
Widget-Sensitive and Back-Stack-Aware
GUI Exploration for Testing Android Apps

Jiwei Yan1,3, Tianyong Wu1,3, Jun Yan1,2,3,†, Jian Zhang1,3,†
1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2 Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3 University of Chinese Academy of Sciences

Email: {yanjw, wuty, yanjun, zj}@ios.ac.cn

Abstract—GUI exploration is a widely adopted technique to
test GUI programs, which traverses the elements of screens dur-
ing the user interaction and simultaneously constructs the GUI
model to describe window transitions. Specific to Android apps,
an elaborate GUI model should take Android characteristics
into consideration. We propose a GUI exploration approach that
dynamically acquires the information of these characteristics,
such as the status of widgets and arrangement of the back stack.
We attach this information to the window transition graph and
form a new model called LATTE (LAbeled Transition graph with
sTack and widgEt). To balance the accuracy and size of model,
we introduce a metric “state similarity” to merge similar states.
We perform experiments on 20 real-world apps to test them
and construct their LATTE models. The investigation indicates
that our systematic exploration approach with regard to the
Android characteristics covers more program behaviors, and the
generated model can be reused to direct the further testing.

Index Terms—Android Application, GUI Exploration, Dy-
namic Modeling, Test Generation

I. INTRODUCTION

With the extensive usage of smart phones, mobile applica-

tion market ushered a high speed developing period, especially

the Android application market. Android applications (apps),

like other software, need to be adequately tested to eliminate

the potential bugs and improve the quality. Android apps

are event-driven GUI programs, which can be regarded as

a collection of widgets. Each of the widgets is defined in

an Activity class that is provided by Android system to

interact with the user. The user operations on the widgets in

the screen trigger the corresponding events to drive the app to

transfer from one window to another. Modeling the behaviors

of these window transitions accurately and comprehensively is

a key step for performing a fine-grained and efficient testing

for an Android app.

In recent years, several model-based testing approaches for

Android apps have been proposed, which can be categorized

into two kinds, including static and dynamic ones. The former

one [27, 30] leverages the static analysis techniques on the

code of the app to extract the GUI components in each

Activity and the transitions between Activities. However, this

kind of approaches may fail to describe the changes of GUI

widgets during runtime, e.g., some widgets are instantiated
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under the conditions that should be determined dynamically

and the status of the same widget may also change under user

operations. Therefore, some researches [10, 16] adopt GUI

exploration approaches which can dynamically explore the

GUI information and simultaneously construct the GUI model

when the app is running. However, this type of model only

focuses on the GUI widgets and often omits the information

of Android characteristics, such as back stack.

Both the dynamic changes of widgets and back stacks

are important characteristics for model construction. On one

hand, the dynamic changes of widgets (e.g., the CheckBox
status for application setting) may influence the execution

of programs. Failing to distinguish the minor differences of

widget statuses between similar windows will miss some

transitions in the model. On the other hand, the back stack

is a particular mechanism of Android to store the launched

Activities according to complex launch modes. Two GUI

windows with different back stacks will perform differently

under some user operations (e.g. pressing the back key).

Failing to distinguish the back stacks of states will lead to

faulty transitions in the model. Therefore, to correctly describe

the behavior of Android GUI, the model should carry both the

information of dynamic widgets and back stacks.

In this paper, we propose a GUI exploration approach

to systematically traverse widgets to test the Android apps.

Specifically, we build a window transition graph called LATTE

to record the information of GUI widgets in a window and

the transitions between windows, as well as the information

of Android-specific back stack. Furthermore, to balance the

accuracy and size of the model, we introduce a metric “state

similarity” to merge similar states into one according to a user-

given threshold. Besides GUI information, we also link the

transitions in this model to the corresponding executed code

snippets via a label mechanism for further testing based on the

model. To validate our idea, we implement our proposed tech-

niques into a tool called LAND (LATTE model generation for
Android apps) and evaluate it experimentally on 20 real-world

popular apps. The experimental results consistently show that

the proposed exploration approach with the consideration of

Android characteristics can cover more program behaviors

in most cases than Monkey and Dynodroid, and the model

LATTE can be reused to guide the further testing.
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The main contributions of this work are summarized as

follows:

• Provide a dynamic GUI exploration approach for testing

Android apps.

• Propose the LATTE model to describe the GUI charac-

teristics of Android apps in detail.

• Implement a model generation tool LAND as well as

perform experiments on 20 real-world Android apps to

test them and construct their LATTE models.

• Make use of the LATTE model to generate specific test

cases in two application scenarios.

The remainder of this paper is organized as follows. In

Section II, we discuss some necessary background knowledge

about Android features. The LATTE model and exploration

technique will be discussed in Section III and IV. Then we

present our model generation tool LAND in Section V and

evaluate our approach on real-world apps in Section VI. At

last, we discuss related works in Section VII and conclude

our work in Section VIII.

