ST D E V to measure how well the energy model can predict for the training set. The accuracy
result of training for method level model is depicted in Table 4 and the result for API level model is illustrated in Table 5.

In our approach, we define the method energy consumption as average of all the possible executions. However, in some
cases, complex functions (like video decoding, web page parsing, etc.) may be implemented in a method, which could affect
the accuracy of energy estimation results. As a consequence, we can see that several apps (e.g.,WhtVideo, GoChess and
SgBrowser) have higher values of AR E than other apps using all three regression approaches.

According to the comparison result of three regression approaches, Simulated Annealing approach can produce stable
and more accurate results than the other two. And same as we have shown in Fig. 8, the results vary a lot with different
size of training sets.

5.6. Cross validation

In addition to evaluating the analysis accuracy via the statistical methods described above, we also adopt cross validation,
a technique for assessing how the results of a statistical analysis will generalize to an independent data set, to estimate how
accurately the predictive model will perform in practice.

We randomly partitioned all the preprocessed data into 2 subsets, one is retained as test data set for testing the model,
and the remaining samples are used as training data that produce the energy model. For the first six apps, adopt 250 cases
as the training set and 50 cases as the testing set, and adopt 80 cases and 20 cases respectably in the next six apps. Then
by applying the trained energy model to the test data, we would obtain a set of energy costs. The cross validation results
for method level prediction is illustrated in Table 6. As a comparison, the cross validation results of API level prediction is

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 143
Table 6
Cross validation accuracy – user method.

App SA BR LL

ARE STDEV ARE STDEV ARE STDEV

Saolei 4.2% 3.3% 16.1% 30.2% 15.8% 31.0%
Piano 4.0% 3.4% 13.1% 11.3% 15.0% 13.9%
Cradio 10.1% 7.9% 19.0% 25.8% 26.8% 18.8%
CNTV 16.9% 13.4% 29.0% 43.3% 41.7% 81.4%
SgBrowser 22.1% 18.7% 29.4% 38.7% 29.7% 40.9%
SgReader 14.6% 11.6% 27.4% 51.4% 25.6% 41.9%

GoChess 31.5% 25.2% 23.1% 28.5% 24.7% 30.4%
Tomcat 16.5% 9.0% 140.7% 120.8% 37.3% 97.3%
QtRadio 24.1% 23.4% 25.1% 30.6% 32.5% 36.4%
WhtVideo 32.7% 19.8% 30.5% 42.5% 28.9% 41.2%
AoyouBrowser 28.9% 22.6% 15.3% 16.4% 17.6% 18.4%
SuningReader 34.4% 24.9% 28.6% 46.5% 61.1% 99.8%

Table 7
Cross validation accuracy – API.

App SA BR LL

ARE STDEV ARE STDEV ARE STDEV

Saolei 3.8% 3.2% 16.0% 29.5% 16.0% 31.22%
Piano 4.0% 3.4% 13.3% 11.6% 14.3% 13.22%
Cradio 9.1% 7.9% 18.9% 25.7% 36.1% 50.52%
CNTV 17.8% 14.2% 28.5% 42.1% 28.9% 41.22%
SgBrowser 21.5% 18.2% 29.3% 38.7% 29.5% 39.5%
SgReader 24.8% 16.5% 33.0% 50.0% 31.8% 40.9%

GoChess 32.0% 26.5% 22.1% 27.5% 25.9% 32.7%
Tomcat 13.6% 9.3% 40.1% 118.4% 42.2% 125.3%
QtRadio 19.0% 15.6% 22.7% 25.1% 22.9% 26.5%
WhtVideo 25.2% 20.2% 30.5% 42.5% 33.1% 49.6%
AoyouBrowser 21.1% 20.4% 16.1% 18.1% 15.0% 15.7%
SuningReader 26.1% 18.0% 28.6% 45.6% 33.8% 48.3%

described in Table 7. From the results, we can see that with a proper size of the training set, our SA approach has much
lower ARE and STDEV than the other two regression algorithms.

We also show the trend of the measured energy consumption by Trepn and the value predicted by energy model in
Fig. 11. For each application, we list 50 groups of comparison experiments, each group of experiments are listed along the
X-axis and the two different energy cost values in mA h (since the battery supplies a constant power voltage) are shown on
the Y-axis. And the result shows that the trend of the measured energy curve and the two predicted energy curves (method
and API level) in each application are very close.

