
978-1-6654-3786-8/22/$3 1.00 ©2022 IEEE
DOT 10.1109/SANER53432.2022.00104

2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

EXcCEPy: A Python Benchmark for Bugs with

Python Built-in Types

Xin Zhang!’?, Rongjie Yan! Jiwei Yan?>+, Baoquan Cui!3, Jun Yan!-23, Jian Zhang):
! State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

2 Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences
3 University of Chinese Academy of Sciences

Email: {zhangxin19, yrj, yanjw, cuibg, yanjun, zj}@ios.ac.cn

Abstract—As bugs of Python built-in types can cause code
crashes, detecting them is critical to the robustness of the
software. Researchers have concluded plenty of patterns for the
bug causes and applied these patterns in detection tools. But
these tools are only evaluated on handcrafted bugs or bugs
obtained from QA pages. Because such bugs cannot reflect the
complex code structures and various bug types encountered in
real-world projects, the evaluation result is untrustworthy when
applied to these projects. As a result, a collection of real-world
reproducible bugs is essential for tool evaluation and future bug-
related research.

In this paper, we propose EXCEPY, a benchmark for providing
bugs of Python built-in types. We collect 180 bugs from the evolu-
tion of 15 real-world open-source Python projects on GitHub and
then manually build test scripts for bug reproduction. Meanwhile,
to improve tool evaluation efficiency, we present a code pruning
strategy that can minimize buggy code size while retaining bug
reproducibility and apply it to EXCEPy to provide simplified
buggy code. To demonstrate the benefits of EXCEPY, we use
three static analyzers and two fuzzers to detect bugs collected in
EXcCEPY. We found that simplified code can significantly reduce
running time and avoid many tool crashes, and bugs supplied
by EXCEPY can reveal limitations of existing tools in reporting
real-world bugs.

Index Terms—Benchmark for bugs, built-in bug types of
Python, static analyzers, the evolution of Python projects.

I. INTRODUCTION

The need for bug detection tools is growing in tandem with

the adoption of the Python programming language [1]. The

built-in type bugs are the most common vulnerabilities in

Python, and they can cause code to crash. Many researchers

have proposed patterns for root causes and implemented these

patterns in various detection methods, e.g., static analyzers or

fuzzers [2]-[6].

Researchers have claimed that their tools identify particular

bug types better than other tools. But they only tested the tools

on handcrafted bugs or non-reproducible bugs derived from

bug reports, and there is no prior work that accesses them on

real-world bugs. Because of the differences in code structures

and bug types between handmade and real-world defects, their

evaluation results are untrustworthy when applied to modern

Python projects. Thus, it is critical to understand how effective

these tools are in detecting crash bugs in practice.

t+ Corresponding authors

The number of bugs they can report on a collection of

reproducible bugs from real-world projects is a frequently used

metric for evaluating the performance in discovering defects.

Some mature benchmarks are widely adopted in practice, such

as Defects4J [7] and QuixBugs [8] for Java and BugsJS [9]

for JavaScript. These benchmarks gathered reproducible crash

bugs from real-world open-source projects. Meanwhile, they

give root causes and repair information for the bugs.

Two benchmarks produced many Python defects [10], [11].

But when compared to other mature works, they fall short in

tool evaluation. On the one hand, they only provide functional

defects that do not cause a crash. Existing testing techniques,

which identify flaws by monitoring crashes and exceptions

during runtime, cannot detect these bugs without prior infor-

mation. On the other hand, they use the entire project code

as buggy code for each defect. Numerous lines of code in the

project code do not affect bug triggering (We call them bug-

irrelevant code). Because benchmarks do not filter the bug-

irrelevant code, tools have no oracle when throwing warnings

on them and may crash due to unsupported syntax.

We aim to fill this gap by providing a Python benchmark

with real-world reproducible bugs. There are two challenges

in constructing such a benchmark.

e Bug reproduction. Because variable types and values must

be considered, reproducing a defect in Python is more com-

plex than in other statically typed programming languages.

Python has several language features that make it easier

to use, such as dynamic type and dynamic attribute. With

these features, users can change the type and attributes

of an object during execution. Thus, choosing types and

values to produce input data to trigger a Python bug can be

challenging, especially in real-world projects with numerous

self-defined types, leading to an enormously broad range of

candidate types.

¢ Bug-irrelevant code pruning. Complete buggy code may

contain numerous lines of Python code, the vast majority of

which may be bug-irrelevant. Plenty of bug-irrelevant codes

will reduce analyzer efficiency and make manual reduction

time-consuming. Besides, validating the authenticity of bug

reproduction on trimmed code is difficult with an automated

pruning technique.

856

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

An
al

ys
is,

 E
vo

lu
tio

n
an

d
Re

en
gi

ne
er

in
g

(S
AN

ER
) |

 9
78

-1
-6

65
4-

37
86

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SA

N
ER

53
43

2.
20

22
.0

01
04

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

To address the first challenge, we choose to get input

data from open-source projects. First, we eliminate bugs that

require a specific environment to reproduce, such as systems

or the Internet. Second, we extract code snippets from commit

discussions and use the input data in these code snippets to

generate test code. Third, we look at the newly added test

cases to see whether developers provide new input data.

To deal with the second challenge, we except to automati-

cally delete classes and modules that test code does not import

during execution. To do this, we develop a tracer to follow test

code execution and record a list of executed files, from which

we can delete the unexecuted files. We re-run the test code

after each deletion and compare the results to the original

traceback. If the traceback changes after deleting a file, this

file must be re-added.

We collect commits from the evolution of 300 Python

projects on GitHub, and after manually reviewing 2966 com-

mits, we obtain 180 reproducible crash bugs from 15 projects,

covering 15 built-in bug types. To show all the data and make

it easily accessible, we summarize the bugs, buggy code, and
test scripts in a benchmark called EXCEPY.

To demonstrate the advantages of EXCEPY, we assess

the benchmark in two ways: the efficacy of code pruning

and the usefulness of the gathered bugs for tool evaluation.

We employ five commonly used Python tools on EXCEPy,

including three static analyzers and two fuzzers, and evaluate

their performance on both the complete buggy code and the

simplified code. According to the results, the simplified buggy

code reduces execution time and eliminates the majority of

timeouts and crashes. Besides, the gathered bugs can reveal the

advantages and disadvantages of existing tools for detecting

crash bugs in practice.