II. BACKGROUND

As mentioned before, the dynamic widget and the back

stack information are important for an elaborate model of An-

droid apps. In this section, we will present some background

knowledge about Android GUI widget and the back stack, and

provide a simple Android app as our motivating example.

A. GUI Widget

A widget (also called a view) is an instance of the class

View in Android, which represents a basic built-in block

of component on the GUI window. There are several basic
attributes of a widget, including the view type, view index

and resource id. Besides, there are also several extra attributes

during runtime, like the isChecked status of CheckBox
widget, RadioButton as well as ToggleButton. We

call these attributes status attributes. The differences of basic

attributes between two widgets decide whether they are iden-

tical, while the difference of status attributes of one widget

may trigger different program behaviors under the same user

operation.

A widget is attached with several user events for responding

to different user operations. For example, the possible events

for the Button widget are click, longclick and press. In

addition, some events should be triggered by a combination

of several user operations. For instance, the typing event on

EditText widget usually need a text clearing operation

followed by text typing and enter key pressing. Besides the

events that attach to GUI widgets, there are also some global

events that can be executed at any program state, such as the

screen rotation, back, home, and enter key pressing events. We

consider all these events in our GUI model.

B. Back Stack

The execution of an Android app is composed of a sequence

of Activities. Android takes task as the collection of Activities

that users interact with when performing a certain job and

introduces a back stack to arrange all these launched Activities

by their launched order [2]. When the current Activity starts

another one, the new one will be pushed on top of the stack

and takes the focus by default. The former Activity remains in

the stack but is paused. When the user presses the back key,

the Android system will pop and destroy the current Activity,

and resume the previous one. Activities in the stack can only

be rearranged by push and pop operations according to the

system-defined rules.

Android system defines the Launch Mode [3] of an Activity

to determine the evolution of the back stack when the Activity

is launched. The launch mode of an Activity is declared by

default in the manifest file or specified locally using Intent
Flags in the code. We just introduce the launch modes in

manifest file since the Intent Flags share similar rules.

These modes are Standard, SingleTop, SingleTask
and SingleInstance, of which the last two modes involve

complex multitasking interactions that are always used in

cross-app circumstances.

Both in the Standard and SingleTop modes, one Ac-

tivity can be instantiated multiple times. The Standard mode

simply pushes and pops the new launched Activity without

considering the existing Activities in the stack. Different with

Standard, when the Activity is already on top of the back

stack, the SingleTop mode refuses to create new instance

for it. The singleTask and SingleInstance mode do

not allow multiple instances of one Activity. The difference

is that singleTask mode allows other Activities to be part

of its task. If an instance of the Activity with singleTask
mode to be launched already exists, all Activities above it will

be popped until it becomes the top of the back stack. And the

SingleInstance does not allow other Activities be pushed

into its task, i.e., one Activity with SingleInstance mode

is the only Activity in its task. The diversity of launch modes

makes the evolution of the back stack complex so that we need

to take effort in correctly modeling the back stack.

TABLE I
RULES FOR BACK STACK CHANGING

Launch Mode Event Stack Bef. Stack Aft.
Standard Launch M (. . .,a) (. . .,a,m)
Standard Launch M (. . .,m) (. . .,m,m2)
SingleTop Launch M (. . .,a) (. . .,a,m)
SingleTop Launch M (. . .,m) (. . .,m)
SingleTask Launch M (. . .,a) (. . .,a,m)
SingleTask Launch N (. . .,a,m) (. . .,a,m,n)
SingleTask Launch M (. . .,a,m,n) (. . .,a,m)

SingleInstance Launch M ([. . .,a]) ([. . .,a][m])
SingleInstance Launch N ([. . .,a][m]) ([m][. . .,a,n])
SingleInstance Launch M ([m][. . .,a]) ([. . .,a][m])

Here we use some concrete examples to show the rules for

handling launch modes in Table I, where the letters a, m (m2)

and n denote different instances of Activity A, M and N. We

just consider the invocation of Activities in the same app and

do not include the complex cases about cross-app interactions.

The first column gives the launch mode of Activity M while

Activity A and N have the default Standard launch mode.
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Fig. 1. MyLight Application

The second column gives the event to execute and the last

two columns show the arrangement of Activities in the back

stack. Note that the Activity instances in same square brackets

means that they are in the same task, and the back stack will

return to the most recently used task when task switches due

to the back operation (in line 8-10).

