
Are the Scala Checks Effective?
Evaluating Checks with Real-world Projects

Xin Zhang1,3, Jiwei Yan2,3,†, Baoquan Cui1,3, Jun Yan1,2,3, Jian Zhang1,3

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2 Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3 University of Chinese Academy of Sciences

Email: {zhangxin19, yanjw, cuibq, yanjun, zj}@ios.ac.cn

Abstract—Static analyzers can assist developers in detecting
flaws and improving software quality. An analyzer often has nu-
merous checkers, each of which implements a different checking
rule. These checks can create a lot of warnings in real-world
projects, putting a lot of pressure on programmers to examine
them. Thus, it is critical to assess the effectiveness of these
checkers before putting them to use. Typically, time-consuming
questionnaires or human assessments of the warnings are em-
ployed to evaluate the checkers, which results in inefficiency when
applied to real-world work.

The significance and accuracy of checkers are the topics of
this research, with the first reflecting the developers’ attention
to the checkers and the second reflecting the false-positive rate.
We focus on Scala checkers in particular because, despite the
popularity of the Scala programming language, there has been
little study on them. We propose a method for tracking warnings
in real-world projects and assessing the two features for each
checker. We use 115 checks and six well-known Scala apps to
demonstrate our approach. Based on the 191k warnings delivered
by these checkers, the approach can identify 154k false positives,
and it finds that only around 1/5 of the checks can benefit
developers.

Index Terms—static analysis tools evaluation, Scala compiler
plugin, automated evaluation, project evolution.

I. INTRODUCTION

Scala is widely used in development because it can run

directly on the Java virtual machine (JVM) and combines

some language features such as object-oriented and functional

programming [1]. Scala code’s increased size necessitates the

use of coding style checkers. [2], [3].

Scala developers have two options for implementing check-

ers: (1) they can implement their tools as compiler plugins

and perform inspections on abstract syntax trees (ASTs).

Alternatively, (2) they can use frameworks such as SOOT [4]

to inspect JVM bytecodes after compilation. Mainstream Scala

checkers choose the first option because they can detect bugs

related to Scala language features [5], [6].

In most cases, developers may add many checkers to a

tool, each of which inspects for one particular coding rule.

When applying their tools to real-world projects, numerous

warnings and high false-positive rates cause problems for both

users and developers. It takes time for checker users to go

through all of the warnings. Besides, there are substantial gaps

†Corresponding author

in code structures between developers’ benchmarks and real-

world projects, and complete testing for each checker would

take longer than checker development. Thus, both checker

users and developers demand an efficient checker evaluation

approach.

In particular, the significance and accuracy of a checker are

the most concerned by both users and developers, while the

first measures the user preference for the checker, and the

second reflects the false-positive rate. Some methodologies

opt to interview users for evaluating the first aspect [7]–

[9]. And for the second aspect, researchers can physically

inspect warnings to assess the readability and repairability, or

they compute false-positive rates by traversing warnings and

making judgments based on personal experience [10]–[12].

Additionally, some researchers use bug injection to study the

rate of false-positive and false-negative [13].

These methods are primarily reliant on human experience

or specific standards, and they may become unreliable if the

developers or interviewees change. Besides, bug injection can-

not accurately represent real-world bugs, making it difficult to

assess the checkers’ accuracy. If there is no effective approach,

users may spend a large amount of time analyzing and select-

ing cost-effective checkers [14]. Although user feedbacks may

help developers improve their checkers, obtaining feedbacks

through questionnaires or interviews is time-consuming.

Besides, developing an automated method for assessing

checkers on real-world projects is difficult. The number of

fixed warnings and the time for repairing in the project

evolution typically indicate the significance of a checker. But

there are two difficulties in tracking the same warnings and

identifying the fix.

• Warnings are jumbled together in the compiler’s output

with no standard structure, which makes it hard to filter

out the targeted warnings automatically.

• Code migration is common in development, resulting in

changes in the information of the same warning. If there

is a code movement between two versions, the warning

message will change, making exact string matching fails.

Thus, the warning would be wrongly classified as fixed in

the succeeding version, resulting in a bias in calculating

the significance of the checker.

Calculating the false-positive rate is a commonly used

978

2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS)

2693-9177/21/$31.00 ©2021 IEEE
DOI 10.1109/QRS54544.2021.00107

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Q
ua

lit
y,

 R
el

ia
bi

lit
y

an
d

Se
cu

rit
y

(Q
RS

) |
 9

78
-1

-6
65

4-
58

13
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

Q
RS

54
54

4.
20

21
.0

01
07

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

method of assessing accuracy. But two qualities constitute

barriers for estimating it in real-world projects.

• A warning’s output is plain text, making it impossible to

categorize it only based on its message, especially when

warning code spans many lines and contains complicated

code structures.

• It is challenging to bring various developers’ viewpoints

together and offer persuasive and efficient reasons for

flagging false positives.

In this paper, we propose an automated approach for

evaluating Scala checkers. Our approach may be used by

checker users to identify acceptable checkers or to assess more

checkers on their projects with minimal human intervention.

Furthermore, checker developers may enhance the checkers by

including trends or modifying their rules to report more useful

warnings.

We extract regular expressions from checker implementa-

tions and utilize regular expressions to automatically gather

warnings from compiler outputs to handle the first barrier in

judging the relevance. If a warning lasts just a few revisions,

it reflects developers prefer to fix it, and its significance in

this project is rising. Thus, we can estimate the significance

of a checker by calculating the average number of lasting

versions of the warnings. We utilize a two-step matching

strategy to locate the same warnings across projects and limit

the impact of code movement in the second challenge. We

present patterns for each checker and automatically build

repair patches based on these patterns to address challenges

in assessing the accuracy. By checking if a patch passes

compilation and then computing the false-positive rate of the

relevant checker, we can identify whether a warning is a false

alarm.

To show the benefits of our approach, we apply it against

115 Scala checkers on six Scala open-source projects from

GitHub. These checkers are from two state-of-art Scala static

analyzers. We assess the significance and accuracy of the

checkers based on the warnings they throw.

We can include from the experiment results that: (1)

Checker false-positive rates are high in real-world projects,

as we can discover 154k false alarms out of a total of

191k alerts. And (2) there is minimal correlation between a

checker’s importance and accuracy, implying that users would

not pay more attention to checkers that report more warnings.

Furthermore, (3) in the six projects with high relevance and

low false-positive rates, just 1/5 of the checkers are present.

