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Abstract—As bugs of Python built-in types can cause code 
crashes, detecting them is critical to the robustness of the 
software. Researchers have concluded plenty of patterns for the 
bug causes and applied these patterns in detection tools. But 
these tools are only evaluated on handcrafted bugs or bugs 
obtained from QA pages. Because such bugs cannot reflect the 
complex code structures and various bug types encountered in 
real-world projects, the evaluation result is untrustworthy when 
applied to these projects. As a result, a collection of real-world 
reproducible bugs is essential for tool evaluation and future bug- 
related research. 

In this paper, we propose EXCEPY, a benchmark for providing 
bugs of Python built-in types. We collect 180 bugs from the evolu- 
tion of 15 real-world open-source Python projects on GitHub and 
then manually build test scripts for bug reproduction. Meanwhile, 
to improve tool evaluation efficiency, we present a code pruning 
strategy that can minimize buggy code size while retaining bug 
reproducibility and apply it to EXCEPy to provide simplified 
buggy code. To demonstrate the benefits of EXCEPY, we use 
three static analyzers and two fuzzers to detect bugs collected in 
EXcCEPY. We found that simplified code can significantly reduce 
running time and avoid many tool crashes, and bugs supplied 
by EXCEPY can reveal limitations of existing tools in reporting 
real-world bugs. 

Index Terms—Benchmark for bugs, built-in bug types of 
Python, static analyzers, the evolution of Python projects. 

I. INTRODUCTION 

The need for bug detection tools is growing in tandem with 

the adoption of the Python programming language [1]. The 

built-in type bugs are the most common vulnerabilities in 

Python, and they can cause code to crash. Many researchers 

have proposed patterns for root causes and implemented these 

patterns in various detection methods, e.g., static analyzers or 

fuzzers [2]-[6]. 

Researchers have claimed that their tools identify particular 

bug types better than other tools. But they only tested the tools 

on handcrafted bugs or non-reproducible bugs derived from 

bug reports, and there is no prior work that accesses them on 

real-world bugs. Because of the differences in code structures 

and bug types between handmade and real-world defects, their 

evaluation results are untrustworthy when applied to modern 

Python projects. Thus, it is critical to understand how effective 

these tools are in detecting crash bugs in practice. 

t+ Corresponding authors 

The number of bugs they can report on a collection of 

reproducible bugs from real-world projects is a frequently used 

metric for evaluating the performance in discovering defects. 

Some mature benchmarks are widely adopted in practice, such 

as Defects4J [7] and QuixBugs [8] for Java and BugsJS [9] 

for JavaScript. These benchmarks gathered reproducible crash 

bugs from real-world open-source projects. Meanwhile, they 

give root causes and repair information for the bugs. 

Two benchmarks produced many Python defects [10], [11]. 

But when compared to other mature works, they fall short in 

tool evaluation. On the one hand, they only provide functional 

defects that do not cause a crash. Existing testing techniques, 

which identify flaws by monitoring crashes and exceptions 

during runtime, cannot detect these bugs without prior infor- 

mation. On the other hand, they use the entire project code 

as buggy code for each defect. Numerous lines of code in the 

project code do not affect bug triggering (We call them bug- 

irrelevant code). Because benchmarks do not filter the bug- 

irrelevant code, tools have no oracle when throwing warnings 

on them and may crash due to unsupported syntax. 

We aim to fill this gap by providing a Python benchmark 

with real-world reproducible bugs. There are two challenges 

in constructing such a benchmark. 

e Bug reproduction. Because variable types and values must 

be considered, reproducing a defect in Python is more com- 

plex than in other statically typed programming languages. 

Python has several language features that make it easier 

to use, such as dynamic type and dynamic attribute. With 

these features, users can change the type and attributes 

of an object during execution. Thus, choosing types and 

values to produce input data to trigger a Python bug can be 

challenging, especially in real-world projects with numerous 

self-defined types, leading to an enormously broad range of 

candidate types. 

¢ Bug-irrelevant code pruning. Complete buggy code may 

contain numerous lines of Python code, the vast majority of 

which may be bug-irrelevant. Plenty of bug-irrelevant codes 

will reduce analyzer efficiency and make manual reduction 

time-consuming. Besides, validating the authenticity of bug 

reproduction on trimmed code is difficult with an automated 

pruning technique. 
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To address the first challenge, we choose to get input 

data from open-source projects. First, we eliminate bugs that 

require a specific environment to reproduce, such as systems 

or the Internet. Second, we extract code snippets from commit 

discussions and use the input data in these code snippets to 

generate test code. Third, we look at the newly added test 

cases to see whether developers provide new input data. 

To deal with the second challenge, we except to automati- 

cally delete classes and modules that test code does not import 

during execution. To do this, we develop a tracer to follow test 

code execution and record a list of executed files, from which 

we can delete the unexecuted files. We re-run the test code 

after each deletion and compare the results to the original 

traceback. If the traceback changes after deleting a file, this 

file must be re-added. 

We collect commits from the evolution of 300 Python 

projects on GitHub, and after manually reviewing 2966 com- 

mits, we obtain 180 reproducible crash bugs from 15 projects, 

covering 15 built-in bug types. To show all the data and make 

it easily accessible, we summarize the bugs, buggy code, and 
test scripts in a benchmark called EXCEPY. 

To demonstrate the advantages of EXCEPY, we assess 

the benchmark in two ways: the efficacy of code pruning 

and the usefulness of the gathered bugs for tool evaluation. 

We employ five commonly used Python tools on EXCEPy, 

including three static analyzers and two fuzzers, and evaluate 

their performance on both the complete buggy code and the 

simplified code. According to the results, the simplified buggy 

code reduces execution time and eliminates the majority of 

timeouts and crashes. Besides, the gathered bugs can reveal the 

advantages and disadvantages of existing tools for detecting 

crash bugs in practice. 