5.7. Method energy consumption distribution

From our produced energy model, we find out some high-cost methods, which take an average proportion of 9.65% in
quantity but consume the 80% battery power as shown in Fig. 9. Its X-axis presents the top x% energy-consuming methods,
and the Y-axis shows the corresponding energy consumption percentage.

In order to analyze the internal structure of these high-cost methods, we check the top 100 methods’ bytecode and
conclude the classification results shown in Fig. 10. In the clock wise order, beginning with the part of 24%, each part re-
spectively represents the complicated computation, the database operation, the file-related operation, the frequent instance
initialization, the audio operation, the multiple loops, and some others. Note that the poorly written program code, such
as the reported high-cost methods always contain a large amount of repeated computing and loops, or initialize instances
frequently, that may result in the app die the battery life out.

6. Related works

In recent years, power estimation and prediction becomes a big concern for the increasingly popular mobile platforms.
Therefore, many researches aim to estimate the energy cost of mobile system from variant aspects.

Some researches try to perform power estimation with cycle-accurate simulators or full-system emulators. David et
al. [21] proposed a statistical model based evaluation for the systematic analysis of energy saving techniques. R. Mittal
et al. [22] proposed an emulator based energy consumption profiling method for the CPU, wireless communication (3G,
Wi-Fi) and display. The idea is to exploit power-related parameter values obtained through the simulation to abstract the

144 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
Fig. 9. Method energy consumption percentage.

Fig. 10. Energy consumption percentage.

power consumption of a target system. The parameters include the number of CPU instructions executed, the number of
cache hits/misses, the number of pipeline stalls and the number of branches taken. The accuracy of these methods can be
improved by increasing the number of model-parameters accounting for the power consumption. The work in [22] targets
the Windows Phone platform. It is not easy to port to Android devices, as it is difficult to maintaining the timing accuracy
with different CPU simulation and very slow emulator speed.

Works based on operating system (OS) [23] or in virtual machines [24] require significant integration and modification
to the runtime systems and is not portable. Furthermore, the workload of building models can be high.

Due to the drawbacks of the above mentioned emulator and OS level approaches, many recent researches focus on
application level analysis instead. A. Pathak et al. track the activities of energy-consuming entities (Wifi, GPS etc.) when
the app is executing on the mobile phone [25]. They compute the approximate energy consumption of applications and
functions that invoke system calls.

A. Ferrari et al. [26] presents POEM to help developers automatically test and measure the energy consumption of single
application component down to the control flow level. Their approach focuses on the static analysis of the bytecode and
code injection techniques to obtain measurements with several levels of granularity (e.g., class level, method level, etc.)
while our approach focuses on dynamic execution techniques at the method level. The results of POEM show that with the
fine-granularity instrumentation of POEM, the energy consumption is more than 1000 times of that on the clean application.
The evaluation of POEM is conducted on self-made toy applications due to the substantial overhead.

U. Liqat et al. [27] study the energy consumption with static analysis at ISA and LLVM IR levels, and reflects it upwards
to the higher source code level. Their results show that the accuracy of estimating at LLVM IR level (with average error 9%)
is comparable to ISA level (with average error 3%). It suggests that it is viable to estimate energy consumption at bytecode
level.

For the source level estimation, D. Li et al. proposed an approach, vLens [4], using a combination of program analysis and
statistical modeling based on hardware power measurements. It aims at estimating source line level energy consumption

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 145
Fig. 11. Energy consumption prediction of execution sequences.

146 Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147
for mobile apps. For the selected 5 apps, the estimation error of vLens is around 3% to 9%. While in our approach, the
estimation error is around 4% to 22% in the estimation (training) phase. However, those apps with estimation error more
than 10% are huge apps with thousands of classes and more than 10,000 methods. Thus, the accuracy of our approach
is comparable to vLens. Unlike our approach with the inputs generated automatically by Monkey, vLens needs to manually
design input scenarios, which is labor intensive. As a poorly prepared input set may lead to low coverage of source lines that
will decrease the model accuracy, the inputs for vLens have to be carefully adjusted. Besides, the number of coefficients of
their model (same as that of the source lines) is usually very large for state-of-the-art real-world apps, which is a challenge
for regression algorithms to fit and construct an accurate linear model.

There are also techniques detecting the energy performance bugs [28–30], which arise from improper use of power con-
trol APIs and result in battery drainage. There are also some techniques for detecting display energy hotspots in Android
applications [31,32]. They believe that the user interfaces of a mobile app are related to the energy consumption. Li and
Gallagher [33] propose an energy-aware programming approach, which is guided by an operation-based source-code-level
energy model and can be placed at the end of software engineering life cycle. These techniques leverage power model-
ing and some display transformation approaches, such as changing the color scheme, to predict and reduce the energy
consumption of an app.

