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Abstract—To efficiently prune infeasible program paths,
path-sensitive static analysis based bug detectors may utilize
light-weight imprecise methods to check the satisfiability of
path constraints, which leads to redundant reports and false-
positives. Although the false-positives can be eliminated by the
post-inspection process, which re-checks the feasibility of the
paths of each bug report with precise methods, the redundant
reports are inspected unnecessarily.

In this paper, we discuss how to improve the efficiency
of the post-inspection process. We categorize the uninspected
reports into disjoint sets and sort the reports in each category,
which helps to decrease the number of inspection attempts.
Besides, we parallelize the inspection for further speedup. The
experimental results indicate that about 65.20% of needless
inspections are eliminated in total. With the sorted category
sets, about 52.4% of attempts are additionally reduced. And
compared with the sequential execution, the parallel approach
further gains an average speedup of 5.74 under 8 threads.

Keywords-Path-Sensitive Static Analysis; Post-Inspection;
Suspicious Bug Report

I. INTRODUCTION

Static program analysis is a method that automatically

analyzes the behavior of the program without executing it,

which is commonly used to ensure the reliability of complex

software systems. In an analyzer, path-sensitive analysis

methods are often used to acquire additional precision

[1], [2]. Compared with path-insensitive methods, which

merge the program states from different paths, path-sensitive

methods will separately trace different program paths and

maintain program states for every path, which will always

encounter the path explosion problem [3].

To overcome the path explosion problem during path

exploration, the infeasible paths should be pruned. And to

soundly prune infeasible paths, the path constraints (or path

conditions, PC for short) should be checked when forking

the program states on a branch statement. And there are

mainly two kinds of methods to check the PC: the precise

solvers, or the light-weight checkers.

For the precise solvers based methods [4], [5], they check

the satisfiability of the PC through some precise constraint
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solvers, which is usually an SMT solver. As these methods

may always excessively rely on these inefficient solvers to

verify every branch condition, the analysis time may always

be dominated by the solvers they choose [3].

For the light-weight checkers based methods [6]–[8], they

use some light-weight approximated methods, such as inter-

val arithmetic, Value-Set Analysis (VSA), etc., to check the

branch conditions and roughly prune most of the infeasible

paths. Since the approximations may also introduce false-

positives, an additional inspection process is added after the

analysis to re-check these bug reports with suspicious paths

(we call them suspect reports, which describe the suspicious

paths that are only checked during analysis) and refute the

false-positives.

Compared with the first kind of methods, the most impor-

tant advantage of the second is that they can run much faster,

enabling them to handle large software [9]. However, as

more program paths are explored, more suspect reports will

be generated for post-inspection. Although the maximum

number is limited to the number of paths explored, there can

still be hundreds or thousands of suspect reports generated,

which makes the post-inspection process inefficient.

In addition, among the gush of suspects, there will also

be a large portion of reports that describe the same bug

through different trigger paths. And these circumstances

happen frequently when there are multiple paths that can

trigger the same bug. Since these redundant reports need

a great effort to be inspected and have no help to the tool

users, these inspections should be eliminated. However, as

their trigger paths are different from each other, it is very

difficult for a straight-forward deduplication method to prune

them. Besides, since the redundant reports will not affect the

accuracy of analysis results, it will not always be attractive

for the tool developers to handle the issue, and make the

tool underused in practice [10].

Facing these problems, on one hand, some works attempt

to remit the problems by pruning redundant paths [11].

However, these methods require precise constraint solving

during exploration, which are hard to be transplanted to the

analysis methods depending on imprecise constraint solving.
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In addition, as the visited paths may be infeasible when

using light-weight checkers, but some feasible paths may be

eliminated by the path redundancy pruning, these methods

may also introduce false-negatives.

On the other hand, some works attempt to eliminate

redundant reports [12], [13]. However, as these methods

are always designed for reports generated by a precise tool,

whose number is always little, the efficiency issue makes

these methods also inapplicable to the circumstances when

there are lots of suspect reports.

In this paper, we propose a categorization method to help

the post-inspector eliminate the unnecessary inspections on

the redundant reports. We categorize all the suspect reports

into disjoint categories with respect to their bug types and

trigger operations, and leave the trigger paths not restricted.

By keeping only the first feasible report (the report with

a feasible path verified by the post-inspection process) in

each category and dropping other reports, the unnecessary

inspections can be eliminated. As there may be a lot of

suspects and categories to be inspected, we introduce parallel

techniques to acquire additional speedups and make our

inspector execute much more efficiently.

We implement these post-inspectors as the non-

categorized inspector (the original post-inspection method),

categorized inspector or sequential inspector (with cat-

egorization method) and parallel inspector (the parallel

version of our categorized inspector). We evaluate these

post-inspectors on 299,960 suspect reports extracted from

our benchmark. The experimental results indicate that about

98.82% of the extracted reports are redundant, which can be

separated into categories with an average of 177 reports, and

our methods can eliminate 65.20% inspections in total, and

eliminate 97.13% inspections for the feasible categories (the

categories with at least one feasible report). By sorting the

reports in categories with different strategies, we can reduce

inspection attempts used to find the first feasible report by

52.4%. Besides, our parallel inspector reaches an average

speedup rate of 5.74 under 8 threads, and 10.59 under 16

threads compared with the sequential inspector.

To sum up, the main contributions of our paper are as

follows:

• We introduce a light-weight categorization method to

separate the suspect reports of a program into disjoint

categories and use the categories to efficiently eliminate

inspections on redundant reports.

• We find an effective sorting strategy for the reports in

each category, to make the inspector attempt the least

times to find a feasible report.

• We introduce parallel techniques to further expedite

the post-inspection process and keep it efficient even

if there are numbers of suspects to be inspected.