C. Motivating Example

We use a self-developed app MyLight for opening the flash-

light hardware to illustrate the motivation of this work. My-
Light contains three Activities, including MainActivity,

SettingActivity and LightActivity. The entry

MainActivity provides a RadioButton with two

choices for setting the manner of the flashlight, Continuous
Lighting or twinkling. After the Start button is clicked, the app

will transfer to the LightActivity if the Continuous Light-

ing button is selected, or transfer to the SettingActivity
otherwise. The users can choose a flash pattern in the

Setting Activity to control the way of the flashlight

twinkles and then jump to the LightActivity. The launch

modes of these Activities are set as SingleTop in the

manifest file.

The four windows of MyLight are displayed in Fig. 1. As we

can see, the only difference between the first two windows is

the status of the RadioButton. In fact, this status will decide

the program behavior after the Start button is clicked. Existing

works (such as [9, 31, 33]) construct the GUI model without

considering the status of widgets, thus they regard these two

windows as the same state. In this case, these approaches will

create only one state for the first two windows followed by

one transition triggered by Start button click and finally get

one of the two models displayed in Fig. 2 (a). That is to say,

some program behaviors may be omitted in the model.

A model with the widget status information is shown in

Fig. 2 (b), in which the Main1 and Main2 states represent

the first two windows respectively. The dash lines represent

the back transitions (triggered by pressing back key) from the

Light state in the model. Since there are two transitions from

different source states (Main1 and Setting) joining into the

Light state, without the back stack information, we do not

know how to go back to the previous state when we press a

back key in the Light state.
To sum up, with the widget status information, we can

construct the model more complete; with the back stack

information, we can clearly know the destination of the stack-

related transitions to avoid faulty paths. Therefore, both the

widget status attributes and the back stack should be regarded

as essential elements in model construction. We draw a model

that considering both the widget status attributes and the back

stack information in Fig. 2 (c), where rectangles attached with

the states Light1 and Light2 represent their back stack. We

split the window with the same widgets into multiple states

in the model according to different widget statuses or back

stacks to ensure that each event in the same state corresponds

to a unique transition.

III. THE PROPOSED MODEL

In this section, we will describe our LATTE model for

describing the GUI information of an Android app. This model

extends the finite state machine (FSM) model [14, 19] with the

information of the status of widgets and back stack. Besides,

we make use of labels to link the transitions in the model to

the code snippets that are executed.

A. Definition of LATTE Model
As discussed before, an Activity may contain multiple suites

of widgets and events in runtime, which may lead to the loss of

some program information when we simply regard an Activity

as one state. To solve this problem, we propose a LATTE

model, whose main idea is to split each Activity into one or

more states, depending on both the widget and back stack

information. The LATTE model can be formally described as

a 5-tuple M = 〈S,La, T, s0, R〉, where
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Fig. 2. Models of MyLight

• S is a set of application’s runtime states. An element

s ∈ S is a triple 〈a,Ws, Ls〉 where a denotes the Activity

that s corresponds to, and Ws indicates the set of widgets

that belong to the corresponding window, and Ls is a list

of Activities in the back stack.

• La is the set of labels.

• T denotes the set of transitions. Each element t ∈ T is

a 4-tuple 〈src, e, la, des〉 representing the transition from

the source state src to the destination state des caused by

event e bound to the state src, and the label set la ⊂ La
denotes the labels assigned to this transition.

• s0 ∈ S is the entry state that represents the initial state

of the app.

• R is a set of terminal states denoting that the current

application quits or jumps to another application, where

set R ⊂ S and each element r ∈ R can not be s0.

B. Label of LATTE Model

To embed the code information into our model, we introduce

a label set La. In general, each element in La corresponds to

a part of specific code. For instance, we can set each label

to represent a distinct method of the app (method label), all

the methods in the same class (class label), or instructions

with a specific keyword (keyword label). The mapping rule

for the labels and the code snippets is designed according to

the actual testing or analysis requirements. A fine-grained rule

can make the model contain more accurate code information

while it increases the model size and the cost of the model

construction. With the mapping rule, the labeling procedure is

implemented via code instrumentation in our approach.

Method Label:
startActivity

Code Snippets:
Lcom/light /MainActivity;−> startActivity (
Lcom/light / SettingActivity ;−> startActivity (
Lcom/light / LightActivity ;−> startActivity (

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Class Label:

Lcom/light /MainActivity
Code Snippets:

Lcom/light /MainActivity;−>onCreate(
Lcom/light /MainActivity;−>openContiLighting(

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Keyword Label:

Camera
Code Snippets:

LAndroid/hardware/Camera;−>open(
LAndroid/hardware/Camera;−>release(
LAndroid/hardware/Camera;−>startPreview(
LAndroid/hardware/Camera;−>stopPreview(

Fig. 3. Labels and Smali Code Snippets

Fig. 3 shows an example of the mapping between la-

bels and corresponding code snippets in the app MyLight.
The method label startActivity represents a distinct

method that can be invoked in any class, the class label

com/light/MainActivity represents all the methods in

the given class and the keyword label Camera represents all

code instructions containing the keyword “Camera”. Fig. 2

(d) illustrates the program model with user set keyword label

Camera in MyLight. The label-related transitions are detected

and marked with red line in the model.