Apart from the energy estimation and prediction techniques, the study of power measurement techniques is also closely
related to our research. The general approach for these techniques is to use a power measurement device, such as the
LEAP2 [34] or Monsoon [11] power meters, that can sample energy measurements at a certain frequency. These measure-
ments are then combined with software based techniques to provide useful information to software developers. C. Sahin
and colleagues [35] map energy consumption to different component level design patterns. Their work explored the corre-
lations between energy consumption and the use of different design patterns. At a higher level, J. Flinn and colleagues [36]
measured the energy consumption of applications and mapped the energy to individual OS processes. This was done, in
part, by instrumenting the operating systems.

L. Zhang et al. [37] present the methods that use a power model to estimate the power consumption of the entire
device, using operating time of each part of the device as parameter. However, it is difficult to identify the contribution of
an application to the total power consumption because smart phones can run several processes simultaneously.

In some fine-grained research studies, hardware based measurement dominates, whose measured power is very accurate
indeed. In comparison, software energy estimation is less accurate because software power meters are unable to measure
and record energy fast enough compared to hardware ones. The hardware approach for power measurement demands spe-
cific hardware toolboxes, which can be very costly. A less costly, and more generic software based measurement approach,
like Trepn, is more reasonable for power-aware mobile app development.

7. Conclusion

Energy consumption is a serious problem for pocket devices. We investigated this problem and proposed a lightweight
and automatic energy consumption analysis for Android apps. Our approach is based on bytecode level instrumentation
and software-based runtime energy monitoring. We proposed a Simulated Annealing based linear regression algorithm to
generate the energy model. Energy analysis and prediction are conducted in two aspects. We provide the method-level
energy model, to help developers get a concrete view of the energy consumption of the new methods during their app
development. We also conduct an smali analysis, and generate an API-level energy model to give insights about the energy
consumption of Android APIs. In the experiments, we adopt the more effective Monkey based UI exploration to generate
a rich set of method and API sequences. We also compared the proposed Simulated Annealing based linear regression
method with two standard regression algorithms implemented in the popular machine learning package scikit-learn. From
the experimental results, we observe that our proposed approach is a proper trade-off between accuracy and efficiency, and
thus, is practical and feasible to be used in energy-aware development of real-world and industry-sized mobile applications.

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61672505, 61300017) and the Na-
tional Key Basic Research (973) Program of China (Grant No. 2014CB340701).

References

[1] K. Paul, T.K. Kundu, Android on mobile devices: an energy perspective, in: CIT 2010, 2010, pp. 2421–2426.
[2] A. Carroll, G. Heiser, An analysis of power consumption in a smartphone, in: 2010 USENIX Annual Technical Conference, 2010.
[3] A. Banerjee, L.K. Chong, S. Chattopadhyay, A. Roychoudhury, Detecting energy bugs and hotspots in mobile apps, in: FSE 2014, 2014, pp. 588–598.
[4] D. Li, S. Hao, W.G.J. Halfond, R. Govindan, Calculating source line level energy information for Android applications, in: ISSTA 2013, 2013, pp. 78–89.
[5] I. König, A.Q. Memon, K. David, Energy consumption of the sensors of smartphones, in: ISWCS 2013, 2013, pp. 1–5.
[6] M. Ra, J. Paek, A.B. Sharma, R. Govindan, M.H. Krieger, M.J. Neely, Energy-delay tradeoffs in smartphone applications, in: MobiSys 2010, 2010,

pp. 255–270.
[7] M.L. Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M.D. Penta, D. Poshyvanyk, Mining energy-greedy API usage patterns in Android apps: an

empirical study, in: 11th Working Conference on Mining Software Repositories, MSR 2014, Proceedings, May 31–June 1, 2014, Hyderabad, India, 2014,
pp. 2–11.

http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F494545456369742F5061756C4B3130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F7573656E69782F436172726F6C6C483130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F736967736F66742F42616E65726A65654330523134s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F69737374612F4C694848473133s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F69737763732F4B6F6E69674D443133s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F62697379732F52615053474B4E3130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F62697379732F52615053474B4E3130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D73722F5661737175657A42424F50503134s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D73722F5661737175657A42424F50503134s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D73722F5661737175657A42424F50503134s1

Y. Hu et al. / Science of Computer Programming 162 (2018) 132–147 147
[8] Stackoverflow, http://stackoverflow.com.
[9] Monkey, http://developer.android.com/tools/help/monkey.html.