This paper is organized as follows: Section II introduces

the post-inspection based static analyzer and uses a motivat-

ing example to present the problems of the post-inspector; in

Figure 1: Structure of the LC & PI based static analyzer

section III, we describe our categorization method, sorting

strategy and parallelized inspector in detail; the evaluation

of our improvements is provided in section IV; and at last,

the related works and conclusion are presented in section V

and VI respectively.

II. BACKGROUND

In this section, we first explain the structure of the original

post-inspection based static analysis method, and separately

introduce the components of the static analyzer and post-

inspector. Then we use an example to illustrate the problems

and requirements of the new post-inspector.

A. Post-Inspection and Path-Sensitive Static Analysis

To remit the efficiency issue of precise solver based

path-sensitive analysis methods, the light-weight checker

and post-inspection (LC & PI) based analysis method is

proposed. In the method, some light-weight approximated

methods, instead of precise solvers, are used to check the

PC and roughly prune the infeasible program paths. As these

light-weight PC checking methods are not precise enough,

the introduced false-positives cannot be eliminated until the

post-inspection process, which re-checks the PC of reports

using precise solvers to refute the infeasible ones.

Figure 1 shows the general structure of the LC & PI based

static analyzer. There are three parts in the system: the static

analyzer, the post inspector, and the solver manager. The

static analyzer processes the input source code and generates

suspect reports. And the post-inspector inspects the suspects

and drop the infeasible ones. During the processes, both

the static analyzer and the post-inspector query the solver

manager for checking or solving the PC.
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When analyzing a program, the source code of the pro-

gram will be first parsed and converted to the intermediate

representation (bitcode, AST nodes or etc., IR for short) used

in the analyzer by the parser. Then the IR will be sent to

the analysis engine, which will carry out the analysis and

query the constraint checker to prune the infeasible program

paths. When a bug is found, the information related to the

bug (bug type, PC, trigger path trace, etc.) will be sent to the

suspect reporter for generating a suspect report. And then

the suspect report will be sent to the suspect manager of the

post-inspector for further inspection.

When a suspect report reaches the post-inspector, the

report will be first stored and managed by the suspect

manager. Then when the static analyzer halts at some stage

(e.g. if the granularity of analysis is functions, the analyzer

halts when the analysis on a function is finished), the

suspect inspector will start inspecting the suspect reports.

The inspector traverses the reports stored in the suspect

manager and queries the constraint solver to verify the PC

of each report in batch. If the trigger path of the suspect

report is feasible, the suspect report will be presented to

the users as a true bug report. Otherwise, the report will be

marked as infeasible and dropped.

B. Motivating Example

Fig. 2 shows a motivating example. Function getbuf

is used to select the proper buffer memory with the given

buffer size requirement (size) and a pointer to a fast

buffer (fastbuf). When fast buffers are enabled (usefb

is true), and the size requirement is not greater than the

threshold BUFFER_SIZE (line 3), the fast buffer fastbuf

is used as the buffer memory (line 4). Otherwise, function

malloc is invoked to allocate memory for the buffer

(line 5). Function trigger is the entrance of the example

code. It allocates a fast buffer fastbuf on the stack, and

then invokes function getbuf for buffer selection (line 10).

After the buffer is selected, it will be used in a snippet

of complex code with a lot of branches and sub-function

invocations. In the example, we use a branch statement

to represent this complex code snippet (line 12), and we

suppose that all the branch conditions can be correctly

judged with the light-weight PC checkers. And finally, the

function checks whether fast buffers are disabled, and free

the buffer memory if so (line 14).

The bug in this code snippet is simple. When fast buffers

are enabled (usefb is true), and the buffer size require-

ment (size) is no less than the threshold BUFFER_SIZE,

the allocated buffer from line 5 will not be freed on line 14,

which causes a Memory Leak problem. Since all paths

traversing from the memory allocation (line 5) to the end of

the function trigger will lead to the problem, the analyzer

may generate two suspect reports for the same bug; we call

these reports redundant reports.

1 char *getbuf(int size, char *fastbuf) {

2 char *ret = NULL;

3 if (usefb && size < BUFFER_SIZE)

4 ret = fastbuf;

5 else ret = malloc(size+1);

6 return ret;

7 }

8 void trigger(int size) {

9 char fastbuf[BUFFER_SIZE];

10 char *buf = getbuf(size, fastbuf);

11 // A snippet of complex code.

12 if (...) { ... }

13 // Deallocate the buffer.

14 if (!usefb) free(buf);

15 }

Figure 2: A motivating example

When the light-weight PC checkers fail to judge the

conflict between line 3 and line 14, the analyzer may traverse

an infeasible path that chooses the fast buffer as the buffer

memory (line 4) and tries to free the buffer at the end of

the function trigger (line 14), which describes a Free of

Memory not on the Heap problem. Therefore, the analyzer

will generate a suspect report for the “bug”, we call these

kinds of reports false-positives.

For the false-positives, since their PCs are unsatisfiable,

they can be finally refuted by the precise constraint solver

during the post-inspection. However, the redundant reports

will not be pruned, as their PCs are satisfiable. Since all

reports in one category describe exactly the same bug, it is

unnecessary to inspect the other redundant reports when a

feasible one is found. Besides, although only two reports are

extracted from the example code, if the branch statement

on line 12 is replaced with real-world complex program

control flow, hundreds or thousands of suspect reports will

be extracted, and the circumstances may become times

worse when considering other functions calling it. Therefore,

it will take a lot of time to inspect all these redundant reports.

In our benchmark, the number of suspect reports of the

largest category we extracted from a function together with

its callers is 34,107 in total.