In conclusion, the following contributions are made in this

paper:

• We proposed an automated method for assessing checkers

in open-source projects from two commonly concerning

aspects: significance and accuracy.

• We propose patterns for automatically generating repair

patches. These patterns can help developers improve their

checkers and help users filter warnings before doing a

human inspection.

• We conduct an empirical study on 115 Scala checkers

in collaboration with six open-source projects. And the

findings on 191k warnings can benefit both users and

developers.

II. BACKGROUND AND MOTIVATION

This section explains how checkers interact with the Scala

compiler before showing an example of compiler output,

which includes four warnings and three different output for-

mats. Then we will give a motivating example to explain the

necessitate of using an automated evaluation approach.

A. Framwork of Scala Compiler Plugins

Mainstream Scala checkers act as compiler plugins to adapt

to language features. Unlike frameworks that rely on bytecodes

for analysis, these checkers make static analysis using the

Scala compiler. In this part, we will briefly introduce how

these checkers interact with the Scala compiler.

Figure 1 depicts the workflow between the Scala compiler

and checkers. The Scala compiler takes source code and

converts it to JVM bytecode. The compiler turns source code

to ASTs in the parser phase, and type inference information

is added in the refchecker phase. Checkers can retrieve ASTs

following any phase and report warnings. Thus, warnings from

checkers are mixed in with the compiler output.

Source
code

Parse
phase

Refcheck
phase

JVM
bytecodes

logs
Checks Checks

The Scala Compiler Compiler Outputs

Fig. 1. The basic framework for Scala compiler plugins.

B. Form of Warnings

A warning contains two parts, where the Scala compiler

provides the position part, and checkers define the messsage
part. The file location of the warning, the line number of the

warning code, and the associated source code are contained

in the position part, whereas the message part comprises

messages from checkers, i.e. a description for this warning

or repair advice. As an example, we offer a piece of compiler

output from project Scala [15] that has three sorts of warnings

to demonstrate complicated warning forms.

Figure 2 includes four warnings in three different forms.

The file path and line number appear first, followed by the

message and warning code, and finally, a pointer pointing to

the warning place. The first warning is from line 234 to line

236 and comprises a brief message in line 234, followed by

warning codes in line 235. This notice warns users that erasing

the abstract type will delete it.

The second warning are from line 279 to line 281, with the

message part beginning on line 279 and containing the name

of the related checker YodaConditions as well as a brief

979

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

1: [info] scala-scala-53edc29\project
...
234: [warn] src\library\scala\collection\convert\

WrapAsScala.scala:173: abstract type A in type pattern
scala.collection.convert.Wrappers.

ConcurrentMapWrapper[A,B] is unchecked since it is
eliminated by erasure

235: [warn] case cmw: ConcurrentMapWrapper[A, B] => cmw.
underlying

236: [warn] ˆ
...
279: [warn] src\library\scala\collection\immuTable\Vector.

scala:108: [YodaConditions] Yoda conditions using you
are.

280: [warn] if (0 < i) {
281: [warn] ˆ
...
841: [warn] src\library\scala\Array.scala:193: [scapegoat]

Variable shadowing
842: [warn] Variable shadowing is very useful, but can

easily lead to nasty bugs in your code. Shadowed
variables can be potentially confusing to other
maintainers when the same name is adopted to have a
new meaning in a nested scope.

843: [warn] val x: Float = _
844: [warn] for (x <- xs.iterator) { array(i) = x; i += 1

}
845: ˆ
...
5662: [warn] src\library\scala\collection\immuTable\

RedBlackTree.scala:339: [scapegoat] Variable shadowing
5663: [warn] ...
5664: [warn] val left: scala.collection.immuTable.

RedBlackTree.Tree[A,B] = _
5665: [warn] def unzipBoth(left: Tree[A, B],
5666: [warn] ˆ
...

Fig. 2. Logs from project scala.

explanation. This warning indicates that the variable should

be placed on the left side of the operator.

The third warning, which are from line 841 to line 845,

cautions users that two variables have the same scope and

name, which might lead to variable misuse. Line 842 includes

the message part, which contains the tool name scapegoat
and the checker name Variable shadowing. The warning

code runs from line 843 to line 845, and it comprises two

discontinuous codes from the source file. The fourth warning,

which runs from line 5662 to line 5666, warns of the same

problem as the third. The position part and the warning code

are the only differences between the two warnings.

C. Motivating Examples

We will utilize two warnings in Figure 2 to demonstrate

the limitations of state-of-art assessment methodologies when

applied to real-world projects. The vast quantity of warnings,

the difficulty in recognizing false positives, and the inability

to identify whether a warning has been fixed are the three key

constraints.

Existing methods rely heavily on manual inspection and

hence cannot handle a high number of warnings. In our

dataset, 115 checkers in project elastic4s [16] create over 126K

warnings. The warning codes are extracted from roughly 21K

Scala source code files, and the warning message is 462 Kloc

in size, which is more than the project’s size. It takes time

for consumers to go through all of the warnings and assessing

warnings at random would yield erroneous findings.

Recall the fourth warning in Figure 2, which informs users

that the two variables in function unzipBoth have the same

name and overlapping scope. The two warning variables are

left at line 5665 and line 5664, with the first declared as a

class member and the second specified as a function parameter

in the source code. This warning alerts that variable shadowing

is taking place, which might lead to variable misuse in the

function.

To identify whether this warning is false-positive, the users

must find the two cautionary variables in the source code. The

first variable appears on line 435 of the source code, whereas

the second appears on line 339. Next, the user must find all

instances of the variable left in the function textttunzipBoth

and determine if variable shadowing would result in misuse

in this function.

If code movement happens in the new version, knowing

whether this warning is fixed is difficult because the warning’s

output has changed. In the previous version, the two warning

variables appeared on lines 339 and 435 of the source file,

but due to code migration, they now show on lines 325 and

379 in the current version. Besides, in the next version, the

same checker reports a new warning and alerts two variables

at lines 339 and 435. String matches will either not find the

same warning in the next version, or treat the newly reported

warning as the same unfixed warning. Because of the code

relocation, simple string matching cannot establish whether

the warning has been handled or is still present in the current

version.

The limitations with present evaluating procedures in real-

world software development encourage us to perform an

empirical study of assessing checkers on real-world projects

with less human labor and deliver useful conclusions for both

users and developers.

III. APPROACH OF OUR STUDY

In this section, we present the details of the approach.

Figure 3 depicts the structure, which consists of four modules.