To summarize, we make the following contributions.

e We provide a Python benchmark EXCEPY, including 180

reproducible crash bugs spread over 15 Python built-in
types. These bugs were gathered from well-known Python

projects on GitHub and are illustrative of vulnerabilities

encountered in daily use.

e We propose an automatic code pruning approach to elimi-

nate bug-irrelevant code without affecting bug reproduction.

We apply the method for pruning codes in EXCEPY to

produce the simplified bug-relevant code. The experimental

results show that reduced code can significantly reduce run-

ning time. Besides, by avoiding crashes without output, the

reduced code is more effective at identifying the weaknesses

of the tools.

e We conclude 26 root causes and fix patterns for 15 Python

built-in bug types, which can facilitate bug detection and

debugging studies of Python programs.

II. BACKGROUND

In this section, we will briefly introduce the Python built-in

bug types, the common components in mature benchmarks,

and the platform we use for bug collecting.

A. Python Built-in Bug Types

Python offers 64 bug types to deal with bugs that

can result in crashes [12], which are all derived from

BaseException, and divided into 16 categories based on

their error conditions. Among various bug types, several bug
types, such as TypeError (Typ) [2], [3], [13], [14],

AttributeError (Att) [2], [13], [14], ValueError

(Val) [15], and ZeroDivisionError (Zer) [2], are fre-

quently studied in the literature.

Bugs of built-in types use traceback to indicate the causes,

including the method calls along the execution path. Every

two lines in a traceback indicate a method call, with the first

marking the file location and line number and the second

containing the source code corresponding to the line number.

As stated in Section I, creating input data to trigger bugs

necessitates the use of the proper types and values. In Figure 1,

we present a code snippet with two bugs to demonstrate the

relevance of types in triggering bugs, one of which is of type

Typ and the other of type Att. Both the two bugs happen

in method test at line 7 when this method extracts two

attributes from the input data and performs operation add.

To trigger the bug of type Typ, the input data must have

two attributes whose types are not supported by the add

operation, and a frequent situation is between the types str

and int. We give an example input data from line 11 to 13 for

triggering a Typ bug, where we change the type of attribute
attri_2 from str to int, and provide the object ob j_a to

the method. The add operation between an int variable and

a str variable will cause a bug of Typ because the interpreter

does not know whether to convert int 1 to str '1’ and

concatenate two strings, or convert str '2’ to int 2 and

conduct addition.

The bug of type Att can only be triggered if one of the

attributes does not exist. We provide an example input data

that can trigger this bug from lines 15 to 17 in Figure 1.

Supported by the language feature dynamic attribute,

we can delete the attribute att ri_2 from the object obj_a.

When we call method test at line 17, the interpreter cannot

find attribute att ri_2 in object input_data at line 7, and

reports a bug of type Att.

B. Bug Collection Source: GitHub Platform

GitHub is an open-source community with over 65 million

developers [16], where developers can freely update and

release their code. GitHub adopts the term project to refer to a

deployed project and applies the term pull request to refer to

code changes submitted by a developer to the origin project. A

pull request contains multiple commits, each of which stores

the code changes, the message describing the changes, and a

particular timestamp.

GitHub provides two mechanisms for users to report bugs:

issues and pull requests. The primary distinction between the

two is that issues do not require users to fork the project and

make code changes. Users can utilize the two techniques to

report defects and attach their test code, traceback, and fix

857

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

recommendations to the original projects, as well as discuss

with other users.

C. Common Components in Existing Benchmarks

There are three major components in existing benchmarks

to provide bug data and make bug reproduction easier [7]-[9],

[11], [17], which are bug information, buggy code, and test

scripts.

e Bug information. It offers users the bug type, reports,

and fix patches. This part is critical for determining the

correctness of reproduction and analyzing the root causes

of the bugs.
e Buggy code. Buggy code describes a piece of code that

includes bugs.

e Test scripts. The goal of test scripts is to make the

process of reproducing bugs simpler. A test script includes

instructions for switching to the buggy version of the code,

installing the buggy code, and running the Python test code.

Users can reproduce the bug by directly executing the script.

III. THE PROPOSED BENCHMARK: EXCEPY

The architecture of EXCEPY is depicted in Figure 2, where,

e The dataset stores the data we gather for EXCEPY, includ-

ing the test scripts, buggy code, and git information about

the projects.

e The execution framework takes over the process of repro-

ducing bugs, as well as providing unified APIs.
e Application allows users to load their tools on EXCEPY.

EXCEPY now is publicly available’. EXCEPY is constructed

with two phases. The first phase involves gathering bugs from

real-world projects, while the second is responsible for pruning

bug-irrelevant code.

A. Bug Collection

Our goal is to collect reproducible built-in type bugs from

real-world projects. The bugs must fulfill the following char-

acteristics to achieve the purpose.

class A:

def __init__(self):

self.attri_l = '1’

self.attri_2 = '2'

def test (input_data):

input_data.attri_l + input_data.attri_2

if _name_ == ’__main__’:

obj_a = A()

obj_a.attri_2 = 2

Trigger a bug of type TypeError

test (obj_a)

del obj_a.attri_2

Trigger a bug of type AttributeError

test (obj_a)

Fig. 1: An example of two bugs that rely on specific input

data to trigger.

'https://github.com/Stardust1225/ExcePy_Present

e Reproducible. We only collect reproducible bugs and ex-

clude those that rely on specific hardware or network to

trigger.
e Python-Only. We exclusively gather Python source code-

related bugs. We exclude the bug caused by the interaction

of several programming languages, such as those found in

Python native libraries.

Isolated. We require that bugs be repaired by modifying

just one Python source file, and we exclude bugs that are

fixed by surrounding a try-catch block or by simply

removing the buggy code.

Figure 3 depicts the phases of the collection workflow with

four steps. First, we collect the most popular Python projects

on GitHub. Second, we collect commits that may attempt

to fix bugs from the evolution of the projects and choose

those projects with sufficient bug-fixing commits. Third, we

manually verify the changes and attempt to reproduce the bugs

recorded in the commits. At last, we utilize the reproducible

bugs to create the dataset of EXCEPY.
1) Python Project Selection: As indicated in Section II-B,

GitHub is a popular platform for sharing open-source projects.