C. Problems of Redundant Inspection Elimination

The main problems of redundant inspection elimination

can be summarized as the following three points. First, the

LC & PI based static analyzer requires a post-inspection

process to inspect the reports. However, it also generates

too many redundant suspect reports, and these reports are

difficult to be eliminated by the analyzer. Second, the

state-of-the-art bug report categorization or deduplication

methods cannot efficiently handle such many suspect reports.

However, the feasibility of a suspect report can only be

exactly known with inspections. To expedite the inspection

process, one reasonable way is to eliminate inspections on

redundant reports. And third, the tool developers pay little

attention to the efficiency issue of the post-inspector caused
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Figure 3: Structure of the categorized inspector

by redundant reports.

Because of the motivations mentioned above, we need to

improve the post-inspector in the following four factors:

• We need to illustrate how many redundant reports

will be generated when we do not consider the path

redundancy elimination in the static analyzer.

• A light-weight report categorization method is required,

which can recognize reports on the same bug with

different trigger paths.

• A sorting strategy is needed for the reports in cate-

gories, which can statistically guide the inspector to

use the least inspections to find a feasible report when

we do not know their feasibility.

• We need to additionally expedite the inspection when

there are too many categories, or some categories

contain too many infeasible reports.

III. IMPROVED POST-INSPECTOR

In this section, we mainly discuss our improvements to

the post-inspector. Since the categorization of bug reports

and error messages is widely used to cluster and eliminate

redundant ones [13], we also explore using categorization

methods to eliminate inspections on redundant reports.

A. Categorizing the Suspect Reports

When improving the post-inspector, its inner components

should also be updated. Figure 3 presents the detailed

inner components of the categorized inspector. The detailed

modifications on its inner components will be mentioned in

the following two subsections.

1) Categorization Based Post-Inspection: In the suspect

manager, we try to categorize the suspect reports with their

bug type and trigger operation. The bug type depicts the

characteristic of the bug, which is the main indicator to

differ reports from each other; while the trigger operation

refers to the corresponding statement or expression that

makes the defect happen, which provides both the condition

and the trigger of the bug.

Recall the example presented in figure 2, for a report

describing the bug mentioned in section II-B, its bug type

is the Memory Leak problem, and its trigger operation is

the implicit return statement of the function trigger

(trigger-site), and the allocation of the leaked memory in

function getbuf (the reason-site).

The bug type and the trigger operation contain the charac-

teristic, the reason and the trigger place of the bug. There-

fore, the category of the bug can be uniquely determined

based on these aspects, and all the reports in one category

can also describe the same bug.

In the categorized inspector, when a suspect report is

received, it will be first tagged to a category, and then

stored into the corresponding category storage in the suspect

manager. When inspecting the reports, the suspect inspector

will iterate the categories stored in the suspect manager, and

inspect the reports in each category one by one. When a

feasible report is found for the category, the iteration on the

category will be terminated immediately and continue with

the next category. By dropping the rest reports in a category,

unnecessary inspections are eliminated, which also reduces

the total time spent on inspecting a category.

2) Sorting the Reports: Since we try to find the first

feasible suspect in a category, the fewer infeasible suspects

at the front of the category list, the fewer unnecessary

inspections there will be, and the faster the inspector can

run. Therefore, the suspects should be sorted in ascending

order by the difficulty to be inspected as feasible.

It is a common sense that reports with longer trigger paths

contain more constraints and variables, and vice versa. And

a conclusion has been proved that for a set of SAT clauses,

the lower the clause-variable ratio an expression has, the

more likely it is satisfiable; and the higher the ratio is, the

more likely it is unsatisfiable [14]. Although unfortunately

there are few SMT related conclusions, in analogy with

such conclusions, we can still conjecture the efficiency of

constraint solvers.

Therefore, we choose four feature indicators: the length

of the trigger path, the number of clauses and variables,

and the clause-variable ratio as the sorting criteria. A

preliminary experiment is to find out which sorting criterion

can minimize the number of inspections. According to the

experimental results in section IV-C, the categories sorted

with length have the least number of inspections. Therefore,

we suggest sorting the reports with their lengths.

Based on the structure of the categorized inspector, we add

a collator to the suspect manager. When a suspect report is

tagged to a category, before storing it to the category storage,

the collator will find a proper place for the report based on

the sorting strategies. And finally, the report will be inserted

into the corresponding place.
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Figure 4: Structure of the parallel inspector

B. Parallel Inspector

Although the categorized inspector can greatly reduce

the number of reports to be inspected, there are still two

circumstances that the improved inspector still cannot handle

efficiently by categorizing and sorting the reports.

The first one is that when the static analyzer generates too

many categories of suspect reports. As the number of reports

to be inspected will not sharply decrease with categorization,

it still needs to take a lot of time to inspect these categories.

And the second one is that when there are too many in-

feasible categories, who contain no feasible reports in them.

According to the categorization method, all the reports in

the infeasible category will finally be inspected. Therefore,

it will take much more time for the inspector to inspect an

infeasible category than a feasible category of the same size.

In this section, we mainly discuss the challenges of

parallelizing the inspection and our scheduling strategies to

handle these challenges.

1) Structure of Parallel Inspector: To further expedite the

inspector, especially under the above two circumstances, we

introduce the parallelized optimization to the categorization

method. In the parallel inspector, each working thread runs

an instance of the suspect inspector together with the con-

straint solver. When executing the parallel inspector with

only one working thread, it will act in the same way as

the sequential categorized inspector. Figure 4 shows the

structure of the parallel inspector.

There are two different kinds of granularity to split the

inspections to different working threads: on the granularity

of reports or categories. When scheduling working threads

on the granularity of reports, different threads may inspect

the same category simultaneously. As a smaller granularity

is used for scheduling, the threads can take full advan-

tage of the system resources. However, according to the

categorized inspection method described in section III-A,

when the suspect inspector running on one thread confirms

a report to be feasible, all other threads working on the same

category should synchronize the result, terminate their own

inspections immediately and continue with the next category.