4545



GUI 
Explorer

Model 
Constructor

To B

MainActivity

To A

Activity B

To CTo M

Activity A

To B Stay

APK App Running

Monitor

Apk 
Instrumentation

LATTE Model 

Test Text Input 
Widgets

Test Generation for 
Covering Targets

Scenarios:

Fig. 4. Approach Overview

IV. GUI EXPLORATION

In this section, we propose an approach that dynamically

explores the GUI and automatically constructs the LATTE

model for an Android app. The overview of the approach and

several key elements will be introduced.

A. Overview

Our GUI exploration approach takes an Android apk file

as input, and outputs the corresponding LATTE model. The

basic work-flow of this approach is an iterative operation of

app GUI exploration and model construction. We first initialize

a LATTE model with an empty state and a transition set,

and then launch the app for GUI exploration. When the GUI

exploration procedure drives the app to some windows, we

collect the information of this window for constructing the

model, like information about widgets and the back stack,

and update the model with this information. Then we trigger

each event attached with the widgets in the current window

to traverse all the widgets. The app may be driven to a new

window after an event is triggered, and then we repeat the

above procedure until all states are traversed. We can use

some existing testing frameworks (like Robotium [8]) to obtain

the widgets of a window, traverse each widget and trigger

the events. However, the back stack information can not be

directly obtained (except the top Activity of back stack) by

all of these frameworks. In addition, we also want to link

code snippets to the transitions in the model for the model

reuse. To address these issues, we leverage the byte-code

instrumentation technique to record runtime information which

is related to the back stack and executed code.

Fig. 4 shows the overview of our GUI exploration approach.

It is composed of four modules, including Apk Instrumen-
tation, Monitor, Model Constructor and GUI Explorer. The

Apk Instrumentation module analyzes the apk byte-code and

inserts some extra instructions into it for recording the app’s

runtime information, while the Monitor module records the

runtime information, like the widget information in the current

window and the executed code of the app. The Model Con-

structor initializes an empty LATTE model, and analyzes the

information from the Monitor module to update the LATTE

model. The GUI Explorer module determines the next event

based on the model and triggers this event (e.g., click a button)

to drive the app execution. With the help of the generated

LATTE model, we can perform further testing under different

application scenarios, such as text input widgets testing and

target directed test generation.

We only introduce the Model Constructor and the GUI

Explorer module in this section, while the other modules will

be discussed in Section V. There are three key issues that must

be considered in these two modules: how to obtain the accurate

back stack information during runtime; how to abstract the

GUI windows to the states in the LATTE model; and how

to systematically traverse the GUI widgets and events of the

app for exploration. We will discuss the three issues in the

following subsections, respectively.

B. Obtain Back Stack Information

The dynamic monitoring technique can be used to directly

obtain the top of the back stack (current Activity displayed on

window), but not the complete back stack information. How-

ever, developers may finish current Activity before starting a

new Activity, or start two different new Activity under one

operation, so that the change of the current Activity detected

and the back stack in real is inconsistent. We need to obtain

more back stack information to find out how it evolves.

By further investigation of the back stack mechanism, we

observe that there are three system APIs startActivity,

startActivityForResult and finish that can influ-

ence the operations of the back stack, of which the first

two will create a new Activity and the last one destroys

the Activity. Besides, the implicit callback onBackPressed
determines how the back stack acts when back key is pressed.

For an Activity, the default back operation is invoking API

finish, but for a dialog or menu, its default back oper-

ation is just closing the current window and focusing on

the Activity they belong to. Developers can also overwrite

onBackPressed to meet specific requirements. In addition,

the launch modes defined in the manifest file decide how the

back stack evolves.
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The details of how the back stack updated are shown in

Algorithm 1. We first get the mapping of all the Activities

and their launch modes by analyzing the manifest file (in

line 1). The detailed information of launch mode can refer

to Section II-B. Then we maintain a global stack to simulate

the Android back stack of the app. For any event operation

except the back event, we dynamically monitor the calling of

the above three system APIs (in line 6). Specifically, when

the startActivity or startActivityForResult is

invoked, we update the global stack according to the corre-

sponding back stack updating rules of its launch mode. When

the finish is invoked, we pop the top Activity in the global

stack. When a back event is triggered, we detect the invocation

of onBackPressed (in line 8-11). If it is invoked, the back

stack will evolve according to the calling of the related system

APIs; otherwise, callback function onBackPressed will be

called implicitly. In the latter case, we obtain and compare

the Activity name before and after operation. The changing of

Activity indicates the calling of finish, and the invariability

of Activity indicates the closing of a dialog or menu, which

can be taken as a variant window with different widgets and

can not cause the stack change when opening and closing.