To summarize, we make the following contributions. 

e We provide a Python benchmark EXCEPY, including 180 

reproducible crash bugs spread over 15 Python built-in 
types. These bugs were gathered from well-known Python 

projects on GitHub and are illustrative of vulnerabilities 

encountered in daily use. 

e We propose an automatic code pruning approach to elimi- 

nate bug-irrelevant code without affecting bug reproduction. 

We apply the method for pruning codes in EXCEPY to 

produce the simplified bug-relevant code. The experimental 

results show that reduced code can significantly reduce run- 

ning time. Besides, by avoiding crashes without output, the 

reduced code is more effective at identifying the weaknesses 

of the tools. 

e We conclude 26 root causes and fix patterns for 15 Python 

built-in bug types, which can facilitate bug detection and 

debugging studies of Python programs. 

II. BACKGROUND 

In this section, we will briefly introduce the Python built-in 

bug types, the common components in mature benchmarks, 

and the platform we use for bug collecting. 

A. Python Built-in Bug Types 

Python offers 64 bug types to deal with bugs that 

can result in crashes [12], which are all derived from 

BaseException, and divided into 16 categories based on 

their error conditions. Among various bug types, several bug 
types, such as TypeError (Typ) [2], [3], [13], [14], 

AttributeError (Att) [2], [13], [14], ValueError 

(Val) [15], and ZeroDivisionError (Zer) [2], are fre- 

quently studied in the literature. 

Bugs of built-in types use traceback to indicate the causes, 

including the method calls along the execution path. Every 

two lines in a traceback indicate a method call, with the first 

marking the file location and line number and the second 

containing the source code corresponding to the line number. 

As stated in Section I, creating input data to trigger bugs 

necessitates the use of the proper types and values. In Figure 1, 

we present a code snippet with two bugs to demonstrate the 

relevance of types in triggering bugs, one of which is of type 

Typ and the other of type Att. Both the two bugs happen 

in method test at line 7 when this method extracts two 

attributes from the input data and performs operation add. 

To trigger the bug of type Typ, the input data must have 

two attributes whose types are not supported by the add 

operation, and a frequent situation is between the types str 

and int. We give an example input data from line 11 to 13 for 

triggering a Typ bug, where we change the type of attribute 
attri_2 from str to int, and provide the object ob j_a to 

the method. The add operation between an int variable and 

a str variable will cause a bug of Typ because the interpreter 

does not know whether to convert int 1 to str '1’ and 

concatenate two strings, or convert str '2’ to int 2 and 

conduct addition. 

The bug of type Att can only be triggered if one of the 

attributes does not exist. We provide an example input data 

that can trigger this bug from lines 15 to 17 in Figure 1. 

Supported by the language feature dynamic attribute, 

we can delete the attribute att ri_2 from the object obj_a. 

When we call method test at line 17, the interpreter cannot 

find attribute att ri_2 in object input_data at line 7, and 

reports a bug of type Att. 

B. Bug Collection Source: GitHub Platform 

GitHub is an open-source community with over 65 million 

developers [16], where developers can freely update and 

release their code. GitHub adopts the term project to refer to a 

deployed project and applies the term pull request to refer to 

code changes submitted by a developer to the origin project. A 

pull request contains multiple commits, each of which stores 

the code changes, the message describing the changes, and a 

particular timestamp. 

GitHub provides two mechanisms for users to report bugs: 

issues and pull requests. The primary distinction between the 

two is that issues do not require users to fork the project and 

make code changes. Users can utilize the two techniques to 

report defects and attach their test code, traceback, and fix 
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recommendations to the original projects, as well as discuss 

with other users. 

C. Common Components in Existing Benchmarks 

There are three major components in existing benchmarks 

to provide bug data and make bug reproduction easier [7]-[9], 

[11], [17], which are bug information, buggy code, and test 

scripts. 

e Bug information. It offers users the bug type, reports, 

and fix patches. This part is critical for determining the 

correctness of reproduction and analyzing the root causes 

of the bugs. 
e Buggy code. Buggy code describes a piece of code that 

includes bugs. 

e Test scripts. The goal of test scripts is to make the 

process of reproducing bugs simpler. A test script includes 

instructions for switching to the buggy version of the code, 

installing the buggy code, and running the Python test code. 

Users can reproduce the bug by directly executing the script. 

III. THE PROPOSED BENCHMARK: EXCEPY 

The architecture of EXCEPY is depicted in Figure 2, where, 

e The dataset stores the data we gather for EXCEPY, includ- 

ing the test scripts, buggy code, and git information about 

the projects. 

e The execution framework takes over the process of repro- 

ducing bugs, as well as providing unified APIs. 
e Application allows users to load their tools on EXCEPY. 

EXCEPY now is publicly available’. EXCEPY is constructed 

with two phases. The first phase involves gathering bugs from 

real-world projects, while the second is responsible for pruning 

bug-irrelevant code. 

A. Bug Collection 

Our goal is to collect reproducible built-in type bugs from 

real-world projects. The bugs must fulfill the following char- 

acteristics to achieve the purpose. 

  
class A: 

def __init__(self): 

self.attri_l = '1’ 

self.attri_2 = '2' 

def test (input_data): 

input_data.attri_l + input_data.attri_2 

if _name_ == ’__main__’: 

obj_a = A() 

obj_a.attri_2 = 2 

# Trigger a bug of type TypeError 

test (obj_a) 

del obj_a.attri_2 

# Trigger a bug of type AttributeError 

test (obj_a) 
  

Fig. 1: An example of two bugs that rely on specific input 

data to trigger. 