The synchronization between the threads working on the

same category will cause a serious data race problem, which

will greatly affect the efficiency of the execution.

When scheduling working threads on the granularity of

categories, different threads will separately inspect different

categories. As a larger scheduling granularity is used, there

will be fewer data races. However, there are mainly two

challenges for the parallelization. First, as the number of

reports in each category differs greatly from each other,

a simple scheduling strategy will lead to great overload

imbalance. Second, since the number of reports in a category

has no relation with the inspections finally carried out. We

are not able to know how many reports will be exactly

inspected, which means that it is very hard to schedule the

jobs based on their sizes.

2) Scheduling Strategies of Working Threads: To solve

the above challenges, the inspector instance running on each

thread inherits from the sequential inspector and merges the

two different kinds of scheduling granularity. The updated

process of iterating categories to inspect their inner reports

is presented in Algorithm 1.

Algorithm 1 Process of requesting for categories.

1: function CATEGORYSCHEDULER

2: for all category ∈ CategoryManager do

3: if CategoryManager.Acquire(category) then

4: SuspectInspector.Inspect(category)

5: end if

6: end for

7: for all category ∈ CategoryManager do

8: if ¬CategoryManager.Finished(category) then

9: SuspectInspector.Inspect(category)

10: end if

11: end for

12: end function

To combine the advantages of both kinds of scheduling

granularity, the parallel inspection is separated into two

stages. In the first stage (from line 2 to line 6), the inspector

on each thread will simultaneously traverse the categories

in the category manager, and apply for the categories one

by one with the Acquire method of the category manager

(line 3). In the method, the category manager will atomically

check whether the category has been assigned to another

thread, and assign it to the caller thread if not. As a

consequence, there will be no categories inspected by more

than one thread in stage one, which makes the threads

scheduled on the granularity of categories. Therefore, the

categories can be quickly covered.

When all the categories have been assigned, the second

stage begins (from line 7 to line 11). When the inspector

finishes the first traverse on the categories, it will traverse

the categories again, and apply for the categories which are

still under inspection with the method Finished (line 8). In
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(a) Assign new categories
to threads in order

(b) Assign next new cate-
gory to the idle thread

(c) Append idle threads to
the first running category

(d) Append idle threads to
the next running categories

Figure 5: Schedule strategies of working threads

the method, the category manager will atomically query the

category whether it has been finished by other threads, and

append the caller thread to it if not. As a consequence, there

will be multiple threads working on the same category in this

stage, which makes the threads scheduled on the granularity

of reports. Therefore, the inspector can make full use of idle

threads, and make the unfinished categories can be inspected

faster. To prevent one report from being inspected by more

than one thread, a flag is added to mark whether it is being

inspected by other threads. And the thread will atomically

check and mark the flag first, before inspecting a report.

In addition, in the second stage, when a working thread

finds a feasible report, it will first notify the category to

record the report. Then it notifies all other threads working

on the category to abort their unfinished inspection. When

a thread receives a notice that a feasible report has been

found for the category that it is working on, it will stop

the constraint solver and abort the report. In the parallel

inspector, it is possible that the generated bug report is

not the first feasible report in the category. However, as

its inspection spends less time, we believe that it may also

be easier or the same for developers to review the report.

Therefore, we choose to keep the report instead of the one

with a greater chance to be feasible.

3) Example of Scheduling Strategies: Figure 5 shows

the four snapshots of scheduling 3 threads to inspect 7

categories. The numbered cells represent the categories to

be inspected, and the curves indicate the threads that are

working on the category. An empty cell represents the

category is pending for inspection, while the letter in the

cell indicates the status of the inspection: a letter I means

the category has just been assigned to a thread and the

inspection is about to start at this step, a mark R refers

to the inspection on the category is running now, a sign A

represents the category has just been appended with new

thread(s) at current state, and an F indicates the inspection

on the category has already been finished. The Roman letter

indicates the category has been in this status for a period,

while the italic letter represents the category has just been

transferred to the status at this moment.

Figure 5a represents that at the beginning of the inspec-

tion, the categories will be assigned to threads one by one,

despite the order of the threads. When a thread finishes

its inspection, the next pending category will be assigned

to it (figure 5b). Figure 5c indicates that when a thread

finishes its inspection, and all categories have been assigned,

it will be appended to the first category that is still under

inspection. And the threads will be appended to the next

running category when the appended inspection is finished,

which is presented in figure 5d.

IV. EVALUATION

To evaluate the effectiveness of our improvements, we

carry out three groups of experiments to answer the follow-

ing three research questions:

• RQ 1: What is the ratio of redundant reports? How

many inspections are eliminated and how much time is

saved by the elimination?

• RQ 2: How many inspections are required under dif-

ferent sorting strategies? Which strategy needs the least

number of inspections?

• RQ 3: Compared with the sequential inspector, how

much speedup can be acquired with different numbers

of working threads?

The first half of RQ 1 is answered in section IV-B,

which is used to illustrate the seriousness of the inspection

redundancy problem, and persuade the tool developers to

pay attention to it. The second half of RQ 1 and the RQ 2

are used to evaluate the effectiveness of the sequential cate-

gorized inspector and provide the preliminary experimental

results mentioned in section III-A2, whose answers can be

separately found in section IV-D and section IV-C. And

RQ 3 is used to present the effect of our parallel inspector

compared with the sequential inspector, and is answered in

section IV-E.

In this section, we will first show the implementation of

our methods. Then, we introduce the system environments

and the benchmark instances we used for the experiments.

And at last, we present our experimental results and answers

to the research questions in detail.