Regular expressions are required to extract warnings from

Warning Formats
Extraction Warning Collection

Accuracy
Evaluation

Significance Evaluation

 Evaluation
reports for

checks

Regular
expressions

 Structure warnings

Source code
of checks

Source code
of projects

FP warnings

Structure warnings

Fig. 3. Framework of the approach.

980

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

compiler output. So, in the Warning Formats Extraction mod-

ule, we get regular expressions and pass them on to the next

modules. We can partition one warning into the position and

message parts after extracting warnings from compiler output

in the textitWarning Collection module. A structural warning

is a two-component warning that is sent to the following

evaluation modules. In the following, we’ll go through the

specifics of each module.

A. Warning Formats Extraction

In this module, we extract regular expressions from the

checkers’ implementation to aid the future modules in evalu-

ating these warnings.

As mentioned in Section II-B, a warning consists of two

parts: the position and the message parts. We start by extract-

ing regular expressions for both parts, then combining them to

generate warning regular expressions. Because the Scala com-

piler defines the position component, the regular expression

for this part is definite, which is .*.scala:[0-9]*:,. So

all we have to do now is extract regular expressions for the

message part from the checkers’ implementation.

Figure 4 presents method warn in tool Scapegoat [17]

which is used to format message part of a warning. In line 65,

variable report contains the warning’s message and it uses

one of Scala language features, String Interpolation,

in which $text, $explanation and $snippetTest are

placeholders and will be replaced with their corresponding

values during execution. We can conclude a regular expression

from this interpolation string via replacing the placehold-

ers with .*. After combined with regular expression from

the position part, this module produces a regular expression

.*.scala:[0-9]*:[(a-zA-Z)*].*ˆ for checkers in this tool and

passes it to the following modules.

30: def warn()
...
63: if(shouldPrint(warning)){
...
65: val report = s"""|[scapegoat] $text |

$explanation$snippetText""".stripMargin
...

Fig. 4. Source code from output module of a tool

B. Warning Collection

In the mainstream, Scala checkers are compiler extensions

that can only provide warnings during compilation. We must

first add these checkers into projects before compiling them

to assess them. Because the Scala compiler can only load

checkers from the same version, we must first set the checker’s

version to the same as the project’s before loading it during

compilation.

To automate this process and provide warnings, in this

module, we first scan the project’s configuration files for

obtaining the Scala version and then add the corresponding

checkers using the ScalaOptions command.

Figure 5 is part of a setting file build.sbt in project

Scala [15]. We scan this setting file and get the Scala version it

53: val bootstrapScalaVersion = "2.11.5"
...
71: scalaVersion := bootstrapScalaVersion, // specify the

Scala version
...
147: scalacOptions += "-Xplugin:scapegoat_2.11.jar", //

inserted by the module
148: scalacOptions in Compile ++=

Fig. 5. A setting file in project scala

uses in line 53 and line 71, which is Scala 2.11. Then we

find the use of command ScalacOptions in setting files,

which is in line 148, and insert a checker in line 147.

After compiling the whole project, we use regular expres-

sions to filter warnings from the compiler output. Regular

expressions are also used to extract information from warnings

and separate portions. A warning can be described by a 5-

tuple: [file path, line number, name of the check, description,
warning code].

C. Accuracy Evaluation

Existing evaluation ways to categorize false-positive warn-

ings involve manual inspection; however, because it is time-

consuming and hard to harmonize the opinions of multiple

participants, it is difficult to apply to a significant number of

warnings. We manually propose patterns for each checker, and

then we can automatically generate fixing patches based on

the patterns for each warning. We can identify false positives

with minimum human effort among numerous warnings by

applying patches to the ASTs and compiling the updated

ASTs.

We produce AST-based patches for each warning that in-

cludes a repair recommendation, as specified in the message

part, and then apply the changes to ASTs during compilation.

If the new ASTs compile successfully, we checker the output

to see if the warning has vanished. If a warning fails to satisfy

this test, it is considered a false-positive instance.

Figure 6 shows a warning with repair recommendation,

which suggests replacing Map.get.getOrElse
with Map.getOrElse in line 3. In Scala, API

Map.getOrElse(key, value) would firstly examine

whether the map object contains the key, and then returns

the value in the map if it contains, or returns value if it

does not contain.

1: [filepath]: ActorRefProvider.scala
2: [line number]: 620
3: [check’s name]: Use of Map.get.getOrElse instead of Map.

getOrElse
4: [description]: Map.get(key).getOrElse(value) can be

replaced with Map.getOrElse(key, value), which is more
concise.

5: [warning code]: ...

Fig. 6. One warning with repair recommendation.

Figure 7 shows a patch that we generate for this warning,

in which the first line of each node is the node type and

the second line is the corresponding source code. We first

locate the node of get(key).getOrElse(value) on

ASTs, which is the root node in the left ASTs in Figure 7,

981

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

Select Node
Map.get

Literal Node
key1

Apply Node
Map.get(key1) Name Node

getOrElse

Select Node
Map.get(key1).getOrElse

Apply Node
Map.get(key1).getOrElse(value1)

Literal Node
value1

Select Node
Map.getOrElse

Move to

Change to

Literal Node
key1

Delete

Fig. 7. Example for generating an AST-based patch.

and then store the two nodes of key and value from

two Literal nodes. We then create a new Apply node
corresponding to Map.getOrElse(key1, value1), and

fill two parameters with the two nodes stored previously, which

is the right AST in Figure 7. We return the new ASTs to

the Scala compiler after replacing the left ASTs with the

right ASTs. We categorize this warning as false-positive if

the modified ASTs could not pass compilation.

Patches are hard to be produced for certain checkers since

there are no recommendations in the warnings. As a result,

we choose to offer certain code context that the checkers must

avoid to detect false positives. There is a standard code context

for Variable Shadowing that will not be misused. The scopes

of two variables do not overlap in Scala when a class member

and a function argument have the same name. As a result,

we may propose a code context for this check’s warnings: if

the two warned variables are a class member and a function

argument, the warning is false-positive.

The third and fourth warnings in Figure 2 are from this

check. For the third warning, we firstly separate the two

warned variable x from line 843 and 844, and then locate

x in line 843 under a ClassDef Node, and locate x in

line 844 under a LabelDef Node. We do not consider this

warning to be false-positive because the two nodes cannot fit

the proposed context. For the fourth warning, we locate left
in line 5664 under a ClassDef Node, and locate left
in line 5665 under a DefDef Node. Because the proposed

context can be found in both nodes, we consider this alert as

false-positive.