'https://github.com/Stardust1225/ExcePy_Present 

e Reproducible. We only collect reproducible bugs and ex- 

clude those that rely on specific hardware or network to 

trigger. 
e Python-Only. We exclusively gather Python source code- 

related bugs. We exclude the bug caused by the interaction 

of several programming languages, such as those found in 

Python native libraries. 

Isolated. We require that bugs be repaired by modifying 

just one Python source file, and we exclude bugs that are 

fixed by surrounding a try-catch block or by simply 

removing the buggy code. 

Figure 3 depicts the phases of the collection workflow with 

four steps. First, we collect the most popular Python projects 

on GitHub. Second, we collect commits that may attempt 

to fix bugs from the evolution of the projects and choose 

those projects with sufficient bug-fixing commits. Third, we 

manually verify the changes and attempt to reproduce the bugs 

recorded in the commits. At last, we utilize the reproducible 

bugs to create the dataset of EXCEPY. 
1) Python Project Selection: As indicated in Section II-B, 

GitHub is a popular platform for sharing open-source projects. 

Thus we choose to gather bugs from projects hosted on 

GitHub. We rank Python projects by star rating and select 

the top 300 as bug collection sources to catch more generic 

bugs. These projects can represent the concerns of most Python 

users. 
2) Candidate Commit Collection: The 300 projects have 

numerous commits, and manually going through them is 

laborious. We must automatically filter out valuable commits 

to lessen the load of human inspections in the following 

phases. We utilize a popular filtering technique that matches 

keywords in commit message parts, and the keywords we use 

in this process are the names of built-in bug types. 
The keywords matching approach has limits when filtering 

out some commits that do not meet our requirements. One 

limitation is that some commits try to fix the bugs in obsolete 

test cases by simply removing the test cases. Another is that 

developers frequently include bug types in the commit only 

when improving warning outputs. Even if these commits do 

not fulfill our requirements, the keywords matching technique 

cannot filter them out. 
With the limitations mentioned above, we enhance the 

automatic filtering approach. To address the first limitation, 

we analyze the changed files in commits and limit all changes 

from) OO .. 
Execution Framework 

           
  

  

             
Version Switch) { Data Release Installation Execution 

Git clean -xdf 
Git reset commit ID 

      
       

     
Execute test code 

Compare with traceback| 
Release test code, 

buggy code, traceback, 
pattern, label, scripts 

Install dependencies 
Compile C/C++ files 
Build from source 

  

    

  
  

4 Dataset \ 
¢ 
1 

| Test Scripts Buggy Code Git Repository 
| Complete project code Project A 
| Simplified bugey code Project B 

Bug, Test code, Commit ID 

Fig. 2: Architecture of EXCEPY. 
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to Python files. Besides, because all files whose filenames 

begin with test_ are test files according to Python coding 

standards, we require at least one changed file with a filename 

that does not begin with test_. We noticed that commits 

aiming at upgrading warning outputs typically contain both 

the original and changed types. Thus to overcome the second 

limitation, we add the keywords fix and repair to the matching 

strategy and filter out commits containing multiple bug type 

names in the message part. 

For the selected commits (called candidate commits) after 

the automatic filtering process, we discover 42 types in the 

commits of the 300 projects, indicating that bugs of these 

types are common in Python projects. Figure 4 depicts the 

distributions of candidate commits in the 42 bug types, where 

we rank the types according to the number of related candidate 

commits and show the names of the top 15 types. The 

remaining categories are categorized as other. Four of the 

42 types have a high frequency in the message parts and are 

involved in 1548 commits. Types Typ, Val, Att, and Key 

are the most common. Furthermore, there are four kinds with 

just one associated commit: Ari, Flo, Con, Int. To some extent, 

these bug types are less likely to be encountered in daily use 
or rely on specific platforms to trigger. 

We have 5150 candidate commits from the 300 projects. 

After grading the projects based on the number of candidate 

commits and deleting those with fewer than 20 commits or 

aiming at education, we select 2966 candidate commits from 

the top 40 projects for the following phases. Each of the 40 

projects has more than 30 candidate commits. 

3) Bug Reproduction: A successful reproduction depends 

on two factors: (1) appropriate input data for triggering and 

(2) a traceback to identify the correctness of reproduction. We 

collect reported traceback from commits and pull requests that 

reference them. Besides, we look for code snippets and fill 

them with extra code for importing libraries and initializing 

300 projects . 
pe Comunits 

Q) GitHub @ Project Selection Collection 

30 projects 

2966 candidate commits 

B Candidate commits 

Bu 
0 Patch Validation © Repro duction 

Dataset of 15 projects 17 projects 
ExcePy 180 bugs 183 bugs 

Fig. 3: The workflow of bug collection. 

fan = Typ = Val Att = Key 

: = Imp =Nam #Run = Not 

5 ) = OSE = Ind = Unb = Zer 

*SS — = Ove = Mem Rec = Other 

OReproduced successfully Failure to reproduce 

Fig. 4: Distribution of bug types in the candidate commits. 

objects to build test code. 

After collecting the reported traceback and constructing a 

test script, we must run the test code on the buggy code to 

check that the test code can produce the same traceback as the 

reported one. First, we swap the project code to the required 

version, and then we install the project in development mode. 

We search the development documentation for additional steps 

because most projects need specific dependencies throughout 

the installation process. After executing the test code, we 

compare the output traceback to the previously recorded 

traceback. If we can produce the identical traceback, we save 

the test script for the next phase. 

One challenge in bug reproduction is that developers only 

report a traceback without source code. The other is that the 

bug requires some external files to be triggered, such as a 

specific picture file or a markdown file. To address these 

challenges, we endeavor to extract the code snippets from the 

pull request conversation and search for code snippets from 

test cases in a later version of the source code. We can then 

add code for importing modules and generating objects based 

on the code snippets to generate an executable test code. 

We can reproduce 15 of the 42 bug types we have collected. 