A. Experiment Setup

1) Implementation and Experimental Environments: We

removed the post-inspector of Canalyze [9], a static

symbolic execution based program defect checker, to extract

bug reports together with the PCs of their trigger paths from

the benchmark. The PCs are dumped in the syntax under the

SMT-Lib v2 standard.

Our post inspection engine is separately implemented in

C++. In our implementation, the parallelization is imple-

mented with the std::thread class in C++11, which is
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Table I: Composition of benchmark.

Program Version Reports Size(KiB)

bftpd v3.8 4,698 15,341
binutils v2.31.1 31,020 422,767
bison v3.2 42,756 490,754
coreutils v8.30 17,476 182,398
curl v7.21.1 34,300 242,382
gdb v8.2 27,906 333,443
gzip v1.9 2,252 12,213
libosip2 v4.0.0 23,256 425,200
lighttpd v1.4.32 8,502 78,169
nano v3.1 24,293 279,076
readline v7.0 4,416 30,230
screen v4.6.2 7,568 65,619
sqlite v3230100 63,441 3,848,629
tar v1.30 8,076 66,049

Total - 299,960 6,492,270

an encapsulation of the pthread library; and the atomic

operations are implemented with the std::atomic tem-

plate in C++11. We invoke Z3 [15] as the constraint solver

to inspect the PC of bug reports.

We set up all of our experiments on a Linux server with

Intel® Xeon® E5-2680 v4 CPU of 2.40 GHz and 64 GB

of memory. And we use docker1 to manually limit the

number of CPU cores available equaling to the number of

working threads when executing the parallel inspector. All

the time is evaluated with the average of 5 measurements.

2) Benchmark: Table I provides the detailed information

of our benchmark. The first two columns present the name

and version of the benchmark instance. The third column

provides the number of all suspect reports. And the size of

the trigger path constraint files is in the last column. Since

these constraint files are encoded in SMT-Lib v2 syntax, it

will be more reasonable to measure these files with their file

size (in KiB) instead of source lines of code.

The benchmark is composed of different kinds of open

source software projects, which can be on behalf of many

fields of application. As different fields may use different

kinds of code styles, the corresponding patterns of the PC

and percentages of false-positives may also be different.

Using the benchmark composed in this way can make our

benchmark more comprehensive and extensive. Besides, all

benchmark instances are checked by Canalyze directly

with the code of the release version listed in the table, and

there are no additionally inserted bugs in the code.

B. Number of Categories and Inspections

Table II presents the statistics of bug reports generated

by both versions. The first column is the name of the

benchmark instance. The second (Rep.) and the forth (Cate.)

column represent the number of bug reports and categories

respectively. And these two columns are also the upper

bounds of the number of bug reports that can be generated by

1Enterprise Container Platform — Docker, https://www.docker.com/

Table II: Number of Categories and Reports.

Program Rep. Feas. Cate. Gen. Redu.

bftpd 4,698 3,861 47 46 98.81%
binutils 31,020 14,234 299 212 98.51%
bison 42,756 11,075 57 31 99.72%
coreutils 17,476 7,165 117 60 99.16%
curl 34,300 59 36 19 67.80%
gdb 27,906 11,162 180 114 98.98%
gzip 2,252 1 4 1 0.00%
libosip2 23,256 7,300 115 97 98.67%
lighttpd 8,502 4,725 221 190 95.98%
nano 24,293 110 19 9 91.82%
readline 4,416 1,198 25 22 98.16%
screen 7,568 1,199 38 30 97.50%
sqlite 63,441 37,917 467 351 99.07%
tar 8,076 3,401 67 40 98.82%

Total 299,960 103,407 1,692 1,222 98.82%

the non-categorized inspector and the categorized inspector.

The third and the fifth column represent the number of bug

reports generated by the non-categorized checker (Feas.) and

the categorized checker (Gen.), and these two columns are

also the total number of all feasible bug reports and all

feasible bug report categories. And the last column (Redu.)

presents the reduction ratio on bug report numbers.

According to the statistics, the non-categorized inspec-

tor generates 103,407 bug reports for all the benchmark

instances, while the categorized inspector generates 1,222

bug reports for them, which indicates that about 98.82%

of suspect reports are redundant in total. For most of the

benchmark instances, the analyzer can generate more than

90% of redundant reports according to our categorization

method. The results answer the first half of RQ 1 that

the redundant reports frequently occur among the suspect

reports, which makes the post-inspector waste a lot of effort

on inspecting these reports.

Among the benchmark instances, there are only two

exceptions, curl and gzip, which also generate a sim-

ilar number of suspect reports but provides a very low

redundancy percentage. The reason for this circumstance

is that these two benchmark instances contain too many

false-positives, which are eliminated during the inspection

of both inspectors. Therefore, there is very limited space for

the categorized inspector to reduce inspections.

C. Inspection Numbers of Different Suspect Report Orders

In this part, we mainly discuss the inspection numbers

under different suspect report orders, which answers RQ 2.

As mentioned in section III-A1, the order can affect the

number of inspections required before the first feasible one

is found, which can further affect the efficiency of the

post-inspection process, hence we evaluated the number of

inspections under different orders.

There are four sorting criteria mentioned in section III-A2,

sorting the suspect reports with length, variable, clause,

and ratio. Besides, we can also keep the reports unsorted,

266



Table III: Number of inspections under different order com-

pared with original order.