[10] Robotium, http://code.google.com/p/robotium/.
[11] Monsoon power meter, https://www.msoon.com/LabEquipment/PowerMonitor/.
[12] Trepn, https://developer.qualcomm.com/software/trepn-power-profiler.
[13] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671–680, http://dx.doi.org/10.1126/science.220.

4598.671, http://science.sciencemag.org/content/220/4598/671.full.pdf, http://science.sciencemag.org/content/220/4598/671.
[14] Lars lasso, http://scikit-learn.org/stable/modules/linear_model.html#lars-lasso.
[15] Bayesian regression, http://scikit-learn.org/stable/modules/linear_model.html#bayesian-regression.
[16] Adb, http://developer.android.com/intl/zh-cn/tools/help/adb.html.
[17] Apktool, http://ibotpeaches.github.io/Apktool/.
[18] Androguard, https://code.google.com/p/androguard/.
[19] Signapk, https://code.google.com/p/signapk/.
[20] Pearson correlation coefficient, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient.
[21] D. Basile, F. Di Giandomenico, S. Gnesi, Model-Based Evaluation of Energy Saving Systems, Springer International Publishing, Cham, 2017, pp. 187–208,

http://dx.doi.org/10.1007/978-3-319-44162-7_10.
[22] R. Mittal, A. Kansal, R. Chandra, Empowering developers to estimate app energy consumption, in: The 18th Annual International Conference on Mobile

Computing and Networking, Mobicom’12, Istanbul, Turkey, August 22–26, 2012, 2012, pp. 317–328.
[23] T. Li, L.K. John, Run-time modeling and estimation of operating system power consumption, in: Proceedings of the International Conference on Mea-

surements and Modeling of Computer Systems, SIGMETRICS 2003, June 9–14, 2003, San Diego, CA, USA, 2003, pp. 160–171.
[24] A. Kansal, F. Zhao, J. Liu, N. Kothari, A.A. Bhattacharya, Virtual machine power metering and provisioning, in: Proceedings of the 1st ACM Symposium

on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10–11, 2010, 2010, pp. 39–50.
[25] A. Pathak, Y.C. Hu, M. Zhang, Where is the energy spent inside my app? Fine grained energy accounting on smartphones with Eprof, in: EuroSys 2012,

2012, pp. 29–42.
[26] A. Ferrari, D. Gallucci, D. Puccinelli, S. Giordano, Detecting energy leaks in Android app with POEM, in: PerCom Workshops 2015, 2015, pp. 421–426.
[27] U. Liqat, K. Georgiou, S. Kerrison, P. López-García, J.P. Gallagher, M.V. Hermenegildo, K. Eder, Inferring parametric energy consumption functions at

different software levels: ISA vs. LLVM IR, in: Foundational and Practical Aspects of Resource Analysis – 4th International Workshop, FOPARA 2015,
London, UK, April 11, 2015, 2015, pp. 81–100, Revised Selected Papers.

[28] K. Kim, H. Cha, Wakescope: runtime wakelock anomaly management scheme for Android platform, in: EMSOFT 2013, 2013, pp. 27:1–27:10.
[29] Y. Liu, C. Xu, S. Cheung, J. Lu Greendroid, Automated diagnosis of energy inefficiency for smartphone applications, IEEE Trans. Softw. Eng. 40 (9) (2014)

911–940.
[30] A. Pathak, A. Jindal, Y.C. Hu, S.P. Midkiff, What is keeping my phone awake? Characterizing and detecting no-sleep energy bugs in smartphone apps,

in: MobiSys 2012, 2012, pp. 267–280.
[31] D. Li, A.H. Tran, W.G.J. Halfond, Nyx: a display energy optimizer for mobile web apps, in: ESEC/FSE 2015, 2015, pp. 958–961.
[32] M.L. Vásquez, G. Bavota, C.E. Bernal-Cárdenas, R. Oliveto, M.D. Penta, D. Poshyvanyk, Optimizing energy consumption of GUIs in Android apps: a multi-

objective approach, in: ESEC/FSE 2015, 2015, pp. 143–154.
[33] X. Li, J.P. Gallagher, An energy-aware programming approach for mobile application development guided by a fine-grained energy model, CoRR,

arXiv:1605.05234.
[34] D. McIntire, T. Stathopoulos, W.J. Kaiser, etop: sensor network application energy profiling on the LEAP2 platform, in: Proceedings of the 6th Inter-

national Conference on Information Processing in Sensor Networks, IPSN 2007, Cambridge, Massachusetts, USA, April 25–27, 2007, 2007, pp. 576–577,
http://doi.acm.org/10.1145/1236360.1236448.