We cannot reproduce bugs in the collected commits because 

of the three factors stated below. 

e A candidate commit simply modifies the bug types or 

changes the output message. 

e Changes in a commit are just to catch a bug or to throw a 

new bug. 
e A commit solves a bug in the test cases after some APIs 

are changed. 

In this part, we have manually inspected 2966 commits in 

17 projects and successfully reproduced 183 bugs with 15 bug 

types. The proportion of candidate commits corresponding to 

the 15 types in the inner black circle is depicted in Figure 4. 

4) Fix Patches Validation: A bug resolved with a 

try-catch block does not fulfill our requirements. As a 

result, we must double-check the fix patches to ensure that 

they meet our requirements. We inspect the patches to exclude 

the cases that the bugs are fixed with a try—catch structure. 

We eliminate three bugs from the 183 bugs in 17 projects and 

include 180 bugs from 15 projects in our dataset. 

B. Code Reduction 

As indicated in Section I, in addition to the complete project 

code, we provide simplified buggy code to help evaluate the 

tools. Because Python does not fully compile before execution, 

for a piece of test code, we can delete files that have not been 

executed and ensure that the test code will not crash when 

executed again. Thus, the fundamental idea behind developing 

simplified flawed code is to reduce unexecuted files while 

guaranteeing the accuracy of bug reproduction. 

Figure 5 depicts the workflow of the method for pruning 

bug-irrelevant code. The method takes a piece of test code 

and its related complete buggy code as input and returns the 

simplified buggy code. Tracing the executed files and trimming 
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Complete buggy code 

A test code     Path Tracer Executed files 

Code Pruner I 

Delete Re-run the Compare 

unexecuted files test code tracebacks 

  
gt 

Simplified buggy code 

Fig. 5: Workflow of code pruning. 

bug-irrelevant code are two main phases in code pruning. We 

run the test code and record the executed Python files in the 

first phase. The second phase aims at eliminating as many 

unexecuted files as possible while ensuring bug reproduction. 

1) Executed Files Tracing: We build a tracer and register 

it in the test code using API sys.settrace() to store the 

files necessary for test code execution. The Python Interpreter 

will invoke the tracer and provide execution information such 

as file locations and line numbers when executing the test 

code. After running, we can collect the executed files from 

the tracer. 

2) Bug-irrelevant Files Pruning: One Python file can in- 

clude one or more class definitions, and these classes may 

depend on the other. Because no mature tool is capable of 

creating a complete call graph [18], pruning code within a 

Python file can be adventurous if the dependencies between 

the methods and classes are not thoroughly understood. As a 

result, we choose to prune code at the file level. 

The algorithm of pruning code is presented in Algorithm.1, 

where we use c_code to represent the complete buggy code, 

s_code to refer to the simplified code, exec_files to 

represent the executed files recorded by the tracer. From line 

1 to line 5, we extract the unmarked files from the whole 

  

Algorithm 1: Pruning bug-unrelated code 

code and store them in del_list, which we use to prune 

the code. From lines 6 to 11, we remove the unexecuted files 

while ensuring the correctness of reproduction via comparing 

the traceback with the reported one. 

C. Unified APIs Development 

To provide users with consistent APIs, we build the exe- 

cution framework in four parts: version switch, data release, 

installation, and execution. The version switch component han- 

dles the mapping from bug ID to commit ID. The data release 

section supplies users with the necessary test scripts. The 

installation section is in charge of installing dependencies and 

building projects from the source code. Finally, the execution 

section executes the test code and compares the results to the 

recorded traceback. 

Test code in EXCEPY can be run directly with a python3 

command or imported by third-party testing frameworks such 

as pytest [19] and unittest [20]. It is simple to track test 

code execution and collect executed statements for calculating 

coverage. Users can also set up personal tracer to help with 

analysis and testing. 

IV. ANALYSIS OF THE BUGS AND BUGGY CODE 

In this part, we will discuss the data in EXCEPY from 

two perspectives: projects and test scripts. Then, based on the 

debates in the commits and other similar studies [10], [13], we 

provide some root causes and fix patterns that we manually 

conclude for the 15 built-in bug types. 

A. The Distributions of the Python Projects and Bugs 

Table I displays basic information about the 15 Python 

projects in EXCEPY, including their number of stars and com- 

mits, as well as the fields to which they belong. As indicated 

in the table, the gathered projects cover several popular areas, 

such as machine learning and scientific computing, attract 

numerous third-party developers, and are well maintained. 

TABLE I: Basic information about the collected projects in 

EXcEPY. 
  

Input: trace, exec_files, c_code, test_code 

Output: s_code 

1 del_list = [] 

2 for one_file in path do 

3 if one_file not in exec_files then 

4 if one_file not in trace then 

5 [ del_list.add(one_file) 

6 s_code = c_code 

7 for one_file in del_list do 

8 s_code.del(one_file) 

9 traceback = run_test_code(s_code, test_code) 

10 if traceback != trace then 

11 L s_code.join(one_file) 

12 return s_code 
  

  ID Project #Star = #Commit Field(s) 

Pl CPython 40.4K 111K Compiler & Testing 

P2 IPython 15K 25K Compiler & Testing 

P3 Jedi 10.1K 1K Program Analysis 

P4 Matplotlib 14.3K 40K Image Processing 

P5S NumPy 18.3K 27K Scientific computing 

P6 Pandas 31.2K 27K Machine learning 

P7 Pelican 10.6K 3K Compiler & Testing 

P8 Pillow 9K 12K Image Processing 

P9 Pytest 78K 13K Compiler & Testing 

P10 requests 25.3K 2K Network 

Pil SciPy 8.6K 26K Scientific computing 

P12 = Scikit-image 4.5K 12K Image Processing 

P13 ~—s Scikit-learn = 47.4K 27K Machine learning 

P14 SymPy 8.5K 48K Scientific computing 

P15 Tensorflow 159K 118K Machine learning 
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TABLE II: Bugs in EXCEPY (with the number of bugs of each 

type and each project). 
  