Thus we choose to gather bugs from projects hosted on

GitHub. We rank Python projects by star rating and select

the top 300 as bug collection sources to catch more generic

bugs. These projects can represent the concerns of most Python

users.
2) Candidate Commit Collection: The 300 projects have

numerous commits, and manually going through them is

laborious. We must automatically filter out valuable commits

to lessen the load of human inspections in the following

phases. We utilize a popular filtering technique that matches

keywords in commit message parts, and the keywords we use

in this process are the names of built-in bug types.
The keywords matching approach has limits when filtering

out some commits that do not meet our requirements. One

limitation is that some commits try to fix the bugs in obsolete

test cases by simply removing the test cases. Another is that

developers frequently include bug types in the commit only

when improving warning outputs. Even if these commits do

not fulfill our requirements, the keywords matching technique

cannot filter them out.
With the limitations mentioned above, we enhance the

automatic filtering approach. To address the first limitation,

we analyze the changed files in commits and limit all changes

from) OO ..
Execution Framework

Version Switch) { Data Release Installation Execution

Git clean -xdf
Git reset commit ID

Execute test code

Compare with traceback|
Release test code,

buggy code, traceback,
pattern, label, scripts

Install dependencies
Compile C/C++ files
Build from source

4 Dataset \
¢
1

| Test Scripts Buggy Code Git Repository
| Complete project code Project A
| Simplified bugey code Project B

Bug, Test code, Commit ID

Fig. 2: Architecture of EXCEPY.

Commands, Traceback, Bug type

L
o
i

858

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

to Python files. Besides, because all files whose filenames

begin with test_ are test files according to Python coding

standards, we require at least one changed file with a filename

that does not begin with test_. We noticed that commits

aiming at upgrading warning outputs typically contain both

the original and changed types. Thus to overcome the second

limitation, we add the keywords fix and repair to the matching

strategy and filter out commits containing multiple bug type

names in the message part.

For the selected commits (called candidate commits) after

the automatic filtering process, we discover 42 types in the

commits of the 300 projects, indicating that bugs of these

types are common in Python projects. Figure 4 depicts the

distributions of candidate commits in the 42 bug types, where

we rank the types according to the number of related candidate

commits and show the names of the top 15 types. The

remaining categories are categorized as other. Four of the

42 types have a high frequency in the message parts and are

involved in 1548 commits. Types Typ, Val, Att, and Key

are the most common. Furthermore, there are four kinds with

just one associated commit: Ari, Flo, Con, Int. To some extent,

these bug types are less likely to be encountered in daily use
or rely on specific platforms to trigger.

We have 5150 candidate commits from the 300 projects.

After grading the projects based on the number of candidate

commits and deleting those with fewer than 20 commits or

aiming at education, we select 2966 candidate commits from

the top 40 projects for the following phases. Each of the 40

projects has more than 30 candidate commits.

3) Bug Reproduction: A successful reproduction depends

on two factors: (1) appropriate input data for triggering and

(2) a traceback to identify the correctness of reproduction. We

collect reported traceback from commits and pull requests that

reference them. Besides, we look for code snippets and fill

them with extra code for importing libraries and initializing

300 projects .
pe Comunits

Q) GitHub @ Project Selection Collection

30 projects

2966 candidate commits

B Candidate commits

Bu
0 Patch Validation © Repro duction

Dataset of 15 projects 17 projects
ExcePy 180 bugs 183 bugs

Fig. 3: The workflow of bug collection.

fan = Typ = Val Att = Key

: = Imp =Nam #Run = Not

5) = OSE = Ind = Unb = Zer

*SS — = Ove = Mem Rec = Other

OReproduced successfully Failure to reproduce

Fig. 4: Distribution of bug types in the candidate commits.

objects to build test code.

After collecting the reported traceback and constructing a

test script, we must run the test code on the buggy code to

check that the test code can produce the same traceback as the

reported one. First, we swap the project code to the required

version, and then we install the project in development mode.

We search the development documentation for additional steps

because most projects need specific dependencies throughout

the installation process. After executing the test code, we

compare the output traceback to the previously recorded

traceback. If we can produce the identical traceback, we save

the test script for the next phase.

One challenge in bug reproduction is that developers only

report a traceback without source code. The other is that the

bug requires some external files to be triggered, such as a

specific picture file or a markdown file. To address these

challenges, we endeavor to extract the code snippets from the

pull request conversation and search for code snippets from

test cases in a later version of the source code. We can then

add code for importing modules and generating objects based

on the code snippets to generate an executable test code.

We can reproduce 15 of the 42 bug types we have collected.

We cannot reproduce bugs in the collected commits because

of the three factors stated below.

e A candidate commit simply modifies the bug types or

changes the output message.

e Changes in a commit are just to catch a bug or to throw a

new bug.
e A commit solves a bug in the test cases after some APIs

are changed.

In this part, we have manually inspected 2966 commits in

17 projects and successfully reproduced 183 bugs with 15 bug

types. The proportion of candidate commits corresponding to

the 15 types in the inner black circle is depicted in Figure 4.

4) Fix Patches Validation: A bug resolved with a

try-catch block does not fulfill our requirements. As a

result, we must double-check the fix patches to ensure that

they meet our requirements. We inspect the patches to exclude

the cases that the bugs are fixed with a try—catch structure.

We eliminate three bugs from the 183 bugs in 17 projects and

include 180 bugs from 15 projects in our dataset.

B. Code Reduction

As indicated in Section I, in addition to the complete project

code, we provide simplified buggy code to help evaluate the

tools. Because Python does not fully compile before execution,

for a piece of test code, we can delete files that have not been

executed and ensure that the test code will not crash when

executed again. Thus, the fundamental idea behind developing

simplified flawed code is to reduce unexecuted files while

guaranteeing the accuracy of bug reproduction.

Figure 5 depicts the workflow of the method for pruning

bug-irrelevant code. The method takes a piece of test code

and its related complete buggy code as input and returns the

simplified buggy code. Tracing the executed files and trimming

859

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

Complete buggy code

A test code Path Tracer Executed files

Code Pruner I

Delete Re-run the Compare

unexecuted files test code tracebacks

gt

Simplified buggy code

Fig. 5: Workflow of code pruning.

bug-irrelevant code are two main phases in code pruning. We

run the test code and record the executed Python files in the

first phase. The second phase aims at eliminating as many

unexecuted files as possible while ensuring bug reproduction.