D. Significance Evaluation

To get lasting versions for a warning, users must manually

track warning changes in existing assessment methodologies,

this becomes more time-intensive when the warning message

is changed due to code migration.

In this section, we use a two-step matching strategy to

automatically track warning changes and reduce the effect of

the code migration. As shown in Section III-B, we can use a 5-

tuple to describe a single warning. We match 5-tuples from two

versions exactly in the first phase and consider the matched 5-

tuples as if they are a single warning from both versions. For

the remaining mismatched 5-tuples from the first step, which

may entail code movement inside files, we ignore the line

number in the 5-tuple for matching in the second step. After

finding the same warnings in different versions, we can count

Fig. 8. Example for evaluating significance of checkers.

the number of lasting versions and use the average number to

determine the significance of checkers. We don’t know if the

warnings that are still there in the most recent versions of our

dataset have been fixed, so we leave them out.

Figure 8 shows two checkers with 5 warnings. In checker
1, warning A exists in version 1 and version 2, and is fixed

in version 3, while warning B exists in all three versions. We

can evaluate the significance of checker 1 with the average

number of lasting versions of 1.5, and checker 2 with 2. The

results mean that warnings from checker 1 are more likely to

be focused by users than from checker 2.

We can alter cross-file code movement or code update by

matching other sections of the 5-tuple, but we don’t know if

this modification is for warning correction or something else.

As a result, we will not include these changes in this module.

IV. STUDY SETUP

We present basic information about the checkers and

projects in our dataset in this part, followed by the warning

statistics. The data and findings in this paper are open to the

public [18].

We select 115 checkers that can throw at least one warning

on these projects from two widely-used Scala static analysis

tools: linter [19] and Scapegoat, in which 51 checkers come

from Scapegoat and 64 checkers come from linter. These

checkers look for abuse of Scala APIs or duplicate code and

they work with code written in Scala 2.10 to Scala 2.12.

To assess these checkers on real-world projects, we collect

the top 50 Scala projects with the most stars on GitHub and

then choose six projects that have released over 50 versions

TABLE I
BASIC INFORMATION OF PROJECTS AND WARNINGS.

Projects Warnings
Name LoC pv.1 Stars Ver.2 N.W.10K.3 N.W.V4

scala 12950 435K 51 2237 3
akka 11147 24K 139 3335 38

gitbucket 8171 15K 213 331 25
scalaz 4392 58K 10 55 67
slick 2396 32K 113 368 20

elastic4s 1516 25K 103 259 150

1 number of Scala source code per version.
2 number of versions that we can successfully compile.
3 number of warnings per 10 kLoC.
4 number of warnings per version.

982

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

elastic4s average

akka average

slick average

scalaz averagegitbucket average

scala average

10

10

10

10

10

10

10

10

10

10

10

10

N
um

be
r o

f w
ar

ni
ng

s p
er

 1
00

K
LO

C
in

 lo
g

sc
al

e

Fig. 9. Distribution of warnings for each project.

and are managed by sbt [20]. The basic information about the

six projects is presented in Table I. The first column contains

the project’s name. The second column lists the number of

lines of code for each release version, while the third column

lists the project’s stars. The projects in our dataset have

above 50 release versions, as previously indicated. We cannot

construct versions as some old dependencies are unavailable,

and we only looked at versions that supported Scala 2.10 to

Scala 2.12. We list the number of versions we can successfully

create and gather warnings in the fourth column.

The 115 checkers are embedded in the six projects, and the

compiler output yields almost 191K warnings. In Table I, the

fifth and sixth columns show the number of warnings per 10

Kloc and version.

In Figure 9, we present the number of warnings thrown

by each checker, with the checkers arranged by the number

of warnings thrown per 100 kLoC. As can be observed,

the number of warnings sent for each checker varies greatly

between projects.

To study the universality of checkers, we compute how

many projects a checker can spot warnings in and display

the results in Table II. The first line of the table lists the

number of projects on which a checker can issue warnings,

and the second line lists the number of checkers that can

report warnings in the same number of projects. As the

data show, checkers perform differently in various initiatives.

Most warning-generating checkers investigate using universal

principles, whereas checkers that can only issue warnings on

a few projects scrutinize using language features.

According to the statistical findings, the dataset utilized in

our empirical study comprises projects with a variety of coding

styles and checkers for both general and particular checking

criteria.

TABLE II
NUMBER OF PROJECTS THAT A CHECK CAN THROW WARNINGS IN.

Number of projects 6 5 4 3 2 1
Number of checks 4 13 16 22 22 38

V. STUDY RESULTS

We propose three research questions in this section, which

are

• RQ1. What is the accuracy of checkers? We will present

the false-positive rates of checkers, and discuss the causes

of the high false-positive rates of some checkers in RQ1.

• RQ2. What is the significance of checkers? In RQ2, we

explore the significant distributions of checkers over all the

warnings and see how false positives affect significance.

• RQ3. What is the performance of our evaluation mod-
ules? We will first discuss the efficiency of the warning

tracking strategy, and then present the running time of the

accuracy evaluation module in RQ3.

and by answering these questions we present the results of the

empirical study.

A. RQ1. What is the Accuracy of Checkers?

The accuracy evaluation module’s goal is to identify false-

positive warnings. As described in Section III-C, we uti-

lize two techniques to filter warnings that could not pass

compilation or match patterns. We evaluate the accuracy

of 53 checkers, using AST-based patches for 24 checkers

and proposing patterns for 29 checkers, although our dataset

contains 115 checkers. Some checkers do not provide repair

recommendations, and the checking rules do not have special

cases, so we evaluate the accuracy of 53 checkers.

To analyze the accuracy of the 53 checkers, and explore if

one checker has similar accuracy across all projects, we first

present the checkers’ overall false-positive rates, followed by

rates for each project separately.

In Figure 10, where the checkers are sorted according to

false-positive rates, we compare the checkers’ false-positive

rates with the number of warnings they generate. The number

of warnings is not related to the false positive rate, as shown,

and half of the checkers have a false-positive rate of more than

40%.

For each check, we compare the rate on the six projects

with the rate on one project, and the results are shown in

Figure 11, where the checkers are similarly sorted based on the

false-positive rate on the six projects. The data show that the

false-positive rates of checkers vary greatly between projects,

with particular checkers having high rates on more than half

of them.