ID + wr
 10 11 

  

  

Bug Type 123 9 sum 

Tl Attribute 41223 --21- 1 - 1 5 10} 32 

T2 Import - ee ee ee ee ee ee hd 

T3 Index 12123 -1--- 3 1 - 7 2| 23 

T4 Key 1----2-1-- - - 13 2] 10 

T5 Memory - L- - - -- - - - - - - - -J] 1 

T6 Name - oe eee ee ew ee 2 - - 3-1 5 

T7 Nothnplement}- - - - - -- - - - - - - 2 -| 2 

T8 os ---- 1----- - - - 1 -| 2 

T9 Overflow moe eee ee ee ee ee 2 LD 

T10 ~=Recursion moe eee ee ee ee ee 2 LD 

Tl1 Runtime - ee ee ee De eee ee el 

T12 Type 3 -- 5 21-813 3 - 3 21 12} 62 

T13 UnboundLocal| 1 - - - - -- 1-- 1 - - -| 3 

T14 Value - 1-222-1-- - - 2 9 6{| 25 

T15 ZeroDivision|1 -- - - -- 3 -- 1 - - 4 1/10 

sum 1153111151172 3 11 1 7 59 33) 180     
  

In Table II, we show the total number of bugs for 

each project, where we use the ID in Table I to repre- 

sent the projects. Since all bug type names end with an 

error, we omit the error in the bug type in Table I. As 

it shows, most of the bugs concentrate on a few types, 

e.g., type TypeError, AttributeError, ValueError 

and IndexError, which suggests that developers are more 

likely to make the four types of errors. Some bug types 

only exist in one project, such as types MemoryError and 
RuntimeError. These types are hard to trigger as they rely 

on the exceptions in some system calls. 

B. Statistics of the Test Scripts in EXCEPY 

  

1 # Commit version: 
e4b9f£6c9868c3211¢c1da716d76248115cllfeec 

# Dependencies scripts 

python3 -m pip install Cython==0.22 

# Installation scripts 

pip3 install -e . 

C
o
d
 
A
W
A
 

w
D
 

# Test code 
from pickle import loads 

from pickle import dumps 

from nose.tools import assert_equal 

from sklearn.datasets.base import Bunch 

bunch Bunch (x="x") 

bunch_from_pkl loads (dumps (bunch) ) 

10 

1 

12 

13 

14 

15 

16 

7 

18 

19 

20 

# Traceback 
File "test5.py", line 8, in <module> 

bunch_from_pkl loads (dumps (bunch) ) 

File "./scikit-learn/sklearn/datasets/base.py 
", line 53, in __getattr__ 

return self[key] 

KeyError: ‘'__setstate__’ 

21 

22 
  

Fig. 6: A script for triggering a bug of type Key in project 

scikit-learn. 
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Fig. 7: Distributions of the number of lines in test code and 

traceback. 

Figure 6 shows a test script we created for a defect in 

the project scikit-learn, including instructions, test code, and 

a traceback for the fault. Lines 3-7 provide instructions for 

installing dependencies and compiling the project from source 

code. Lines 9 through 15 include the test code. To make the 

test code executable, we excise lines 14 and 15 from the bug 

report and insert lines 9 to 13. From line 17 through line 22, 

we capture the reported traceback. 

Figure 7 depicts the distributions of the number of lines of 

test code and traceback in test scripts, where the vertical axis 

represents the number of test scripts. As can be seen, most of 

the test codes and tracebacks are within 64 lines except for five 

test codes and one traceback. We manually check the five test 

codes and find that they are from project TensorFlow, which 

requires lots of code to define the variables and structures of 

the model. 

C. Root causes and Fix Patterns 

By manually examining bugs, execution paths, tracebacks, 

and repair patches, we summarize several root causes and fix 

patterns for each bug type and present the four common types 

in Table III. We provide a detailed report for the 15 bug types 

on our website 2. 
There are three parts for each bug type. The Root causes 

column offers a brief explanation of the root cause, the Exam- 

ple buggy code column displays some pseudo-code samples or 

descriptions that will cause the problem, and the Fix patterns 

column shows the most popular fix patches. One bug type may 

have many root causes in this table. 

In the investigation, we further extract three highly frequent 

root causes and fix patterns among these types. 

e Cause 1: Receiving an unexpected type of returned vari- 

able. The type of the returned variable is not definite since 

Python is a dynamic typing language. Directly processing 

the returned value without further judgment when executing 

a method can easily result in a crash, especially if developers 

regularly set the default type of returned values for specific 

methods. In EXCEPY, bugs related to unexpected returned 

type can be of bug types Att, Typ, Val, and Zer. 

Fix 1: Adding type judgment. Including code that validates 

the type of returned values, or limiting the input data to 

certain types, can help developers prevent these bugs. 

2https://github.com/Stardust1225/ExcePy_Present/blob/main/causes.pdf
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TABLE III: The root causes, examples buggy code, and fix patterns for three most frequent bug types. 
  

  

  

  

  

Type ID Root causes Example buggy code Fix patterns 

Att T1-1 Get unexpected type of return vari- real_frames. ‘Add an examination to the type. 
able. shape[-1].value 

T1-2 Get value from an unexisting class No initialization of class members in Add an examination to the class member. 
member. the init function. 

Typ T12-1 Concatenate strings and numbers a="hello"; b=1; a+b Choose to change one type to the same as 
with a plus. another. 

Call an operation on an object that =, 
T12-2 does not implement it. Add code to support the types. 

T12-3 Operate with an unexpected type. £1//£2 and f1/f2. Add a check for the type of return value before 
referencing it. 