[35] C. Sahin, F. Cayci, I.L.M. Gutiérrez, J. Clause, F.E. Kiamilev, L.L. Pollock, K. Winbladh, Initial explorations on design pattern energy usage, in: First
International Workshop on Green and Sustainable Software, GREENS 2012, Zurich, Switzerland, June 3, 2012, 2012, pp. 55–61.

[36] J. Flinn, M. Satyanarayanan, Powerscope: a tool for profiling the energy usage of mobile applications, in: 2nd Workshop on Mobile Computing Systems
and Applications, WMCSA ’99, February 25–26, 1999, New Orleans, LA, USA, 1999, pp. 2–10, http://dx.doi.org/10.1109/MCSA.1999.749272.

[37] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mao, L. Yang, Accurate online power estimation and automatic battery behavior based power model
generation for smartphones, in: Proceedings of the 8th International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2010, Part of ESWeek ’10 Sixth Embedded Systems Week, Scottsdale, AZ, USA, October 24–28, 2010, 2010, pp. 105–114.

http://stackoverflow.com
http://developer.android.com/tools/help/monkey.html
http://code.google.com/p/robotium/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://developer.qualcomm.com/software/trepn-power-profiler
http://dx.doi.org/10.1126/science.220.4598.671
http://science.sciencemag.org/content/220/4598/671.full.pdf
http://science.sciencemag.org/content/220/4598/671
http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/linear_model.html
http://developer.android.com/intl/zh-cn/tools/help/adb.html
http://ibotpeaches.github.io/Apktool/
https://code.google.com/p/androguard/
https://code.google.com/p/signapk/
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://dx.doi.org/10.1007/978-3-319-44162-7_10
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F6269636F6D2F4D697474616C4B433132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F6269636F6D2F4D697474616C4B433132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F7369676D6574726963732F4C694A3033s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F7369676D6574726963732F4C694A3033s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F636C6F75642F4B616E73616C5A4C4B423130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F636C6F75642F4B616E73616C5A4C4B423130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6575726F7379732F50617468616B485A3132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6575726F7379732F50617468616B485A3132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F706572636F6D2F466572726172694750473135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F666F706172612F4C69716174474B304748453135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F666F706172612F4C69716174474B304748453135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F666F706172612F4C69716174474B304748453135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F656D736F66742F4B696D433133s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A6A6F75726E616C732F7473652F4C697558434C3134s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A6A6F75726E616C732F7473652F4C697558434C3134s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F62697379732F50617468616B4A484D3132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F6D6F62697379732F50617468616B4A484D3132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F736967736F66742F4C6954483135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F736967736F66742F5661737175657A42424F50503135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F736967736F66742F5661737175657A42424F50503135s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A6A6F75726E616C732F636F72722F3030303247313661s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A6A6F75726E616C732F636F72722F3030303247313661s1
http://doi.acm.org/10.1145/1236360.1236448
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F677265656E732F536168696E4347434B50573132s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F677265656E732F536168696E4347434B50573132s1
http://dx.doi.org/10.1109/MCSA.1999.749272
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F636F6465732F5A68616E67545157444D593130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F636F6465732F5A68616E67545157444D593130s1
http://refhub.elsevier.com/S0167-6423(17)30095-3/bib44424C503A636F6E662F636F6465732F5A68616E67545157444D593130s1
http://dx.doi.org/10.1126/science.220.4598.671

	Lightweight energy consumption analysis and prediction for Android applications
	1 Introduction
	2 Background
	2.1 Dalvik bytecode
	2.2 Method energy consumption
	2.3 API energy consumption
	2.4 Android GUI exploration
	2.5 Android power monitoring tool
	2.6 Linear regression analysis

	3 Approach
	3.1 Workﬂow of our approach
	3.2 Runtime monitoring
	3.3 Data preprocessing
	3.4 Energy modeling
	3.5 API-level prediction

	4 Implementation of energy estimation and prediction
	5 Evaluations
	5.1 Experimental setup
	5.2 Monkey and robotium
	5.3 Instrumentation overhead
	5.4 Size of training set
	5.5 Accuracy of the regression analysis
	5.6 Cross validation
	5.7 Method energy consumption distribution

	6 Related works
	7 Conclusion
	Acknowledgements
	References