1) Executed Files Tracing: We build a tracer and register

it in the test code using API sys.settrace() to store the

files necessary for test code execution. The Python Interpreter

will invoke the tracer and provide execution information such

as file locations and line numbers when executing the test

code. After running, we can collect the executed files from

the tracer.

2) Bug-irrelevant Files Pruning: One Python file can in-

clude one or more class definitions, and these classes may

depend on the other. Because no mature tool is capable of

creating a complete call graph [18], pruning code within a

Python file can be adventurous if the dependencies between

the methods and classes are not thoroughly understood. As a

result, we choose to prune code at the file level.

The algorithm of pruning code is presented in Algorithm.1,

where we use c_code to represent the complete buggy code,

s_code to refer to the simplified code, exec_files to

represent the executed files recorded by the tracer. From line

1 to line 5, we extract the unmarked files from the whole

Algorithm 1: Pruning bug-unrelated code

code and store them in del_list, which we use to prune

the code. From lines 6 to 11, we remove the unexecuted files

while ensuring the correctness of reproduction via comparing

the traceback with the reported one.

C. Unified APIs Development

To provide users with consistent APIs, we build the exe-

cution framework in four parts: version switch, data release,

installation, and execution. The version switch component han-

dles the mapping from bug ID to commit ID. The data release

section supplies users with the necessary test scripts. The

installation section is in charge of installing dependencies and

building projects from the source code. Finally, the execution

section executes the test code and compares the results to the

recorded traceback.

Test code in EXCEPY can be run directly with a python3

command or imported by third-party testing frameworks such

as pytest [19] and unittest [20]. It is simple to track test

code execution and collect executed statements for calculating

coverage. Users can also set up personal tracer to help with

analysis and testing.

IV. ANALYSIS OF THE BUGS AND BUGGY CODE

In this part, we will discuss the data in EXCEPY from

two perspectives: projects and test scripts. Then, based on the

debates in the commits and other similar studies [10], [13], we

provide some root causes and fix patterns that we manually

conclude for the 15 built-in bug types.

A. The Distributions of the Python Projects and Bugs

Table I displays basic information about the 15 Python

projects in EXCEPY, including their number of stars and com-

mits, as well as the fields to which they belong. As indicated

in the table, the gathered projects cover several popular areas,

such as machine learning and scientific computing, attract

numerous third-party developers, and are well maintained.

TABLE I: Basic information about the collected projects in

EXcEPY.

Input: trace, exec_files, c_code, test_code

Output: s_code

1 del_list = []

2 for one_file in path do

3 if one_file not in exec_files then

4 if one_file not in trace then

5 [del_list.add(one_file)

6 s_code = c_code

7 for one_file in del_list do

8 s_code.del(one_file)

9 traceback = run_test_code(s_code, test_code)

10 if traceback != trace then

11 L s_code.join(one_file)

12 return s_code

 ID Project #Star = #Commit Field(s)

Pl CPython 40.4K 111K Compiler & Testing

P2 IPython 15K 25K Compiler & Testing

P3 Jedi 10.1K 1K Program Analysis

P4 Matplotlib 14.3K 40K Image Processing

P5S NumPy 18.3K 27K Scientific computing

P6 Pandas 31.2K 27K Machine learning

P7 Pelican 10.6K 3K Compiler & Testing

P8 Pillow 9K 12K Image Processing

P9 Pytest 78K 13K Compiler & Testing

P10 requests 25.3K 2K Network

Pil SciPy 8.6K 26K Scientific computing

P12 = Scikit-image 4.5K 12K Image Processing

P13 ~—s Scikit-learn = 47.4K 27K Machine learning

P14 SymPy 8.5K 48K Scientific computing

P15 Tensorflow 159K 118K Machine learning

860

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Bugs in EXCEPY (with the number of bugs of each

type and each project).

ID + wr
 10 11

Bug Type 123 9 sum

Tl Attribute 41223 --21- 1 - 1 5 10} 32

T2 Import - ee ee ee ee ee ee hd

T3 Index 12123 -1--- 3 1 - 7 2| 23

T4 Key 1----2-1-- - - 13 2] 10

T5 Memory - L- - - -- - - - - - - - -J] 1

T6 Name - oe eee ee ew ee 2 - - 3-1 5

T7 Nothnplement}- - - - - -- - - - - - - 2 -| 2

T8 os ---- 1----- - - - 1 -| 2

T9 Overflow moe eee ee ee ee ee 2 LD

T10 ~=Recursion moe eee ee ee ee ee 2 LD

Tl1 Runtime - ee ee ee De eee ee el

T12 Type 3 -- 5 21-813 3 - 3 21 12} 62

T13 UnboundLocal| 1 - - - - -- 1-- 1 - - -| 3

T14 Value - 1-222-1-- - - 2 9 6{| 25

T15 ZeroDivision|1 -- - - -- 3 -- 1 - - 4 1/10

sum 1153111151172 3 11 1 7 59 33) 180

In Table II, we show the total number of bugs for

each project, where we use the ID in Table I to repre-

sent the projects. Since all bug type names end with an

error, we omit the error in the bug type in Table I. As

it shows, most of the bugs concentrate on a few types,

e.g., type TypeError, AttributeError, ValueError

and IndexError, which suggests that developers are more

likely to make the four types of errors. Some bug types

only exist in one project, such as types MemoryError and
RuntimeError. These types are hard to trigger as they rely

on the exceptions in some system calls.

B. Statistics of the Test Scripts in EXCEPY

1 # Commit version:
e4b9f£6c9868c3211¢c1da716d76248115cllfeec

Dependencies scripts

python3 -m pip install Cython==0.22

Installation scripts

pip3 install -e .

C
o
d

A
W
A

w
D

Test code
from pickle import loads

from pickle import dumps

from nose.tools import assert_equal

from sklearn.datasets.base import Bunch

bunch Bunch (x="x")

bunch_from_pkl loads (dumps (bunch))

10

1

12

13

14

15

16

7

18

19

20

Traceback
File "test5.py", line 8, in <module>

bunch_from_pkl loads (dumps (bunch))

File "./scikit-learn/sklearn/datasets/base.py
", line 53, in __getattr__

return self[key]

KeyError: ‘'__setstate__’

21

22

Fig. 6: A script for triggering a bug of type Key in project

scikit-learn.