The targeted type does not consider the | Change the targeted type or implement conver- 
T12-4 Converse type. input type. sion code for the uncovered type. 

Operate on a variable with an un- Operate on the variable and find the Pass type information to the operation to help 
Val T14-1 supported type inappropriate value the operation make a judgment, or use type 

PP type. Ppropr ° conversion on the arguments. 

: keras changes its implementation and Add a judgment at the reading process to ensure 
Key 1 API misuses. tensorflow has not adapted to it. that the layer of the model is correct. 

Empty parts would appear after the first 
T4-2 Spilt a string on an empty string. splitting, and the second splitting on an Add length check for each part. 

empty part would lead to it. 
  

e Cause 2: Unexpected input data. Some input data might 

lead to an endless loop or infinite recursion if developers 

fail to control particular boundary values or set wrong 

conditions in the code. An example of this root cause is 

a bug in the random module of project CPython >, where 

it raises a bug of type Zer when taking a specific int 

value as input. 

Fix 2: Adding code to exclude illegal input data. De- 

velopers can include code at the beginning of the method 

to filter certain input data, or they may include checking 

code to avoid any illegal inputs. In the benchmark, bugs of 

types Zer, Mem, Rec, and Not are often triggered by some 

unexpected input data. 

e Cause 3: Ignoring API changes. When developers neglect 

changes in particular APIs, it might result in bugs in the 

caller. Modifying the type range of the returned value, 

adding extra restrictions to the input data, or even altering 

the function name are all possible code modifications. This 

root cause can lead to bugs of types Not and Key. 

Fix 3: Adjusting code to the new APIs. Developers keep 

up with changes in the new code and modify their imported 

code, or they restrict the version of particular packages in 

the configuration files. 

V. EVALUATION OF EXCEPY 

In this section, we demonstrate the effectiveness of EXCEPY 

via answering the following three research questions. 

e RQI1: Is the code pruning method effective in reducing 

buggy code size? 

e RQ2: Is the benchmark effective in evaluating Python static 

analyzers? 

e RQ3: Is the benchmark effective in evaluating Python 

fuzzers? 

3https://ougs.python.org/issue41421 

We evaluate the performance of static analyzers on both 

the complete buggy code and the simplified code, including 

execution time and outputs, to assess the efficacy of code 
pruning in answering RQ1. 

We use state-of-the-art static analysis and fuzzers to answer 

RQ2 and RQ3 and evaluate their capacity to discover bugs 

gathered in EXCEPy. To check if the analyzers can correctly 

report the bugs, we compare the warning positions to the 

collected bugs in RQ2. Because all of the bugs in EXCEPY 

can cause crashes, we compare the tracebacks from fuzzers to 

the recorded tracebacks in EXCEPY in RQ3 to determine if 

the fuzzers can find the bugs. 

A. Setup 

All experiments are carried out on a PC with an Intel Core 

i7 3.60GHz CPU and 16 GByte RAM. The collected projects 

from GitHub are built on Ubuntu 18 with Python 3.7. 

We adopt five state-of-the-art tools for the experiments, 

including three static analyzers and two fuzzers. We list the 

details of the five tools below. 

e Pytype [21]. It is a Google-maintained static analyzer. It 

can infer variable types, find bugs in Python bytecode via 

inter-procedural analysis. 

e Pylint [22]. This tool is also a static analyzer, released by 

Python Code Quality Authority (PyCQA). It can check for 

defects with variable types, suggest restructuring blocks, and 

offer information about the length of each line of code. 

e Pyflakes [23]. Pyflakes is another tool produced by PyCQA. 

This tool parses the source file and examines the constructed 

syntax tree to detect errors. 

e pythonfuzz [24]. It is a coverage-guided fuzzing tool main- 

tained by Google, which detects unhandled exceptions and 

memory limitations in Python libraries. 
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e python-afl [25]. This tool applies American Fuzzy Lop 

(AFL) for pure Python code. Currently, it is an experimental 

module. 

We set a time restriction of 60 minutes for three static ana- 

lyzers and 12 hours for fuzzers for each bug. The comparison 

experiments in their original papers or supporting materials 

are referred to determine this setting. 

B. RQI: Evaluation of Code Pruning 

To see how much code our approach can prune, we count 

the lines in the complete buggy code and compare them 

to the number in the simplified code. Figure 8 illustrates a 

comparison of the number of lines of code for 180 bugs, where 

we order the complete codes by the number of lines. Notice 

that while some bugs are from the same project, they are from 

different versions, which means they have varying quantities 

of lines of code. We use the terms complete and simplified to 

refer to complete and simplified code, respectively, and a red 

line to denote the half-size of the complete code. As seen in 

the diagram, our approach may remove over half of the project 

code. 

We examine the situations where our approach can only 

prune less than 10% of the complete code, and we find 

code features that prevent the approach from removing more 

files. First, some Python files import a lot of modules and 

classes, but not all of them are used in the called classes 

or methods during test code execution. However, the Python 

Interpreter must go through all of the imported modules and 

classes during execution. Second, when importing a module, 

all Python files for initialization (file ___init__.py) in the 

sub-modules are also executed. Though some sub-modules 

may not be used for triggering the bugs, we cannot delete 

them automatically. Third, many class definitions may exist in 

the same Python file. Though the test code only uses one or a 

few classes in this file, all the code in this file is regarded as 

being executed. Because we only prune code at the file level, 

these unexecuted lines within Python files can influence the 

number of pruned lines. 

To show the benefits of code pruning for evaluating the 

tools, for each bug, we run three static analysis tools on both 

the complete buggy code and simplified code, and record the 

execution time using Linux command time. We classify the 

execution results in three categories: Finish within 60 minutes, 
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Fig. 9: Performance of three static analyzers on the complete 

code and simplified code. 