To analyze the cause of false positives, we supply one

checker with the highest false-positive rate and another with

1

10

100

1000

10000

100000

0

0.2

0.4

0.6

0.8

1

N
um

be
r o

f w
ar

ni
ng

s i
n

lo
g

sc
al

e

Fa
lse

-p
os

iti
ve

 ra
te

warnings average FP rate

105

104

103

102

101

100

Fig. 10. False-positive rates and the number of warnings.

983

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

average scala

average elastic4s

average akka

average slick

average scalazaverage gitbucket

1.0

0.75

0.50

0.25

0

1.0

0.75

0.50

0.25

0

1.0

0.75

0.50

0.25

0

Pe
rc

en
ta

ge
 o

f f
al

se
-p

os
iti

ve
 w

ar
ni

ng
s

Fig. 11. False-positive rates in each project.

the highest number of warnings for each method, with the

two checkers indicating the efficacy of the strategy in some

way. Checker While true loop has the greatest false-positive

rate, and checker Variable shadowing gives the most warnings

(37715), with 97 percent being false positives. Checker Lonely
sealed trait has the greatest false positive rate (86%) among

the 24 checkers used to build AST-based fixes, while checker

UnusedParameter gives the most warnings.

When the loop condition of a while loop is always true,

checker While true loop issues a warning and indicates that

an always true condition may lead to a dead loop. However,

in some cases, a loop with a true loop condition will act as

a polling function and will not collapse into a dead loop if it

contains a break or return statement. So we check to see

if the warning loop includes a break or return statement.

checker Variable shadowing inspects two variables that

have the same name and nested scopes. As mentioned in

Section III-C, we examine whether the two warned variables

are a class member and function parameter.

If a class contains the modifier sealed, it cannot have

any new subclasses unless the subclass is in the same file,

according to the Scala grammars. Checker Lonely sealed trait
examines if a sealed trait is inherited in the same file and warns

about traits that are not. To do this check, we first identify the

cautioned trait on the AST node, and then rename the trait by

attaching the trait’s hash value to the trait name; if this trait

is used in the file, the compiler will raise errors if the trait

name is altered. The characteristic is used in pattern matches

in the same file, which leads to the majority of false-positive

warnings in this checker.

The checker UnusedParameter looks for function param-

eters that aren’t used in the function body. We identify the

warned parameter on the AST node and then delete the

node from the AST for the warnings in this check, since

if this parameter is not utilized, it may be deleted with no

influence on the compilation. We discover that 47 percent of

warnings are false-positive, with the unused argument acting as

a selector in overloaded routines. If the unnecessary argument

is deleted, the compiler will generate an error indicating that

the function has already been declared.

Based on the data, we can conclude that some fundamental

code architectures may result in a large number of false pos-

itives from these checks, three of which check for duplicated

code. By including code context in the inspection, developers

may reduce false-positive alerts.

Conclusion. Based on the data, we can conclude that

checkers have a considerable false-positive rate, particularly

those with a high number of warnings. Furthermore, the false-

positive rates of a single checker may vary greatly between

projects. If the code structures from patterns and patches are

often used in their projects, users can disable different check-

ers depending on the results without running the checkers.

They can also deactivate various checkers on most projects

with a high false-positive rate, as well as certain checkers

with a 100% false-positive rate. Developers can utilize the

patterns and patches to enhance checkers and include certain

code structures. Developers may also improve their testing by

including code structures into their benchmarks.

B. RQ2. What is the Significance of Checkers

The significance module makes an estimate based on the

checkers’ average lasting versions to determine their signif-

icance. If a checker has fewer versions with warnings, the

module assigns it a higher priority in this project.

To see if the average number is appropriate for evaluating

the significance and to estimate the impact of extreme numbers

on the average value, we calculate the standard deviation,

average, and the median number of warnings’ lasting versions

for each check, then display the three numbers in Figure 12,

where we rank the checkers according to the ave.

As it shows, as the average value climbs, the median value

fluctuates dramatically. Because the number of lasting versions

varies greatly amongst checkers, as seen by the standard

deviation, the median would be wrong when the number of

warnings is less than 5 and the number of lasting versions

varies greatly. When we examine checkers with a high standard

deviation, this is a common occurrence in our dataset. The

median and average values for checkers who have received

many warnings are comparable. As a consequence, we base

our estimation on the average number of long-lasting versions.

We provide the lasting versions in each project and compare

them to the checkers’ average lasting versions throughout the

six projects to examine if a checker’s significance is equivalent

across all of them. The project name line and the median

line in Figure 13 demonstrate the relationship between the

checkers’ average and the median number of lasting versions

0

5

10

15

20

25

30

35

0

10

20

30

40

50

60

70

80

N
um

be
r o

f l
as

tin
g

ve
rs

io
ns

 fo
r

sta
nd

ar
d

de
vi

at
io

n

N
um

be
r o

f l
as

tin
g

ve
rs

io
ns

standrad deviation average midian

Fig. 12. The average, standard, and median number.

984

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

akka average midianscala average midian

gitbucket average midian scalaz average midian

slick average midian elastic4s average midian

60

40

20

0

60

40

20

0

60

40

20

0

N
um

be
r o

f l
as

tin
g

ve
rs

io
ns

Fig. 13. Number of lasting versions in each project.

TABLE III
REDUCED NUMBER OF LASTING VERSIONS FOR EACH PROJECT.

Project scala akka gitbucket scalaz slick elastic4s
Average 0.39 7.00 7.09 6.81 6.09 5.73

Max 3 36 36 36 33 33
Median 0 5 4 4 3 3

in each project. The average line depicts the average number

of the six projects. As can be observed, the long-term versions

of checkers vary greatly amongst projects and have little

relationship with the average value.

Besides, we compare the average lasting versions of check-

ers on all warnings and warnings without false-positive cases

to explore the significance of checkers and estimate the

influence of false positives. We illustrate the distributions of

the reduced number of lasting versions in Figure 14. As can be

observed, the number of lasting versions for most checks falls

after filtering false-positive warnings. However, the number of

false-positive warnings increases for 15 checkers after filtering,

showing that these checkers have fewer false-positive warnings

than others.

Fig. 14. Reduced number of lasting versions.

We explore the effect of false positives on checkers’ lasting

versions. After removing false positives from checkers, we

compute the reduced number of lasting versions for each

project and offer the average, maximum, and median figures

in Table III. As indicated in the table, the false-positive alerts

have a comparable effect on the significance.