861

90
78

68 68 |Testcode mTraceback

5 00 52

-
5 34
~ 30

; ; 14 15 10

0 0 21 00 30

2.4] (48) 8,16] 16,32] (32,64] 64,128] (128,256] (256,512]

Number of lines

Fig. 7: Distributions of the number of lines in test code and

traceback.

Figure 6 shows a test script we created for a defect in

the project scikit-learn, including instructions, test code, and

a traceback for the fault. Lines 3-7 provide instructions for

installing dependencies and compiling the project from source

code. Lines 9 through 15 include the test code. To make the

test code executable, we excise lines 14 and 15 from the bug

report and insert lines 9 to 13. From line 17 through line 22,

we capture the reported traceback.

Figure 7 depicts the distributions of the number of lines of

test code and traceback in test scripts, where the vertical axis

represents the number of test scripts. As can be seen, most of

the test codes and tracebacks are within 64 lines except for five

test codes and one traceback. We manually check the five test

codes and find that they are from project TensorFlow, which

requires lots of code to define the variables and structures of

the model.

C. Root causes and Fix Patterns

By manually examining bugs, execution paths, tracebacks,

and repair patches, we summarize several root causes and fix

patterns for each bug type and present the four common types

in Table III. We provide a detailed report for the 15 bug types

on our website 2.
There are three parts for each bug type. The Root causes

column offers a brief explanation of the root cause, the Exam-

ple buggy code column displays some pseudo-code samples or

descriptions that will cause the problem, and the Fix patterns

column shows the most popular fix patches. One bug type may

have many root causes in this table.

In the investigation, we further extract three highly frequent

root causes and fix patterns among these types.

e Cause 1: Receiving an unexpected type of returned vari-

able. The type of the returned variable is not definite since

Python is a dynamic typing language. Directly processing

the returned value without further judgment when executing

a method can easily result in a crash, especially if developers

regularly set the default type of returned values for specific

methods. In EXCEPY, bugs related to unexpected returned

type can be of bug types Att, Typ, Val, and Zer.

Fix 1: Adding type judgment. Including code that validates

the type of returned values, or limiting the input data to

certain types, can help developers prevent these bugs.

2https://github.com/Stardust1225/ExcePy_Present/blob/main/causes.pdf

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The root causes, examples buggy code, and fix patterns for three most frequent bug types.

Type ID Root causes Example buggy code Fix patterns

Att T1-1 Get unexpected type of return vari- real_frames. ‘Add an examination to the type.
able. shape[-1].value

T1-2 Get value from an unexisting class No initialization of class members in Add an examination to the class member.
member. the init function.

Typ T12-1 Concatenate strings and numbers a="hello"; b=1; a+b Choose to change one type to the same as
with a plus. another.

Call an operation on an object that =,
T12-2 does not implement it. Add code to support the types.

T12-3 Operate with an unexpected type. £1//£2 and f1/f2. Add a check for the type of return value before
referencing it.

The targeted type does not consider the | Change the targeted type or implement conver-
T12-4 Converse type. input type. sion code for the uncovered type.

Operate on a variable with an un- Operate on the variable and find the Pass type information to the operation to help
Val T14-1 supported type inappropriate value the operation make a judgment, or use type

PP type. Ppropr ° conversion on the arguments.

: keras changes its implementation and Add a judgment at the reading process to ensure
Key 1 API misuses. tensorflow has not adapted to it. that the layer of the model is correct.

Empty parts would appear after the first
T4-2 Spilt a string on an empty string. splitting, and the second splitting on an Add length check for each part.

empty part would lead to it.

e Cause 2: Unexpected input data. Some input data might

lead to an endless loop or infinite recursion if developers

fail to control particular boundary values or set wrong

conditions in the code. An example of this root cause is

a bug in the random module of project CPython >, where

it raises a bug of type Zer when taking a specific int

value as input.

Fix 2: Adding code to exclude illegal input data. De-

velopers can include code at the beginning of the method

to filter certain input data, or they may include checking

code to avoid any illegal inputs. In the benchmark, bugs of

types Zer, Mem, Rec, and Not are often triggered by some

unexpected input data.

e Cause 3: Ignoring API changes. When developers neglect

changes in particular APIs, it might result in bugs in the

caller. Modifying the type range of the returned value,

adding extra restrictions to the input data, or even altering

the function name are all possible code modifications. This

root cause can lead to bugs of types Not and Key.

Fix 3: Adjusting code to the new APIs. Developers keep

up with changes in the new code and modify their imported

code, or they restrict the version of particular packages in

the configuration files.

V. EVALUATION OF EXCEPY

In this section, we demonstrate the effectiveness of EXCEPY

via answering the following three research questions.

e RQI1: Is the code pruning method effective in reducing

buggy code size?

e RQ2: Is the benchmark effective in evaluating Python static

analyzers?

e RQ3: Is the benchmark effective in evaluating Python

fuzzers?

3https://ougs.python.org/issue41421

We evaluate the performance of static analyzers on both

the complete buggy code and the simplified code, including

execution time and outputs, to assess the efficacy of code
pruning in answering RQ1.

We use state-of-the-art static analysis and fuzzers to answer

RQ2 and RQ3 and evaluate their capacity to discover bugs

gathered in EXCEPy. To check if the analyzers can correctly

report the bugs, we compare the warning positions to the

collected bugs in RQ2. Because all of the bugs in EXCEPY

can cause crashes, we compare the tracebacks from fuzzers to

the recorded tracebacks in EXCEPY in RQ3 to determine if

the fuzzers can find the bugs.

A. Setup

All experiments are carried out on a PC with an Intel Core

i7 3.60GHz CPU and 16 GByte RAM. The collected projects

from GitHub are built on Ubuntu 18 with Python 3.7.

We adopt five state-of-the-art tools for the experiments,

including three static analyzers and two fuzzers. We list the

details of the five tools below.

e Pytype [21]. It is a Google-maintained static analyzer. It

can infer variable types, find bugs in Python bytecode via

inter-procedural analysis.

e Pylint [22]. This tool is also a static analyzer, released by

Python Code Quality Authority (PyCQA). It can check for

defects with variable types, suggest restructuring blocks, and

offer information about the length of each line of code.

e Pyflakes [23]. Pyflakes is another tool produced by PyCQA.

This tool parses the source file and examines the constructed

syntax tree to detect errors.

e pythonfuzz [24]. It is a coverage-guided fuzzing tool main-

tained by Google, which detects unhandled exceptions and

memory limitations in Python libraries.