Timeout, and Crash in 60 minutes, where Timeout refers to 

the situations that the tools do not stop within 60 minutes, 

and Crash in 60 minutes refer to the tools throw exceptions 

or stop due to errors. For every tool, we count the number of 

bugs belonging to these three categories, respectively. 

Figure 9 shows the numbers of bugs for the three categories 

in each tool, under two versions of code. As it shows, tools 

using simplified code can not only avoid many failures but also 

considerably reduce running time. We conclude two causes for 

the crashes on the complete buggy code: (1) a tool may not 

be capable of handling some unsupported encoding formats 

or some Python syntax; (2) when a tool attempts to cover all 

execution paths, it crashes for the exponential number of paths 

in the unexecuted code. 

However, for tool Pytype, the results in category Timeout 

increase rapidly with the simplified code. We manually check 

the logs generated during the execution and discover that (1) 

many bugs can be analyzed with the simplified code, instead 

of code crash; (2) the tool traverses lots of modules when 

inferring the types of some variables; and (3) the tool needs 

to deal with too many variables and does not complete the 

type inferring phase within 60 minutes. 

Conclusion. According to the results of the experiments, 

the code pruning method can reduce the size of project code 

by half while not affecting bug reproduction. This approach 

can help to evaluate tools on large-scale projects. 

C. RQ2: Evaluation with Three Static Analyzers 

We employ three dimensions for further comparison of the 

analyzers in addition to reporting bugs. 

e File level. This level shows that a tool can locate the file 

containing the bug. 
e Method level. This level indicates that a tool is capable of 

locating the method that contains the bug. 
e Line level. This level demonstrates that a tool can cover the 

lines where the bug arises. 

e Bug level. This level means that the tool can report bugs 

correctly. 

We use the simplified code to run the three tools and count 

the results on these four dimensions. We evaluate the outcomes 

within 60 minutes for this evaluation since tools may crash due 

to defective code. 
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TABLE IV: Distributions of the reports from three static 

analyzers. 
  

  Dimision Pytype Pylint Pyflakes 

File Level 46 138 57 

Method Level 18 96 7 

Line Level 12 43 7 

Bug Level 8 10 4 
  

The number of detected bugs for each dimension is pre- 

sented in Table IV. As the results indicate, Pylint can report 

warnings within the same files and same lines. Although the 

three tools can throw warnings in the same method and even 

on the same line as the bugs in EXCEPY, they can only report 

ten of 180 bugs collectively. All of the tools can detect these 

ten bugs in 3 minutes on code s_ code. But some reports from 

tools Pylint and Pyflakes are not accurate enough. 

To understand the capabilities and limits of these tools, we 

check the successfully reported bugs in detail. For the ten bugs, 

we list the related project, the type of the bug, and the detection 
result of three tools in the first five columns in Table V. In 

the last two columns in this table, we present the number of 

lines of code in the complete buggy code and the simplified 

code. 

As demonstrated in the table, the three static analysis tools 

can detect correctly three bugs of type Nam. The first two tools 

can detect four bugs of type Att. When investigating bugs 

of type Att, we find that the three tools scan only the class 

definition code, without considering language feature dynamic 

attribute. For the bugs of type Nam, the tools check whether 

a variable has been claimed previously in the current scope. 

Furthermore, the ten bugs are triggered in a single Python file. 

However, most of the bugs in EXCEPY are caused by boundary 

input data or irregular execution paths, where the three tools 

cannot obtain enough information to infer the variable type 

and inspect. Therefore, the three tools may be good at locating 
bugs within a single Python file. 

Conclusion. The three static analysis tools can still discover 

10 out of 180 bugs based on the simplified code, even if the 

projects in EXCEPy are large-scale. They are, however, less 

efficient at identifying cross-file bugs or bugs linked to third- 

party packages. 

TABLE V: Information of the bugs that are successfully 

reported by three static analysis tools. 
  

  Project Bug Type Pytype Pyline Pyflakes #C_code #S_code 

Pl Att v v - 273K 3K 

Pl Unb v v v 291K 62 

Pl Att v v - 274K 3K 

P3 Att v v - 97K 9K 

P9 Att - v - 47K 2K 

P14 Typ v v - 359K 202K 

P14 Imp - v - 455K 250K 

P14 Nam v v v 287K 181K 

P14 Nam v v v 408K 212K 

P14 Nam v v v 287K 181K 
  

D. RQ3: Evaluation with Two Fuzzers 

The two tools adopt code coverage to guide the generation 

of input data. To compute the coverage, they build their tracers 

to record the execution paths. Consequently, we cannot know 

if the input data generated by the tools can cover the buggy 

file or buggy function. Our solution is to compare whether the 

tracebacks generated by the tools match the tracebacks stored 

in EXCEPY. Because the two fuzzers need users to specify 

the entry point, the execution paths on both simplified and 

complete codes are the same. Hence, we do not compare the 

performance of the tools on the two kinds of code. 

We limit the running time to 12 hours. The two fuzzers fail 

to trigger the bugs correctly, even though they can achieve 

more than 95% of the statement coverage on the buggy code. 

We execute the test code and analyze each execution path 

to see how much code needs to execute before the bug is 

triggered to figure out why the fuzzers failed. We count the 

number of lines and calls along the execution path. Among 

the 15 projects, project [Python replaces our tracer with its 

own, as the project needs to use the tracer for debugging. 

Therefore, we cannot receive data on this project from our 

tracer. For other projects, because we can track the execution 

of each statement and expression, we count each loop based 

on the times of execution and count all init methods that 

are invoked while importing packages and initializing objects. 

The number of lines and method calls is presented in two 

aspects: distributions on each bug type and each project. 

Table VI provides the average number of calls and lines for 

each project, whereas the data for each bug type is shown in 

Table VII. In the two tables, the average number of method 

calls is shown in the second column, and the average number 

of lines for code being executed is shown in the third column. 