Finally, we assign the information of the global stack to the

back stack of the state in the model.

Algorithm 1 Back Stack Updating

Input: Stack<Activity> stack, runtime info, manifest file

Output: updated Stack<Activity> stack
1: Get the launch mode mapping act mode
2: Get current Activity a1 and perform an event e
3: Get new current Activity a2
4: Monitor the calling of related APIs api
5: if e is not a back event then
6: Update stack according to api and act mode
7: else
8: if onBackPressed() is invoked then
9: Update stack according to api and act mode

10: else if a1 �= a2 then
11: stack.pop()

12: end if
13: end if

C. Calculate State Similarity

In our LATTE model, we treat a window during runtime

as a state with some attributes (package, Activity, widget and

back stack information). When we meet a window, we should

not always create a new state in the model for this window

since it may lead to the explosion of the number of the states.

Instead, we need to define a metric to measure the similarity

of two states and then merge them into one when they are

the same or have high similarity. Existing works [10, 14, 15]

have taken the information of package and Activity as well as

the basic attributes of widgets (see Section II-A) to calculate

the similarity. We pick this information as the state similarity

rule as well. Besides, we also consider some additional factors

that influence the similarity of states in our work, including

the widget status attributes and back stack information.

Let s1 and s2 be two states, W1 and W2 represent the widget

sets in s1 and s2 respectively where each element of them

has two attributes basic and status. Let Sim(s1, s2) denote

the similarity of the states s1 and s2. If two states s1 and

s2 have different package, Activity or back stack information,

then we have Sim(s1, s2) = 0, otherwise Sim(s1, s2) can be

calculated by

Sim(s1, s2) =

⎧⎨
⎩

(1−η)|C1|+η|C2|
|C0| |C0| �= 0

1 |C0| = 0

where the set C0 = {a|∃α ∈ W1, β ∈ W2(α.basic =
a ∨ β.basic = a)} represents the collection of distinct

basic attributes in W1 and W2; C1 = {b|∃α ∈ W1, β ∈
W2(α.basic = b ∧ β.basic = b)} represents the collection of

common basic attributes in W1 and W2 and set C2 = {c|∃α ∈
W1, β ∈ W2(α.status = c ∧ β.status = c)} represents the

collection of common status attributes in W1 and W2. We

define the configurable parameter η (0 ≤ η ≤ 1.0) to adjust

the weight of the widget status for the state similarity where

η = 0 implies that the similarity is calculated by the basic
attribute and η = 1 implies that it mainly depends on the

status attribute. We also introduce a similarity threshold ST .

If the similarity of two states exceeds ST , we will merge these

two states into one to reduce the model size.

To get a deterministic model of app, threshold ST should

be set equal to 1. Note that, the threshold could also be

set less that 1. However, in such a setting, the similarity

relation formulated could lead to different results depending

on the order in which Activities are visited. And with a lower

threshold, we can get less model states and consumption of

model construction. The self-defined threshold will provide a

trade-off between the accuracy and efficiency.

D. Traverse GUI Widget and Construct Model

Algorithm 2 shows the details of our approach to traverse

the GUI widgets and construct the LATTE model, which is

based on the expanded breadth-first search (BFS) traversal

algorithm. In this algorithm, we maintain the model M of the

detected part of app and a queue q storing unvisited states.

The exploration starts from the entry state s0 (corresponds to

the entry window when the app is launched) and ends when

all states have been visited. Here, we call a state that is visited

when all the corresponding events of that state are visited. In

each iteration, we first get the front state sh from the queue

q and automatically drive the app to the state sh according

to the event sequence from the entry state to the state sh that

we record when sh is detected. Next, we select an unvisited

event e of sh and execute it with this event to a new state sn.

Then we collect the runtime information of sn and create a

transition from sh to sn. The event e and the labels la related

to the executed code are also assigned to this transition. Then

we will calculate the similarity values of sn and existing states

in the model M. If the maximum similarity value exceeds the
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threshold ST , we will merge the new state to the existing state

that is most similar to it; otherwise, we will append sn to q
and M as a new state. If all events of sh have been visited,

we mark sh as a visited state and remove it from q.