862

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

e python-afl [25]. This tool applies American Fuzzy Lop

(AFL) for pure Python code. Currently, it is an experimental

module.

We set a time restriction of 60 minutes for three static ana-

lyzers and 12 hours for fuzzers for each bug. The comparison

experiments in their original papers or supporting materials

are referred to determine this setting.

B. RQI: Evaluation of Code Pruning

To see how much code our approach can prune, we count

the lines in the complete buggy code and compare them

to the number in the simplified code. Figure 8 illustrates a

comparison of the number of lines of code for 180 bugs, where

we order the complete codes by the number of lines. Notice

that while some bugs are from the same project, they are from

different versions, which means they have varying quantities

of lines of code. We use the terms complete and simplified to

refer to complete and simplified code, respectively, and a red

line to denote the half-size of the complete code. As seen in

the diagram, our approach may remove over half of the project

code.

We examine the situations where our approach can only

prune less than 10% of the complete code, and we find

code features that prevent the approach from removing more

files. First, some Python files import a lot of modules and

classes, but not all of them are used in the called classes

or methods during test code execution. However, the Python

Interpreter must go through all of the imported modules and

classes during execution. Second, when importing a module,

all Python files for initialization (file ___init__.py) in the

sub-modules are also executed. Though some sub-modules

may not be used for triggering the bugs, we cannot delete

them automatically. Third, many class definitions may exist in

the same Python file. Though the test code only uses one or a

few classes in this file, all the code in this file is regarded as

being executed. Because we only prune code at the file level,

these unexecuted lines within Python files can influence the

number of pruned lines.

To show the benefits of code pruning for evaluating the

tools, for each bug, we run three static analysis tools on both

the complete buggy code and simplified code, and record the

execution time using Linux command time. We classify the

execution results in three categories: Finish within 60 minutes,

 6x10

Complete mm Simplified —Half size of complete

- x a So TA

N
u
m
b
e
r

of

li

ne
s

of

co

de

N
 x x So a

 0!

Complete buggy code

Fig. 8: Number of lines of code in the complete buggy code

and the simplified code.

& 180
120 . a

o

8 91 2 60

5 Z 9 00 BLS fs 45 512 5 3

Pytype Pylint Pyflakes| Pytype Pylint Pyflakes

Complete buggy code Simplified buggy code
@ Finish within 60 minutes | Timeout Crash in 60 minutes

Fig. 9: Performance of three static analyzers on the complete

code and simplified code.

Timeout, and Crash in 60 minutes, where Timeout refers to

the situations that the tools do not stop within 60 minutes,

and Crash in 60 minutes refer to the tools throw exceptions

or stop due to errors. For every tool, we count the number of

bugs belonging to these three categories, respectively.

Figure 9 shows the numbers of bugs for the three categories

in each tool, under two versions of code. As it shows, tools

using simplified code can not only avoid many failures but also

considerably reduce running time. We conclude two causes for

the crashes on the complete buggy code: (1) a tool may not

be capable of handling some unsupported encoding formats

or some Python syntax; (2) when a tool attempts to cover all

execution paths, it crashes for the exponential number of paths

in the unexecuted code.

However, for tool Pytype, the results in category Timeout

increase rapidly with the simplified code. We manually check

the logs generated during the execution and discover that (1)

many bugs can be analyzed with the simplified code, instead

of code crash; (2) the tool traverses lots of modules when

inferring the types of some variables; and (3) the tool needs

to deal with too many variables and does not complete the

type inferring phase within 60 minutes.

Conclusion. According to the results of the experiments,

the code pruning method can reduce the size of project code

by half while not affecting bug reproduction. This approach

can help to evaluate tools on large-scale projects.

C. RQ2: Evaluation with Three Static Analyzers

We employ three dimensions for further comparison of the

analyzers in addition to reporting bugs.

e File level. This level shows that a tool can locate the file

containing the bug.
e Method level. This level indicates that a tool is capable of

locating the method that contains the bug.
e Line level. This level demonstrates that a tool can cover the

lines where the bug arises.

e Bug level. This level means that the tool can report bugs

correctly.

We use the simplified code to run the three tools and count

the results on these four dimensions. We evaluate the outcomes

within 60 minutes for this evaluation since tools may crash due

to defective code.

863

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Distributions of the reports from three static

analyzers.

 Dimision Pytype Pylint Pyflakes

File Level 46 138 57

Method Level 18 96 7

Line Level 12 43 7

Bug Level 8 10 4

The number of detected bugs for each dimension is pre-

sented in Table IV. As the results indicate, Pylint can report

warnings within the same files and same lines. Although the

three tools can throw warnings in the same method and even

on the same line as the bugs in EXCEPY, they can only report

ten of 180 bugs collectively. All of the tools can detect these

ten bugs in 3 minutes on code s_ code. But some reports from

tools Pylint and Pyflakes are not accurate enough.

To understand the capabilities and limits of these tools, we

check the successfully reported bugs in detail. For the ten bugs,

we list the related project, the type of the bug, and the detection
result of three tools in the first five columns in Table V. In

the last two columns in this table, we present the number of

lines of code in the complete buggy code and the simplified

code.

As demonstrated in the table, the three static analysis tools

can detect correctly three bugs of type Nam. The first two tools

can detect four bugs of type Att. When investigating bugs

of type Att, we find that the three tools scan only the class

definition code, without considering language feature dynamic

attribute. For the bugs of type Nam, the tools check whether

a variable has been claimed previously in the current scope.

Furthermore, the ten bugs are triggered in a single Python file.

However, most of the bugs in EXCEPY are caused by boundary

input data or irregular execution paths, where the three tools

cannot obtain enough information to infer the variable type

and inspect. Therefore, the three tools may be good at locating
bugs within a single Python file.

Conclusion. The three static analysis tools can still discover

10 out of 180 bugs based on the simplified code, even if the

projects in EXCEPy are large-scale. They are, however, less

efficient at identifying cross-file bugs or bugs linked to third-

party packages.

TABLE V: Information of the bugs that are successfully

reported by three static analysis tools.