Following the removal of false-positive warnings, we inves-

tigate the source of the increase in the number. We will use the

checker InefficientUseOfListSize as an example because it has

the highest number of lasting versions. This checker searches

for the condition code that fetches the size of a list and then

compares the number to other values, and it recommends

instead using the API isEmpty. In some cases, the length

of a list cannot be modified until it is compared to a value of

0 or 1, in which case we extract a pattern and provide it to

the module. Once false-positive warnings are eliminated, the

average number of enduring versions increases. We believe

that project developers prefer to compare the length of a list

to 0 or 1, rather than using isEmpty or other special values

that would make the code difficult to understand, and that as

a result, they are more likely to delete warning code that our

method classifies as false positives.
We investigate the link between the accuracy and signifi-

cance of one checker to see if a high false-positive rate leads to

low significance. We sort the checkers twice for each project,

once for accuracy and once for importance, with the accuracy

ranking going from low false-positive rates to high rates and

the significance ranking going from fewer enduring versions

to more lasting versions. The rankings are open to the public

on our website.
We compute the difference between the two ranks for each

check. If the difference for one checker is closer to 0, it

implies that high accuracy corresponds with high importance

for that check. The distributions of difference for each project

are shown in Figure 15. We can see that there is a weak

relationship between accuracy and significance and that a high

false-positive rate does not imply a poor significance.

scala akka gitbucket scalaz slick elastic4s

Fig. 15. Distributions of ranking difference

However, we can still find 1/5 of checkers with high

accuracy and significance on the six projects, signaling that

they can deliver more important warnings. These checkers are

included in Table IV, which have a false-positive rate of less

than 0.4 and a lifetime of fewer than 25 versions. We can see

that just a few of these checkers seek API replacement, but the

vast majority look for duplicate coding or irrational judgment.

Conclusion. The results show that the importance of inspec-

tions varies between projects and has a poor relationship with

the number of warnings. Also, we can see that if a checker

has low importance in one project, it is more likely to have

low significance in other projects for more than half of the

985

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
CHECKS WITH HIGH ACCURACY AND SIGNIFICANCE.

Check acc1 sig2 Check acc1 sig2

Avoid Traversable.size == 0 0 5 Avoid Traversable.size != 0 0 10

UseLastNotReverseHead 0 12 Use of Map.get().getOrElse 0 19

Broken odd check 0 20 Constant if expression 0 24

Use of Try.get 0.0007 17 Use of Option.get 0.002 14

Empty catch block 0.007 19 Unnecessary conversion 0.016 9

Incorrectly named exceptions 0.045 18 UseExistsNotFilterIsEmpty 0.054 22

Empty interpolated string 0.068 13 TypeToType 0.102 20

MergeNestedIfs 0.107 17 IdenticalCaseBodies 0.109 20

Use of asInstanceOf 0.111 13 UseExistsNotFindIsDefined 0.141 14

Paraless methods returns unit 0.171 18 UseOptionGetOrElse 0.196 17

InvariantCondition 0.333 4 UseIfExpression 0.3375 8

UseUntilNotToMinusOne 0.344 14 DuplicateIfBranches 0.375 16

Var could be val 0.404 8 UseLastOptionNotIf 0.428 7

1 the false-positive rate.
2 the average number of lasting versions.

115 checkers. If we filter the false positive warnings based

on the accuracy module’s results, these checkers can derive

the lasting versions and raise the importance. Poor accuracy,

on the other hand, does not imply low significance. Based

on the findings, users could focus less on the checkers that

aren’t important for most projects and eliminate some checkers

that have a high false-positive rate to speed up the warnings

process. For developers, the findings of this module can help

them understand how well the checkers function in real-world

projects, as well as improve or remove checkers with low

significance, particularly those that still have low significance

after eliminating false positives.

C. RQ3. What is the Performance of Our Evaluation Mod-
ules?

This section will discuss how effective the tracking approach

in the significance evaluation module is, as well as how long

it takes to identify false-positive alarms.
As mentioned in Section III-D, we track warning changes

by comparing the 5-tuples strictly and ignoring line number

comparison to adapt to code movement inside a file. We

compare the results of 5-tuple precisely matching with the

results of our matching technique to see if this strategy is

effective. We compare the two matching techniques for every

two successive versions and see how many additional warnings

our strategy can uncover. We divide the number of new

warnings by the overall number of warnings, and the results

are presented in Figure 16 for each project. As it shows, owing

to code movement, half of the warnings would be missed in

the precise match in most cases. Furthermore, we compare

inside-file code movement to cross-file code movement by

disregarding file path in matching, and we discover that cross-

file code movement does not affect the warning track.

0

0.2

0.4

0.6

0.8

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
 o

f w
ar

ni
ng

s f
ro

m
 o

ne

str
at

eg
y

to
 a

ll

Pe
rc

en
ta

ge
 o

f w
ar

ni
ng

s f
ro

m
 tw

o
str

at
eg

ie
s

exact matching added warnings by our strategy percentage

Fig. 16. Percentage of warnings under code movement.

TABLE V
TIME OF EXECUTION.

Project scala elastic4s akka slick scalaz gitbucket

Average 3.9 2.2 6.5 14.4 6.3 5.1

Max 157.7 43.5 126.6 190.5 198.3 17.8

Median 4.1 1.7 7.2 31.6 2.1 7.8

In the accuracy evaluation module, we develop a plugin

to implement the two methodologies. Before deciding on a

classification approach for each warning, the plugin first looks

for the warning code on AST nodes. We use sbt’s continuous

compilation [21], and for each warning, we change the source

code file’s content to let sbt automatically recompile the file,

allowing our plugin to load and receive ASTs for the amended

file. As a result, we keep track of how long it takes to go from

modifying a file to finishing recompilation.

We classify 191K warnings in 5253 milliseconds on average

using a PC with an Intel Core E7-8850 and 1024GB RAM.

Table V displays the average, median, and maximum execution

times for each project. We can see that the maximum time is

less than 200 seconds and that the majority of projects take

less than 20 seconds. When compared to the time necessary

to complete the project, we think the execution time is

appropriate.

Because there may be disagreements in the accuracy mod-

ule’s patterns and patches, we publicly display one false

positive for each check on our website.

Conclusion. The strategies we employ in our investigation

performed well in terms of execution time and can overcome

the obstacles posed by code mobility.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity including

internal validity and external validity for our study.

Internal validity. For our study, we only select 115 checks

from two static analysis tools, and we are unable to evaluate

the remaining checkers since they do not raise any warnings

on the six projects. We believe that reviewing their conclusions

is meaningless since they do not influence users because these

checkers may be outmoded or the projects do not violate the

regulations. Furthermore, some release versions have unknown

dependencies and are difficult to build with plugins, resulting

in a disparity between the number of long-lasting warnings

and checks and the number in development. However, because

we base our evaluation on a large number of versions and

warnings, the results are more likely to reflect the efficacy

of the checkers in real-world projects than other evaluation

techniques.