The project name and the type name are the same as in Table I 

and Table II. 

We infer that there are two causes for their inability to 

discover bugs in EXCEPy. The bugs rely on certain types 

and values of input data. The two fuzzers are unable to 

generate the needed types since they only include default 

types. Second, because the fuzzers are coverage-driven in input 

data generation, the adopted techniques for triggering the bugs 

may prefer short paths over long. 

Conclusion. In this evaluation, we found that a single 

criterion is insufficient to guide the generation of input data. 

TABLE VI: Average number of function calls and lines of 

code required to trigger a bug in each project. 
  

  Project #Calls LoC Project #Calls LoC 

Pl 404 2734 P2 NA NA 

P3 403 2532 P4 48K 243K 

P5 1572 11K P6 5066 28K 

P7 123 916 P8 545 2915 

P9 663 58K P10 164 1757 

Pll 1738 87K P12 246 5153 

P13 441 3083 P14 736K 3147K 

P15 101K 556K 
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TABLE VII: Average number of function calls and lines of 

code required to trigger a bug of each bug type. 
  

  Bug Type Calls LoC Bug Type #Calls LoC 

Att 68K 301K Imp 455K 2180K 

Ind 86K 343K Key 74K 370K 

Mem NA NA Nam 45K 194K 

Not 460K 1805K OSE 47K 194K 

Ove 61K 310K Rec 13875K 55245K 

Run 321 1630 Typ 195K 827K 

Unb 39 518 Val 174K 714K 

Zer 16K 113K 
  

Meanwhile, Python language features are not taken into ac- 

count in these fuzzers. We propose that different types and 

strategies for input data generation can be manipulated in the 

fuzzers. 

VI. RELATED WORK 

Benchmarks for bug collection. For Python, there are 

a few benchmarks for bugs. The closest similar work is 

BugsInPy [10], which collected 493 bugs from 17 real- 

world Python projects by running newly added test cases on 

the previous version. Another Python benchmark is Many- 

Types4Py [11]. Its purpose is to assess the performance of 

type inference. QuixBugs [8] collects Java and Python defects 

from small programs, as well as patches that change only one 

line of code. Projects gathered in QuixBugs are quite small, 

with 17 to 48 lines of code, and the bugs are manually entered, 

as opposed to BugsInPy and EXCEPY. 

Studies on bugs in Python. Many works concentrate on 

detecting bugs caused by using Python language features. For 

example, Rao and Chimalakonda [26] consider the potential 

problems caused by adopting Lambda expressions in Python 

applications, as well as some typical pitfalls. Hu and Zhang [3] 

investigate issues that occur when Python programmers use C- 

language APIs and provide some bug patterns when Python 

interacts with the C language. Chapman and Stolee [27] focus 

on the problems when using regular expressions in Python 

projects. The bug types in these researchers have been covered 

in EXCEPY. 

Analysis techniques towards Python type system. There 

are also several studies focusing on static analysis of the types 

in Python. Chen et al. [28] investigate the use of dynamic 

typing in nine real-world Python systems. Xu et al. [14] 

employ dynamic symbolic execution to infer type information 

and produce variable type ranges. Monat et al. [2] propose 

a method for applying abstract interpretation in Python code, 

which might assist in the analysis of type information. As 

many bugs collected in EXCEPY are type-related, these re- 

searchers can apply EXCEPY to evaluate the performance of 
their techniques in inferring types and finding conflicts in 

operations between various types. 

VII. THREATS TO VALIDITY 

Some threats may influence the validity of EXCEPy, and 

we discuss these threats in this section. 

The main threat to internal validity is insufficient selection 

and filtering of bugs throughout the development process. 

We utilize keywords to match the message part and collect 

candidate commits. We may miss some commits that attempt 

to fix bugs without providing any information in the message 

part. We also examine the merged pull requests to lessen the 

effect. If a pull request is for reporting bugs, we treat the 

related commits as candidates. Another aspect that may result 
in incompleteness is the limit on committed modification, 

restricting the change of each candidate commit to being one 

Python file. When several files are modified, it is difficult to 

differentiate between bug fixes and feature addition. Therefore, 

we limit the changes in the collection process to one Python 

file. 

Another threat to internal validity is in the process of re- 

producing bugs. There are some bugs that we cannot reproduce 

correctly. The reasons are multiple, e.g., the absence of some 
external input files, or the missing configurations. To deal with 

such situations, the construction of test code also considers the 

input data and context in other test cases. 

For the external validity, one major threat comes from 

the scale of EXCEPy. Because EXCEPY only contains 15 

Python projects, the conclusions may not apply to the bugs in 

other projects. Besides, out of 64 Python built-in types and 42 

reported, EXCEPY only has 15 bug types. Nonetheless, these 

projects are picked among 300 Python projects on GitHub with 
the most stars. Bug types gathered in the EXCEPY are com- 

monly found in programming, according to this perspective. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a Python benchmark named 

EXcEPY, which includes 180 bugs of Python built-in types 

from 15 real-world open-source Python projects. Moreover, 

we have also provided a buggy code reduction method for 

code simplification. EXCEPY provides both test scripts and 

buggy code (both the original and the simplified) for bug 

reproduction. Meanwhile, it also provides unified APIs and 

applications to facilitate the evaluation of various tools. Apart 

from the benchmark, we have extracted 26 novel patterns for 

root causes and fix patterns of the collection types of bugs. 

To demonstrate the effectiveness of EXCEPY, we have also 

evaluated three static analyzers and two fuzzy testing tools on 

the ability of bug detection. Based on the evaluation results, 

we have provided some suggestions for improving the five 

state-of-the-art Python tools. In the future, we plan to enrich 

the database with more bugs and new built-in bug types. 
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