 Project Bug Type Pytype Pyline Pyflakes #C_code #S_code

Pl Att v v - 273K 3K

Pl Unb v v v 291K 62

Pl Att v v - 274K 3K

P3 Att v v - 97K 9K

P9 Att - v - 47K 2K

P14 Typ v v - 359K 202K

P14 Imp - v - 455K 250K

P14 Nam v v v 287K 181K

P14 Nam v v v 408K 212K

P14 Nam v v v 287K 181K

D. RQ3: Evaluation with Two Fuzzers

The two tools adopt code coverage to guide the generation

of input data. To compute the coverage, they build their tracers

to record the execution paths. Consequently, we cannot know

if the input data generated by the tools can cover the buggy

file or buggy function. Our solution is to compare whether the

tracebacks generated by the tools match the tracebacks stored

in EXCEPY. Because the two fuzzers need users to specify

the entry point, the execution paths on both simplified and

complete codes are the same. Hence, we do not compare the

performance of the tools on the two kinds of code.

We limit the running time to 12 hours. The two fuzzers fail

to trigger the bugs correctly, even though they can achieve

more than 95% of the statement coverage on the buggy code.

We execute the test code and analyze each execution path

to see how much code needs to execute before the bug is

triggered to figure out why the fuzzers failed. We count the

number of lines and calls along the execution path. Among

the 15 projects, project [Python replaces our tracer with its

own, as the project needs to use the tracer for debugging.

Therefore, we cannot receive data on this project from our

tracer. For other projects, because we can track the execution

of each statement and expression, we count each loop based

on the times of execution and count all init methods that

are invoked while importing packages and initializing objects.

The number of lines and method calls is presented in two

aspects: distributions on each bug type and each project.

Table VI provides the average number of calls and lines for

each project, whereas the data for each bug type is shown in

Table VII. In the two tables, the average number of method

calls is shown in the second column, and the average number

of lines for code being executed is shown in the third column.

The project name and the type name are the same as in Table I

and Table II.

We infer that there are two causes for their inability to

discover bugs in EXCEPy. The bugs rely on certain types

and values of input data. The two fuzzers are unable to

generate the needed types since they only include default

types. Second, because the fuzzers are coverage-driven in input

data generation, the adopted techniques for triggering the bugs

may prefer short paths over long.

Conclusion. In this evaluation, we found that a single

criterion is insufficient to guide the generation of input data.

TABLE VI: Average number of function calls and lines of

code required to trigger a bug in each project.

 Project #Calls LoC Project #Calls LoC

Pl 404 2734 P2 NA NA

P3 403 2532 P4 48K 243K

P5 1572 11K P6 5066 28K

P7 123 916 P8 545 2915

P9 663 58K P10 164 1757

Pll 1738 87K P12 246 5153

P13 441 3083 P14 736K 3147K

P15 101K 556K

864

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Average number of function calls and lines of

code required to trigger a bug of each bug type.

 Bug Type Calls LoC Bug Type #Calls LoC

Att 68K 301K Imp 455K 2180K

Ind 86K 343K Key 74K 370K

Mem NA NA Nam 45K 194K

Not 460K 1805K OSE 47K 194K

Ove 61K 310K Rec 13875K 55245K

Run 321 1630 Typ 195K 827K

Unb 39 518 Val 174K 714K

Zer 16K 113K

Meanwhile, Python language features are not taken into ac-

count in these fuzzers. We propose that different types and

strategies for input data generation can be manipulated in the

fuzzers.

VI. RELATED WORK

Benchmarks for bug collection. For Python, there are

a few benchmarks for bugs. The closest similar work is

BugsInPy [10], which collected 493 bugs from 17 real-

world Python projects by running newly added test cases on

the previous version. Another Python benchmark is Many-

Types4Py [11]. Its purpose is to assess the performance of

type inference. QuixBugs [8] collects Java and Python defects

from small programs, as well as patches that change only one

line of code. Projects gathered in QuixBugs are quite small,

with 17 to 48 lines of code, and the bugs are manually entered,

as opposed to BugsInPy and EXCEPY.

Studies on bugs in Python. Many works concentrate on

detecting bugs caused by using Python language features. For

example, Rao and Chimalakonda [26] consider the potential

problems caused by adopting Lambda expressions in Python

applications, as well as some typical pitfalls. Hu and Zhang [3]

investigate issues that occur when Python programmers use C-

language APIs and provide some bug patterns when Python

interacts with the C language. Chapman and Stolee [27] focus

on the problems when using regular expressions in Python

projects. The bug types in these researchers have been covered

in EXCEPY.

Analysis techniques towards Python type system. There

are also several studies focusing on static analysis of the types

in Python. Chen et al. [28] investigate the use of dynamic

typing in nine real-world Python systems. Xu et al. [14]

employ dynamic symbolic execution to infer type information

and produce variable type ranges. Monat et al. [2] propose

a method for applying abstract interpretation in Python code,

which might assist in the analysis of type information. As

many bugs collected in EXCEPY are type-related, these re-

searchers can apply EXCEPY to evaluate the performance of
their techniques in inferring types and finding conflicts in

operations between various types.

VII. THREATS TO VALIDITY

Some threats may influence the validity of EXCEPy, and

we discuss these threats in this section.

The main threat to internal validity is insufficient selection

and filtering of bugs throughout the development process.

We utilize keywords to match the message part and collect

candidate commits. We may miss some commits that attempt

to fix bugs without providing any information in the message

part. We also examine the merged pull requests to lessen the

effect. If a pull request is for reporting bugs, we treat the

related commits as candidates. Another aspect that may result
in incompleteness is the limit on committed modification,

restricting the change of each candidate commit to being one

Python file. When several files are modified, it is difficult to

differentiate between bug fixes and feature addition. Therefore,

we limit the changes in the collection process to one Python

file.

Another threat to internal validity is in the process of re-

producing bugs. There are some bugs that we cannot reproduce

correctly. The reasons are multiple, e.g., the absence of some
external input files, or the missing configurations. To deal with

such situations, the construction of test code also considers the

input data and context in other test cases.

For the external validity, one major threat comes from

the scale of EXCEPy. Because EXCEPY only contains 15

Python projects, the conclusions may not apply to the bugs in

other projects. Besides, out of 64 Python built-in types and 42

reported, EXCEPY only has 15 bug types. Nonetheless, these

projects are picked among 300 Python projects on GitHub with
the most stars. Bug types gathered in the EXCEPY are com-

monly found in programming, according to this perspective.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a Python benchmark named

EXcEPY, which includes 180 bugs of Python built-in types

from 15 real-world open-source Python projects. Moreover,

we have also provided a buggy code reduction method for

code simplification. EXCEPY provides both test scripts and

buggy code (both the original and the simplified) for bug

reproduction. Meanwhile, it also provides unified APIs and

applications to facilitate the evaluation of various tools. Apart

from the benchmark, we have extracted 26 novel patterns for

root causes and fix patterns of the collection types of bugs.