Program Length Variable Clause Ratio Random

bftpd 0 0 0 0 0.00
binutils -162 -107 -45 386 -103.80
bison -37 2,941 4,516 8,297 1,777.80
coreutils 9 38 30 252 259.80
curl 0 -6 -6 0 -2.80
gdb -119 -64 -4 424 42.60
gzip 0 0 0 0 0.80
libosip2 -35 -1 19 24 171.80
lighttpd 10 14 24 59 114.60
nano 57 161 177 51 42.40
readline -870 -870 -870 -551 -2.20
screen -160 -160 -160 -160 -40.00
sqlite -457 -337 -295 175 -567.00
tar -159 -147 -157 -128 -124.00

Total -1,923 1,462 3,229 8,829 1,570.00

which preserves the reports in the time order of when they

are generated. Therefore, we select the unsorted categories

as the baseline to evaluate the performance of different

sorting strategies. Since infeasible categories have the same

number of inspections no matter how they are sorted, we

only consider the result of 1,222 feasible categories.

Table III presents the results. The value in each cell

indicates the number of invocations under the specific sorting

strategy minus the number of invocations without sorting

(original exploring order). And in the random column, the

value is measured with the average of five random shuffles,

to further the random order of the reports. The less the

number is, the better the strategy will be.

According to the table, the length strategy is definitely the

best choice, as the strategy is the only negative value in total.

And under all benchmark instances, the strategy also has

the least value among almost all sorting strategies. Besides,

compared with the best length strategy, the unsorted category

can also have an acceptable result in 6 out of 14 benchmark

instances (the values no less than 0 in the Length column

indicate the unsorted categories have the least number of

inspections). For the other three sorting strategies, we do

not recommend using them to sort the reports.

The result indicates that, as a consideration of simplicity

and performance, we should choose the length strategy to

sort the suspects in a category. And we also sort the suspect

reports with length strategy by default, in all the following

experiments whose inspection numbers are measured. Be-

sides, when the sorting overhead is too high, keeping the

category unsorted can also be a good choice.

D. Reduction of Number and Time Cost of Inspection

In this part, we consider the reduction of the number

and the time cost of the inspections. We run the catego-

rized inspector against the non-categorized inspector on the

benchmark, and measure these two kinds of values. The

experiments mainly answer the second half of RQ 1.

Table IV: Reduction of inspection number.

Program
Non-Categorized Categorized

All Feasible All Feasible

bftpd 4,698 3,861 883 46
binutils 31,020 24,985 6,455 420
bison 42,756 36,069 7,260 573
coreutils 17,476 12,183 5,388 95
curl 34,300 75 34,250 25
gdb 27,906 24,417 3,727 238
gzip 2,252 130 2,153 31
libosip2 23,256 19,856 3,498 98
lighttpd 8,502 6,358 2,355 211
nano 24,293 307 24,054 68
readline 4,416 4,392 48 24
screen 7,568 6,853 745 30
sqlite 63,441 53,570 10,922 1,051
tar 8,076 5,481 2,653 58

Total 299,960 198,537 104,391 2,968

1) Reduction of Inspection Numbers: We now discuss the

reduction of inspections. Since the goal of our improvements

is to eliminate unnecessary inspections on redundant reports,

we measure the number of inspections for each category on

our categorized inspector, and compare the number on the

non-categorized inspector.

Table IV presents the statistics about the number of in-

spections of both non-categorized and categorized inspector.

The first column is the name of the benchmark instances.

The following two columns indicate the number of inspec-

tions on the non-categorized inspector (Non-Categorized)

when inspecting the suspect reports in all categories (All)

or in only feasible categories (Feasible) respectively; while

the last two columns present the corresponding numbers of

the categorized inspector (Categorized).

According to the table, the total reduction ratio of in-

spections is about 65.20% (1− C.A/NC.A), while the ratio

is about 98.51% when considering only feasible categories

(1 − C.F/NC.F). And the total inspection number of only

feasible categories also decreases sharply in most of the

benchmark instances, which indicates that most of the redun-

dant inspections are eliminated in the categorized inspector;

when considering the infeasible categories, the statistics

indicate that inspecting the infeasible suspects in these

categories may be the most time-consuming part of the entire

inspection, which indicates the circumstances of spending a

lot of time inspecting infeasible categories do exist.

2) Reduction of Actual Execution Time: We now discuss

the time reduction of our categorized inspector, which is

also related to the number reduction of inspections. Since

our goal is to efficiently eliminate unnecessary inspections,

the execution time is also important to be evaluated.

Table V presents the statistics about the time cost of

inspecting all categories under both inspectors. The first

column provides the name of the benchmark instances. The

second column (Non-Cate.) and the third column (Cate.)

present the actual execution time of the non-categorized
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Table V: Reduction of actual execution time.

Program Non-Cate. Cate. Dec.

bftpd 102.09 6.34 93.79%
binutils 2,956.22 127.31 95.69%
bison 1,036.38 72.45 93.01%
coreutils 982.58 49.65 94.95%
curl 445.93 270.46 39.35%
gdb 3,293.20 73.72 97.76%
gzip 23.37 14.64 37.33%
libosip2 1,936.91 54.79 97.17%
lighttpd 316.57 59.79 81.11%
nano 308.87 182.42 40.94%
readline 111.49 0.63 99.43%
screen 189.64 5.46 97.12%
sqlite 1,739.91 151.82 91.27%
tar 237.84 21.12 91.12%

Average 13,680.98 1,090.59 92.03%

inspector and the categorized inspector respectively. And the

last column (Dec.) is the reduction ratio of the execution

time.

According to the table, our categorization method can

decrease the execution time up to more than 90% under

most circumstances. And the average reduction is 92.03%

among the benchmark instances. However, there are three

exceptions: curl, gzip and nano. The average reduction

of these three benchmark instances is about 39.92%.

When we refer to table II, we can find that there are

too many infeasible bug reports which generate a lot of

infeasible categories that lag the inspector. According to the

table, curl has about 99.83% of infeasible bug reports,

gzip has about 99.96% and nano has about 99.55%

(1 − Feas./Rep. in table II). Therefore, by analogy with

the result of inspection reduction, we can also conclude

that the infeasible categories will affect the efficiency of

the inspector. To acquire further speedup on these three

instances, we need the help of the parallel inspector.