Algorithm 2 LATTE Model Construction

Input: Instrumented Apk File, Label Set

Output: LATTE model M
1: var: Queue<State> q
2: initialize q with the entry state s0
3: while q is not empty do
4: Drive the app to the front state sh in q
5: Perform an unvisited event e of sh
6: Obtain the stack information and label set la of e
7: Create a new state sn
8: Create a transition from sh to sn with e and la
9: Find state sm that has the maximum similarity with sn

10: if Sim(sm, sn) > ST then
11: Merge sn to sm in model

12: else
13: Append sn to queue q and model M
14: end if
15: if all events of sh have been visited then
16: Remove sh from q
17: end if
18: end while

V. TOOL IMPLEMENTATION

We have implemented our proposed techniques into a tool

called LAND in Java language. In this section, we will briefly

introduce the implementation of its major modules.

To obtain the back stack information and executed code

snippets during runtime, we leverage the instrumentation

technique to insert a few statements into the original app.

The statements inserted are called program probes. They

are usually added for examining the execution of program

statements and runtime change of variables. These probes will

work during the dynamic running of instrumented application,

and provide runtime information of program statements. The

instrumentation technique is often implemented on the source

code, but the source code is not always available especially for

apps in Android markets. Hence, we perform instrumentation

on the “smali” byte-code, a readable format of the byte-code

of Android app. The smali format provides multiple keywords,

e.g., the .method keyword denotes the beginning of a method

body and invoke keyword is used to invoke the indicated

method. We rely on ApkTool [5] to decompile the apk file

and generate the corresponding smali code. Then we take a

light-weight byte-code analysis, which helps to find the proper

location for instrumentation according to the grammar and

semantic context of original program. We make use of our

tool InsDal [24] to instrument additional code to capture the

runtime information on Android phones.

In the GUI Explorer and Monitor module, we implemented

a script on top of Robotium to trigger the specific event,

drive the app to run, and obtain the widget information of a

window during runtime. Robotium is an open source Android

test framework that drives the app to execute under manually

designed test cases. It is based on the test instrumentation

mechanism [1] provided by Android system, that can monitor

the interaction of application and Android system, and control

the execution of the app. Robotium also provides a series of

APIs to capture and access the widgets and send instructions

to simulate user events.

VI. EVALUATION

In this section, we will present our experimental results of

GUI exploration and model construction. All of our experi-

ments are done on a mobile smartphone with 1.82GHz CPU

and 3GB RAM.

A. Experimental Setup

To evaluate the effectiveness of our approach, we raise

several research questions as follows.

• RQ1. Can the GUI exploration approach achieve a high

code coverage of apps?

• RQ2. How does the similarity impact the model size and

coverage?

• RQ3. How can we reuse the LATTE model for further

testing?

To answer these questions, we collect 20 real-world apps

as experimental instances. Tool LAND is applied to construct

LATTE model for them and a series of experiments are

conducted on them. Table II lists the detailed information

of these experimental instances, of which the first ten apps

are from F-Droid [7] (with source code) and the rest ones

are from the commercial market (without source code). The

first column denotes the name of an app. The following four

columns show the size (MB) of the app, the numbers of its

classes (#C), methods (#M), and Activities (#A). The last three

columns give the numbers of Activities whose launch mode is

not Standard (#NS), back stack related API calls (#B) and

widgets that have dynamic status attributes (#W).

For RQ1, we measure the effectiveness of GUI exploration

approach with the code coverage on the behavior of apps.

The code coverage can be calculated by analyzing the basic

information of byte-code and collecting the runtime informa-

tion of executed code. We pick two popular automatic testing

tools Monkey [4] and Dynodroid [25] for comparison, since

a recent research [17] shows that Monkey and Dynodroid

achieve higher coverage than other existing testing tools for

Android apps. The number of generated events for Monkey is

10000 and for Dynodroid is 2000 (same with what Machiry

et al. suggested in their work). The similarity threshold ST of

LAND is set to an experimental value 0.8 (refer to Section

VI-C).

For RQ2, we design experiments to show that how the

similarity setting of states influences the size of LATTE model.

In these experiments, we set the value of threshold ST from 0

to 1.0 and compare the number of transitions in the generated

LATTE model and the code coverage by traversing this model
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TABLE II
EXPERIMENTAL APPLICATIONS

App Name Size #C #M #A #NS #B #W
aGrep 0.34 46 174 6 2 21 3

aLogcat 0.14 35 185 2 1 15 3
BookCl 2.73 877 4361 35 2 174 15
Budget 0.19 63 272 8 0 27 1

HotDeath 7.93 28 355 3 0 4 0
PassWordMP 1.67 89 452 8 0 43 13
TippyTipper 0.09 44 226 5 0 7 3
TomDroid 1.08 154 834 8 0 54 8
WebSearch 1.90 45 176 3 0 46 2
WhoHasMS 0.79 24 139 2 0 32 3

Btime 14.86 3752 25641 217 12 1037 21
BubeiListen 3.84 902 4637 91 8 491 0

Compass 1.38 29 316 2 0 69 0
Cradio 1.57 43 486 6 0 72 3

Flashlight 5.44 91 479 11 4 72 4
FreshBowser 2.29 164 463 7 1 29 3
QiuShiBaiKe 14.31 2803 15482 146 9 729 21
SaoleiGame 0.34 23 111 3 0 13 4

SgSearch 8.42 272 1083 66 8 305 26
Terminal 11.67 6 24 4 0 88 2

under different values of ST . A higher threshold ST may cause

more state splitting and lead to a more accurate model, and

further lead to a higher code coverage.