Our warning tracking method is compatible with code

movement; however, we cannot distinguish between code

fix and code deletion, therefore we do not treat the code

deletion as a warning fix. We believe that even an experienced

developer will struggle to discern between the two instances

and that we should focus on code movement rather than

code deletion because the former has a greater effect on the

significance.

986

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

We only use compilation to categorize false-positive rates

for checkers, and because we couldn’t cover all of the false-

positive cases, we can only provide the lower bound of false-

positive rates. However, the findings show that our strategies

can filter more than 40% of warnings with less manual effort

and execution time, potentially saving a significant amount of

time for later warning analysis or checker assessment. For

each check, users or developers must offer patterns or the

right fixes. It is impossible to generate code automatically

from a warning description, however, inspecting patterns and

repairing patches is not difficult. As a result, we suggest

that rather than automatically producing code, we should

concentrate on pattern proposals.

External validity. Our findings are based on six Scala

projects maintained with sbt; however, the results may alter if

the projects are managed with other tools. On the other hand,

the projects we choose have the most stars on GitHub and

have been around for a long time, so they may demonstrate

typical coding practices.

Because we only looked at 115 checkers, the results for

other checks that rely on the Scala compiler plugin or JVM

bytecode may be suspect. Although the strategies for identi-

fying false-positive alerts have a significant influence on our

dataset, they may not be appropriate for other applications. On

the other side, the specific situations are rather common, and

the repair patches are based on the description, which other

checkers may utilize to improve their accuracy. The findings

achieved by various third-party Scala compilers may differ

since we based our research on a compiler plugin and acquired

compilation results from the compiler.

VII. RELATED WORK

In this paper, we produce an automated approach for eval-

uating checkers on the evolution of open-source projects. In

this section, we summarize some related works on the warning

analysis and analyzing tool evaluation.

Evaluation of static analysis tools. Existing studies eval-

uate the static analysis tools from a different perspective.

Johnson et al. [7] interviews 20 developers to find out why

compiler plugins are not used in development. Through some

40 to 60 minutes interviews, they conclude that unreadable

output and high false-positive rate would be the barriers. Do

et al. [22] implement a Just-in-Time plugin and embed it

into development. They record some advice for improvement

in using the tool. Tymchuk et al. [8] interview 14 full-

experience developers to evaluate the feedback and adoption

of plugins. Hovemeyer et al. [23] analyze the false positive

case in FindBugs, and involve dataflow analysis to get more

accurate results. They compare the warnings manually to

explore whether dataflow analysis can find more defects with

lower false-positive rates. Shen et al. [11] use a two-stage error

ranking strategy for warnings thrown by FindBugs, and find

the likelihood of bug patterns by reading the reports manually.

Muske et al. [9] review 79 cases that handle defects and the

approaches used in these cases. Mahmound et al. [24] compare

several static analysis tools on Java and C/C++. They use four

error types and test how many errors these tools could find

out. Qiu et al. [25] compare static analysis tools that for taint

analysis. They choose four tools and compare their results,

and Figure out their performance on different kinds of sources

and sinks. Delaitre et al. [26] let developers run 14 static

analyzers on a specific benchmark, and then get reports from

these developers. Using these reports they can compare these

analyzers and find out which is the most welcomed.

Warning ranking. For static analysis tools that would

throw plenty of warnings, there exist many studies that focus

on warning ranking and recommendations. Shen et al. [11]

present a tool for ranking warnings in FindBugs with the

likelihood of bug patterns and bug kinds. Muske et al. [9]

uses a survey to explore approaches that are used to handle

warnings. HeckMan et al. [27] establishes a benchmark for

tools, and classifies warnings from these tools. Kim et al. [28]

propose a ranking algorithm that uses history warnings to mine

warning fix experiences. Most studies that focus on warning

ranking aim at using historical data or some features to rank

the warnings.

Improvement of static analysis tools. To evaluate the com-

piler plugin, researchers have put forward many approaches

to analyze and compare the tools. Bessey et al. [29] explain

the importance of using compiler plugins in development

and build tools to find common bugs in code. Layman et

al. [30] conducts a study to learn what features developers

care about when fixing errors, and conclude that the warnings

need to be accurate and reliable, with precise descriptions.

Ayewah et al. [31] conducts a study that observes users’

performance when they use static analysis tools and conclude

users’ preference towards these static analysis tools. Johnson et

al. [32] investigates some ways that current tools can improve,

and conclude that tools need to have fast feedback and can

be used in compilers or IDEs. Nagappan et al. [33] predicts

the pre-release defects found by testing based on the defects

found by static analysis tools, and can use defects thrown

in testing to improve static analysis tools. Lewis et al. [34]

uses a defect prediction algorithm in Google and finds that no

changes in developer behavior. They conclude that tools need

to meet the developers’ orders. Mcallester et al. [35] use some

approaches to improve static analyzers in the compiler. They

focus on analyzers that are designed for optimization and test

the soundness of these analyzers. Andreasen et al. [36] present

some experience in improving the soundness and precision of a

JavaScript analyzer. They involve delta debugging and blended

analysis to help improve the analyzer.

VIII. CONCLUSION

In this paper, we describe an automated approach for analyz-

ing the significance and accuracy of checkers on open-source

project evolution, and we apply it to 115 Scala checks from six

famous GitHub projects. According to the results of reviewing

191k warnings, there are 154k false positives among them, and

for most checkers, more warnings or high accuracy would not

result in high significance. On the six projects, 1/5 of checks

had both high accuracy and significance, implying that they

987

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

can deliver more significant alarms. We provide repair patches

and matching patterns for half of the checked checkers, which

can help to explain the cause of false-positive alarms, and

the methodologies we used in our study allow users to add

more specific scenarios to the accuracy evaluation module.

Our approach may help users choose checkers that conform

to the coding styles of their projects, as well as developers

identify the cause of false positives and improve code. In the

future, other checks may be examined, and more projects may

be included in the evaluation to cover more language features

and coding styles.

ACKNOWLEDGEMENTS

This work is supported by the Key Research Program of

Frontier Sciences, Chinese Academy of Sciences (Grant No.

QYZDJ-SSW-JSC036), and the National 973 Program (Grant

No. 2014CB340701).