E. Efficiency of the Parallel Inspector

We mainly consider the parallel inspector in this part,

which answers RQ 3. We evaluate the performances of the

parallel inspector with different working thread numbers (2,

4, 8 and 16), and measure the corresponding execution time

of inspecting all the categories. To compute the speedup of

each configuration, we also compare the execution time with

that of the sequential inspector.

Figure 6 presents the trend of the execution time of dif-

ferent configurations. Each curve in the figure represents an

instance in our benchmark, together with the total value. The

x axis represents the different configurations (1 thread for

sequential execution), and the y axis indicates the execution

time compared with the sequential execution.

According to the figure, the overall trend is that with the

number of working threads increasing, the execution time

decreases. The only exception is the benchmark instance

readline, whose time cost of 16 threads is longer than
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Figure 6: Execution time comparison of different configura-

tions

that of 8 threads. The reason is that the total execution time is

too short (about 0.63s under one thread according to table V)

to be accurately measured. We manually examine all the

original execution time under 4, 8 and 16 threads, and find

that the difference between these data is very small. The

average is 0.26 sec. and the standard deviation based on

the entire population is 0.06. Therefore, we believe that this

issue will not affect our conclusion.

Table VI presents the speedup of different configurations.

We set the time of sequential execution as the baseline and

compare the time under different working thread number

configurations with it. The first column is the name of

benchmark instances, and the following columns are the

speedups of 2, 4, 8 and 16 working threads.

According to the table, the maximum speedup is 11.71

under 16 threads from benchmark instance libosip2

and 6.09 of 8 threads from benchmark instance sqlite;

while the minimum speedup (except benchmark instance

readline) is 9.62 under 16 threads and 5.25 under 8

threads. The average speedup of different configurations is

Table VI: Speedup of different configurations.

Program C-2 C-4 C-8 C-16

bftpd 1.38 2.95 5.73 10.74
binutils 1.42 2.82 5.60 9.62
bison 1.39 2.83 5.62 10.34
coreutils 1.41 2.85 5.72 10.62
curl 1.39 2.82 5.72 10.55
gdb 1.41 2.95 5.83 10.85
gzip 1.42 2.92 5.48 10.76
libosip2 1.42 2.87 5.55 11.71
lighttpd 1.41 2.93 5.66 10.73
nano 1.37 2.83 5.75 10.57
readline 1.46 2.33 2.67 2.47
screen 1.41 3.07 5.25 10.41
sqlite 1.43 2.92 6.09 11.40
tar 1.38 2.95 5.78 10.29

Average 1.40 2.86 5.74 10.59
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about 0.70 times the number of threads, which indicates the

average workload of threads is about 70%.

F. Threats to Validity

1) Benchmark Selection: The validity of our experiments

may be subject to the threat that we selected only open

source software written in C among the common fields of

application. Compared with commercial software systems,

the complexity of the software may sharply increase. Hence,

the suspect reports extracted from these software systems

will be greatly different among the aspects of complexity

(path length, number of variables and clauses), the error

pattern (distribution of bug types, format and code style of

trigger expressions) and the number (total number of reports,

ratio of false-positives). So will the software written in other

languages for other fields.

2) Static Analyzer: The selection of static analyzers is

also a threat to validity, since we only tested on the reports

extracted from Canalyze. As the type and the ability of

bug detection among different analyzers may also be differ-

ent, the suspect reports extracted by other tools may also

have differences in the aspect of characteristics, which can

also threaten the performance and validity of our evaluations.

Apart from Canalyze, the Clang Static Analyzer (CSA),

which is very similar to Canalyze and widely used and

researched in both industry and academic, can also be used

to extract bug reports in the evaluation. As interval arithmetic

is also employed in the CSA to roughly prune infeasible

paths, which is the same with Canalyze, we believe a

similar conclusion can also be drawn with the uninspected

reports extracted from the CSA and other LC & PI based

static analyzers.

3) Sorting Strategy Evaluation: In this paper, we evaluate

the sorting strategies with all our benchmark instances, and

the recommended sorting strategy is used to evaluate the

categorized inspector and the parallel inspector. Although

our benchmark has included most of the common fields

of application, which may affect the characteristics of the

extracted suspect reports, the recommended sorting strategy

may fail to reduce inspection attempts in some specific fields

or commercial software systems.

V. RELATED WORKS

Our work is mainly related to the LC & PI based analysis

method, path redundancy elimination, suspect report catego-

rization, and parallel analysis methods. In this section, we

mainly present the related works in the above aspects.

A. The LC & PI Based Analysis Method

As far as we know, the core idea of the LC & PI based

analysis method was first introduced in Canalyze [9] with

the concept of Hybrid Solver, which are also extended to

its successors. The Hybrid Solver is a combination of its

Range Solver, which is an interval arithmetic based light-

weight constraint checker, and its SMT Solver, which is an

integrated boolector [16] SMT solver. When using the

Hybrid Solver, the Range Solver is used only during program

exploration, and the suspect reports are inspected with its

SMT Solver after the exploration.

A similar process called SMT Refutation has been added

to Clang Static Analyzer (CSA) by Gadelha et al. [7]. In

their work, they use the built-in constraint solver in CSA

to explore the program paths, and refute the false positives

by encoding the PC with SMT-Lib and invoking outside

SMT solvers to inspect the reports. In their work, they

integrated a lot of different state-of-the-art SMT solvers

without comparing the performance of these solvers, which

will confuse the users when choosing a proper SMT solver.

While in our work, we only provide a generic SMT solver

Z3 [15] to inspect suspect reports.