The generated test cases based on LATTE can be manually

adjusted for specific testing goals. For RQ3, we utilize LATTE

model for test generation in two application scenarios. The

first scenario is testing text input widgets. Most apps make

use of the text input widget EditText to accept a string

from users, therefore, we need to reach these widgets and

then use various strings to test them thoroughly. With the help

of LATTE model, we can easily generate test sequences to

cover these widgets. Then, for each widget in the sequence,

we design ten test inputs based on black-box testing techniques

(e.g., boundary value analysis) to replace the original random

generated strings, and retest the apps.

Another scenario is test generation for covering targets. In

practice, the testers often concern some specific part of codes,

for example, when the testers want to analyze a functionality

of the app, they only focus on the methods related to this

functionality. We call the set of these specific code the “target”,

which is a subset of labels in the label set La. We consider

two types of targets in this paper, including a set of specific

user-developed methods and a set of system APIs related

to resource and privacy. The misuse of the latter will cause

performance and security problems [13, 22, 29]. Experiments

are done between LAND and Monkey to compare the minimal

sequence length they need to cover the given target. To get the

minimal sequence length of Monkey, we implement a script

to repeatedly run Monkey with the event limits increased by

1000 in each iteration, until the given target is covered.

B. The Code Coverage of GUI Exploration

In this section, we first generate the test suites for each ex-

perimental instance by Monkey, Dynodroid, and our approach

respectively, and then calculate the coverage of these three test

suites. For the apps with the source code, we calculate the

method coverage (#MC) and line coverage (#LC) by EMMA
[6], a code coverage measurement tool for Java programs. For

the commercial apps without source code, there is no publicly

available code coverage measurement tool. So we make use

of the tool InsDal to record the executed code information

during runtime and calculate the class coverage (#CC) and

method coverage on byte-code.

TABLE III
COVERAGE COMPARISON ON DALVIK BYTE-CODE

App Name LAND Monkey Dynodroid
CC MC CC MC CC MC

aGrep 83 52 58 33 76 58
aLogcat 74 67 65 58 72 64
BookCl 51 41 27 24 30 26
Budget 76 65 59 52 – –

HotDeath 86 79 68 54 85 72
PassWordMP 74 57 67 52 – –
TippyTipper 93 77 55 58 – –
TomDroid 60 42 38 32 58 40
WebSearch 69 58 64 49 62 57
WhoHasMS 91 57 75 44 – –

Btime 37 22 10 6 – –
BubeiListen 55 53 35 32 19 11

Compass 53 21 55 24 48 14
Cradio 81 57 77 54 – –

Flashlight 67 53 60 49 – –
FreshBowser 90 64 52 31 65 41
QiuShiBaiKe 40 30 20 14 – –
SaoleiGame 78 58 78 56 82 64

SgSearch 46 38 36 27 29 18
Terminal 100 80 100 80 100 76

TABLE IV
COVERAGE COMPARISON ON SOURCE CODE

App Name LAND Monkey Dynodroid
MC LC MC LC MC LC

aLogcat 69 62 57 51 68 60
Budget 64 56 50 45 – –

HotDeath 71 55 54 43 69 53
TippyTipper 70 64 67 59 – –
WhoHasMS 65 53 60 47 – –

We compare the coverage of the test suites generated by

different testing tools and the detailed information about

coverage results are in Table III and IV 1. The first table shows

that the #CC (%) and #MC (%) of all apps and the second

one shows the #MC (%) and #LC (%) of the apps with source

code. Besides, for some of the instances, Dynodroid fails to

report the test results and we use “–” to represent them in

the tables. As shown in the tables, LAND can reach higher

coverage (about 20% improvement on average) in most cases

than Monkey and Dynodroid.

Let us use a specific app, i.e., Tippy Tipper to demonstrate

how the widget status and the back stack influence the GUI

model of the app. The app Tippy Tipper is a popular open

source calculator app, which can be used for calculating the

tip amount for a meal. The user can enter the meal amount on

1Table IV only gives the results of five apps of the ten open-source apps, as
EMMA crashes due to engineering reasons and fails to measure the coverage
of the rest five apps in our experiments.