REFERENCES

[1] Scala programming language. https://www.scala-lang.org.

[2] Karim Ali, Marianna Rapoport, Ondrej Lhoták, Julian Dolby, and Frank
Tip. Constructing call graphs of scala programs. In ECOOP 2014
- Object-Oriented Programming - 28th European Conference, Uppsala,
Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture
Notes in Computer Science, pages 54–79, 2014.

[3] Yisen Xu, Xiangyang Jia, Fan Wu, Lingbo Li, and Jifeng Xuan.
Automatically identifying calling-prone higher-order functions of scala
programs to assist testers. J. Comput. Sci. Technol., 35(6):1278–1294,
2020.

[4] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
Patrice Pominville, and Vijay Sundaresan. Optimizing java bytecode
using the soot framework: Is it feasible? In Compiler Construction,
9th International Conference, CC 2000, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS 2000,
Berlin, Germany, March 25 - April 2, 2000, Proceedings, volume 1781
of Lecture Notes in Computer Science, pages 18–34, 2000.

[5] Matic Potocnik, Uros Cibej, and Bostjan Slivnik. Linter: a tool for
finding bugs and potential problems in scala code. In Symposium on
Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March
24 - 28, 2014, pages 1615–1616, 2014.

[6] Vicenç Torra. Scala: From a Functional Programming Perspective - An
Introduction to the Programming Language, volume 9980 of Lecture
Notes in Computer Science. 2016.

[7] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W.
Bowdidge. Why don’t software developers use static analysis tools to
find bugs? In 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 672–681,
2013.

[8] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. JIT
feedback: what experienced developers like about static analysis. In
Proceedings of the 26th Conference on Program Comprehension, ICPC
2018, Gothenburg, Sweden, May 27-28, 2018, pages 64–73, 2018.

[9] Tukaram Muske and Alexander Serebrenik. Survey of approaches for
handling static analysis alarms. In 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2016,
Raleigh, NC, USA, October 2-3, 2016, pages 157–166, 2016.

[10] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman.
Analyzing the state of static analysis: A large-scale evaluation in open
source software. In IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, pages 470–481, 2016.

[11] Haihao Shen, Jianhong Fang, and Jianjun Zhao. Efindbugs: Effective
error ranking for findbugs. In Fourth IEEE International Conference
on Software Testing, Verification and Validation, ICST 2011, Berlin,
Germany, March 21-25, 2011, pages 299–308, 2011.

[12] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg,
and Collin Winter. Tricorder: Building a program analysis ecosystem.
In 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 598–608,
2015.

[13] Asem Ghaleb and Karthik Pattabiraman. How effective are smart
contract analysis tools? evaluating smart contract static analysis tools
using bug injection. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July
18-22, 2020, pages 415–427. ACM, 2020.

[14] Cristian Cadar and Alastair F. Donaldson. Analysing the program
analyser. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 -
Companion Volume, pages 765–768. ACM, 2016.

[15] Scala. https://github.com/scala/scala.

[16] Elastic4s. https://github.com/sksamuel/elastic4s.

[17] Scapegoat. https://github.com/sksamuel/scapegoat.

[18] Website for scala checker evaluation results. https://stardust1225.github.
io/scala-check-evaluation/index.html.

[19] Linter. https://github.com/HairyFotr/linter.

[20] Sbt. https://www.scala-sbt.org.

[21] Sbt runtime. https://www.scala-sbt.org/1.x/docs/Running.html.

[22] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden,
Justin Smith, and Emerson R. Murphy-Hill. Just-in-time static analysis.
In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,
2017, pages 307–317, 2017.

[23] David Hovemeyer and William Pugh. Finding more null pointer bugs,
but not too many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
PASTE’07, San Diego, California, USA, June 13-14, 2007, pages 9–14,
2007.

[24] Rahma Mahmood and Qusay H. Mahmoud. Evaluation of static analysis
tools for finding vulnerabilities in java and C/C++ source code. CoRR,
abs/1805.09040, 2018.

[25] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 176–186, 2018.

[26] Aurélien Delaitre, Bertrand Stivalet, Elizabeth Fong, and Vadim Okun.
Evaluating bug finders - test and measurement of static code analyzers.
In 1st IEEE/ACM International Workshop on Complex Faults and
Failures in Large Software Systems, COUFLESS 2015, Florence, Italy,
May 23, 2015, pages 14–20, 2015.

[27] Sarah Smith Heckman and Laurie Williams. On establishing a bench-
mark for evaluating static analysis alert prioritization and classification
techniques. In Proceedings of the Second International Symposium
on Empirical Software Engineering and Measurement, ESEM 2008,
October 9-10, 2008, Kaiserslautern, Germany, pages 41–50, 2008.

[28] Sunghun Kim and Michael D. Ernst. Which warnings should I
fix first? In Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik,
Croatia, September 3-7, 2007, pages 45–54, 2007.

[29] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles-Henri Gros, Asya Kamsky, Scott McPeak, and
Dawson R. Engler. A few billion lines of code later: using static analysis
to find bugs in the real world. Commun. ACM, 53(2):66–75, 2010.

[30] Lucas Layman, Laurie Williams, and Robert St. Amant. Toward
reducing fault fix time: Understanding developer behavior for the design
of automated fault detection tools. In Proceedings of the First Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ESEM 2007, September 20-21, 2007, Madrid, Spain, pages 176–185,
2007.

[31] Nathaniel Ayewah and William Pugh. A report on a survey and study
of static analysis users. In Proceedings of the 2008 Workshop on
Defects in Large Software Systems, held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2008), DEFECTS 2008, Seattle, Washington, USA, July 20, 2008,
pages 1–5, 2008.

[32] Brittany Johnson. A study on improving static analysis tools: Why
are we not using them? In 34th International Conference on Software

988

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, pages
1607–1609, 2012.

[33] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early
indicators of pre-release defect density. In 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA, pages 580–586, 2005.

[34] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong
Ou, and E. James Whitehead Jr. Does bug prediction support human
developers? findings from a google case study. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pages 372–381, 2013.

[35] David A. McAllester. On the complexity analysis of static analyses. J.
ACM, 49(4):512–537, 2002.

[36] Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen.
Systematic approaches for increasing soundness and precision of static
analyzers. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017,
Barcelona, Spain, June 18, 2017, pages 31–36, 2017.

989

Authorized licensed use limited to: Institute of Software. Downloaded on August 25,2022 at 02:00:35 UTC from IEEE Xplore. Restrictions apply.