Similar to LC & PI based analysis method, S. Ding et

al. [17] introduced a code pattern based method to filter

out infeasible paths before symbolic execution, which can

reduce the number of paths inspected by the symbolic exe-

cution process. However, their light-weight pruning method

is based on the syntax structures to detect unsatisfiable

predicates, which may introduce false negatives due to lack

of full context constraints.

B. Path Redundancy Elimination

Apart from the LC & PI based analysis method, path

redundancy elimination methods are also widely used for

path-sensitive analysis methods. They are originally used to

solve the path-explosion problem. However, duplicated visits

to buggy program points can be eliminated as redundancy.

Therefore, these methods are also effective for the problem.

There have been a lot of researches [11], [18], [19] trying

to eliminate redundant program paths. Q. Yi et al. [11] use

the post-conditions to represent path suffixes and conjunct

the negated post-conditions to make the path constraints of

redundant suffix unsatisfiable. Since their method can only

avoid redundant visits to the same branch of a condition,

there will also be redundant reports generated for inputs like

our motivating example presented in figure 2.

H. Wang et al. [18] use a dependence based symbolic

value to represent path constraints, and predict the redun-

dant paths with these dependence values. Different from

[11], they use relevant path conditions based on depen-

dences of expressions, rather than path constraints and post-

constraints, to prune the program paths, and their method is

more radical than [11]. D. Qi et al. [19] partition the program

paths with inputs and outputs. If two paths generate the

same output expressions, they are seen as equivalent. These

two methods are much similar to our categorization method,

which is based on the bug type and trigger expressions. And

Junker et al. [8] refute infeasible paths by extracting related

infeasible sub-paths and constructing observer automatons

to recognize redundant infeasible program paths in model

checking. However, their method is much more like a
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monitor to refute infeasible paths with the same sub-path,

rather than a redundant elimination.

Besides, [20] and [21] also tried to use summarization

techniques to reduce the search space. However, the dif-

ferences are that the abstractions are built for functions to

eliminate unconcerned path in sub-functions in [20], while

[21] summarizes program paths and eliminates the visits on

redundant paths. Compared with our work, [21] is more like

our categorization strategy.

C. Suspect Report Categorization

There have been a lot of studies about bug/issue re-

port categorization, and T. Muske et al. summarized eight

different bug/issue report categorization methods in their

summary [10]. However, the core targets of these works are

different from our work. Our categorization method is used

to automatically eliminate inspections on redundant suspect

reports extracted from an analyzer, and expedite the post

inspector. While the related works categorize the reports of

defects, issues, feature enhancements or other requests, to

simplify the maintenance process for developers.

Z.P. Fry et al. [22] formally define a bug report as

a quintuple composed with the information that can be

extracted from the program, including the nested functions,

context, source files, bug type and so on. And using a natural

language processing method to categorize the bug reports.

Similar to our method, they also represent a bug report only

with the information available during the analysis. However,

their method requires more information and much more

work to get the result. W. Le et al. [13] present a method to

compute the correlations between bug reports, and categorize

the reports with their correlations. However, their method

requires an additional analysis on the program, which is

repetitive to a static analyzer.

Another commonly used method to categorize reports is

the Orthogonal Defect Classification (ODC) [23] concept

introduced by IBM. The key idea is to extract characteristics

of the development process from the reports, which is

different from our method that uses the information from

the report only. Many works based on this key idea have

been published. F. Thung et al. [24] proposed a text mining

method to analyze the content of the reports together with

related code patches, and categorize these reports with text

features.

It can also be seen as another kind of categorization to

assign a bug report to a proper developer to fix it. Neelofar et

al. [25] proposed a method that uses the Multinomial Naive

Bayes text classifier to tag the bugs with their summary,

while A. Tamrawi et al. [26] introduced a fuzzy set and

cache-based modeling method. I. Chawla et al. [27] also

presented a categorization method based on the fuzzy set

theory. However, its target is to tag an issue report as a bug,

a feature enhancement or a request, to improve its quality.

D. Parallel and Distributed Analysis Methods

As our improvements are also an attempt on distributed

LC & PI based static analysis method, our work is also

related to the parallel or distributed static analysis methods.

Parallel techniques have been widely used in optimizing

static analysis methods for decades [28], [29]. R. Kramer et

al. [28] introduced a method that converts the cyclic struc-

tures (loops) of a Control Flow Graph (CFG) into acyclic

structures, and then parallelizes the data flow analysis on the

independent paths of the acyclic CFG. S. Bucur et al. [29]

extends KLEE [4] to large shared-nothing clusters, which is

the first symbolic execution engine on large clusters.

Similar to our parallel inspector, parallel SMT solving

for path-sensitive analysis methods is also frequently used.

Rakadjiev et al. [30] replace the SMT solver in KLEE with

parallel SMT solver clusters, to expedite the engine by

speeding up the constraint solving process. Different from

using parallel solvers, Aigner et al. [31] execute a set of

constraint solvers simultaneously for one query, and the

fastest one that provides the result is taken. And an extension

to KLEE has also been available in [32].

VI. CONCLUSION AND FUTURE WORK

In this paper, we systematically improve the post-

inspector in the aspect of eliminating inspections on redun-

dant reports, which makes it an efficient, usable, complete

and more essential component in the entire static analysis

framework. And with our improvements, the post-inspector

can be executed as a service for a lot of analyzer instances

on an inspector node in an analyzer cluster, which can be

seen as a first step in attempting to distribute the LC & PI

static analysis framework.

In the future, we will continue separating and refining

other components of the analysis framework and trying to

build a usable distributed system of this analysis frame-

work. Besides, some other strategies are needed to reduce

unnecessary inspections on the circumstances when our

categorization method can provide very limited reduction.

And our categorization method also needs to be further

evaluated and improved to eliminate possible false-negatives

and wrongly categorized reports.
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