To demonstrate the effectiveness of EXCEPY, we have also

evaluated three static analyzers and two fuzzy testing tools on

the ability of bug detection. Based on the evaluation results,

we have provided some suggestions for improving the five

state-of-the-art Python tools. In the future, we plan to enrich

the database with more bugs and new built-in bug types.

IX. ACKNOWLEDGMENT

This work is supported in part by the Key Research Program

of Frontier Sciences, Chinese Academy of Sciences under

grant No. QYZDJ-SSW-JSC036.

865

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

[1 “4

[2]

[3 =

[4 2a

[5 =

[6]

[7 &

[8]

[9 =

[10]

[11]

{12]

{13]

[14]

REFERENCES

Hamed Tahmooresi, Abbas Heydarnoori, and Alireza Aghamohammadi.

An analysis of Python’s topics, trends, and technologies through mining
Stack Overflow discussions. CoRR, abs/2004.06280, 2020.

Raphaél Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static

type analysis by abstract interpretation of Python programs. In 34th
European Conference on Object-Oriented Programming, ECOOP 2020,
November 15-17, 2020, Berlin, Germany (Virtual Conference), volume

166 of LIPIcs, pages 17:1-17:29. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020.

Mingzhe Hu and Yu Zhang. The Python/C API: evolution, usage
statistics, and bug patterns. In 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER 2020, London,

ON, Canada, February 18-21, 2020, pages 532-536. IEEE, 2020.

Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao
Wang, Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. Watch-
man: monitoring dependency conflicts for Python library ecosystem.
In ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, pages 125-135. ACM,

2020.

Stephan Lukasczyk, Florian Kroi8, and Gordon Fraser. Automated unit

test generation for Python. In Search-Based Software Engineering - 12th
International Symposium, SSBSE 2020, Bari, Italy, October 7-8, 2020,

Proceedings, volume 12420 of Lecture Notes in Computer Science,

pages 9-24. Springer, 2020.

Hongyu Zhai, Casey Casalnuovo, and Premkumar T. Devanbu. Test

coverage in Python programs. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 2019, 26-27 May
2019, Montreal, Canada, pages 116-120. IEEE / ACM, 2019.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: a database

of existing faults to enable controlled testing studies for Java programs.
In International Symposium on Software Testing and Analysis, ISSTA
’14, San Jose, CA, USA - July 21 - 26, 2014, pages 437-440. ACM,

2014.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama.

QuixBugs: a multi-lingual program repair benchmark set based on the
quixey challenge. In Proceedings Companion of the 2017 ACM SIG-
PLAN International Conference on Systems, Programming, Languages,
and Applications: Software for Humanity, SPLASH 2017, Vancouver,

BC, Canada, October 23 - 27, 2017, pages 55-56. ACM, 2017.

Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian,

Arpad Beszédes, Rudolf Ferenc, and Ali Mesbah. BugsJS: a benchmark
of Javascript bugs. In 12th IEEE Conference on Software Testing,
Validation and Verification, ICST 2019, Xi’an, China, April 22-27, 2019,
pages 90-101. IEEE, 2019.

Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack
Phan, Qijin Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng

Yieh, Brian Goh, Ferdian Thung, Hong Jin Kang, Thong Hoang, David
Lo, and Eng Lieh Ouh. BugsInPy: a database of existing bugs in
Python programs to enable controlled testing and debugging studies.
In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, pages 1556-1560. ACM,

2020.

Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. Many-

types4py: A benchmark Python dataset for machine learning-based type
inference. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021, Madrid, Spain, May 17-19, 2021,

pages 585-589. IEEE, 2021.

Python built-in exception. https://docs.python.org/3/library/exceptions.
html.

Zhifei Chen, Yanhui Li, Bihuan Chen, Wanwangying Ma, Lin Chen, and

Baowen Xu. An empirical study on dynamic typing related practices
in Python systems. In ICPC ’20: 28th International Conference on
Program Comprehension, Seoul, Republic of Korea, July 13-15, 2020,

pages 83-93. ACM, 2020.

Zhaogui Xu, Peng Liu, Xiangyu Zhang, and Baowen Xu. Python
predictive analysis for bug detection. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages

121-132. ACM, 2016.

866

[15]

[16]
[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

[28]

Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath,

He Zhang, and Alex Groce. Using relative lines of code to guide
automated test generation for Python. CoRR, abs/2103.07006, 2021.

Github. https://github.com/.
Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao.

JaConTeBe: A benchmark suite of real-world Java concurrency bugs (T).
In 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, Lincoin, NE, USA, November 9-13, 2015, pages

178-189. IEEE Computer Society, 2015.
Li Yu. Empirical study of Python call graph. In 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019, pages 1274-1276.

IEEE, 2019.
Pytest. https://docs.pytest.org/en/stable/.
Unittest. https://docs.python.org/3/library/unittest.html.
Pytype. https://github.com/google/pytype.
Pylint. https://github.com/PyCQA/pylint.
Pyflakes. https://github.com/PyCQA/pyflakes.
Pythonfuzz. —_https://gitlab.com/gitlab-org/security- products/analyzers/
fuzzers/pythonfuzz.
Python-afl. https://github.com/jwilk/python-afl.
A. Eashaan Rao and Sridhar Chimalakonda. An exploratory study
towards understanding lambda expressions in Python. In EASE ’20:
Evaluation and Assessment in Software Engineering, Trondheim, Nor-
way, April 15-17, 2020, pages 318-323. ACM, 2020.
Carl Chapman and Kathryn T. Stolee. Exploring regular expression
usage and context in Python. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, Saarbriicken,
Germany, July 18-20, 2016, pages 282-293. ACM, 2016.
Zitao Chen, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. TensorFI: A flexible fault

injection framework for TensorFlow applications. In 31st IEEE Inter-
national Symposium on Software Reliability Engineering, ISSRE 2020,
Coimbra, Portugal, October 12-15, 2020, pages 426-435. IEEE, 2020.

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.