4949



the entry screen and get the result by clicking the Calculate
button. Both the entry and result screen are attached with

a menu. If the menu item Setting is selected, the app

will take the user to the Setting window. The paths that can

reach the Setting window are 〈Entry, Setting〉 and 〈Entry,

Result, Setting〉. Although the final GUI window “Setting”

they reach is the same, their back stacks are different. If

we send a Back event to the app at these two windows,

their behavior will be different. Therefore, they should not

be merged as one state. Besides, there is a CheckBox called

Enable Exclude Tax Rate on the Setting window. If

its status is “checked”, the button Tax Rate to Exclude
below it will be enabled on current Activity, or else disabled.

Clicking the button Tax Rate to Exclude will drive the

app to a new dialog window. In this occasion, the status

change of a widget influences other widgets related to it,

furthermore, it influences the corresponding events of current

state. We measured the size of model influenced by widget

status and the back stack in this case. Without considering

these characteristics , the model contains 10 states and 172

transitions. And it will grow to 23 states and 450 transitions

if these details are considered.

Fig. 5. Tippy Tipper Application

C. State Similarity and Model Size

In this subsection, we will discuss the impact of ST on

the size of the model and the benefit to the coverage from

high ST . The value of threshold ST is set from 0 to 1.

We apply our tool to ten experimental instances to generate

the LATTE model, and compare the numbers of states and

transitions in the generated LATTE model and the method

coverage of this model under different values of ST . Here, the

method coverage is calculated as the total number of methods

in the app divided by the number of methods executed during

the model construction, which is an indicator about the code

coverage of the model. A high threshold ST may cause an

extremely large even infinite model size. For example, apps

with the file picking functionality will have an extremely large

model size that causes its window to dynamically change a lot.

Therefore, we set 3 hours as the upper bound of the execution

time, record the final number of transitions and do not show

the coverage result if the model construction is not finished

within this bound.
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Fig. 6. Impact of Similarity Threshold

Fig. 6 demonstrates the tendency of the number of tran-

sitions in model and the method coverage on byte-code of

generated test cases under different ST value for the ten open-

source apps. As we can see, with the increase of similarity

threshold ST , the size of the model increases dramatically.

Obviously, the cost of model construction will increase ac-

cordingly. However, the coverage of test suites generated from

the model will not increase significantly when ST reaches a

certain level. Therefore, ST is a proper control variable to

make a trade-off between the accuracy and efficiency. We find

that 0.8 is a reasonable choice according to the result and use

it as the default value in the following parts.

D. Application Scenarios

In this section, we will briefly introduce two application

scenarios based on our LATTE model.

1) Test Text Input Widgets: For the 20 apps in our bench-

mark, 18 apps have at least one EditText widget. We
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observe that the app Budget crashes by throwing the exception

NumberFormatException under our generated string as

input. Besides, four apps display unfriendly interfaces, in-

cluding empty item name (WhoHasMS), messy long string

displaying (Budget, Cradio) and blank window caused by

abnormal font size setting (Tomdroid). Some of these abnormal

displays are shown in Fig. 7. These experimental results

indicate that our model can be effectively reused for the in-

depth testing of EditText.

(a) WhoHasMS (b) Budget

(c) Cradio (d) Tomdroid

Fig. 7. Abnormal Displays

2) Test Generation for Covering Targets: In this part, we

set different targets for the randomly picked experimental

instances, and compare the targeted event sequences generated

using LATTE model and random event sequences generated

by Monkey, which is shown in Table V. The first column

shows the application name, while the second column gives

the targets in the apps. We select several user-defined methods

(e.g., showCardHelp) as well as the system APIs that are

related to either resources (e.g., AudioRecord.release)

or privacy (e.g., ContactsContract.content_uri) in-

formation. The third column (#MK) gives the minimal number

of events for Monkey to cover the target. Note that the number

of events n denotes Monkey can cover the target by an event

sequence whose length is in the range of (n − 1000, n]. The

fourth column (#EM) gives the number of generated events in

the model construction and the fifth column (#ET) gives the

minimal length of the event sequences generated using LATTE

model that involve the target.

VII. RELATED WORK

There are many kinds of GUI testing approaches for An-

droid apps, including model-based testing, random testing and

TABLE V
TEST GENERATION FOR COVERING TARGETS

App Name user-defined method/
system API #MK #EM #ET

Cradio search,add,addDel 4000 209 14
HotDeath showCardHelp 3000 221 3

PassWordMP onExportClick 12000 199 2
SgSearch addCard 15000 869 4
TomDroid delNote,undelNote 42000 460 12

BubeiListen Url.openConnection 13000 566 5
Budget VelocityTracker.obtain 6000 310 2

SaoleiGame Chronometer.stop 3000 81 2
QiuShiBaiKe Camera.open 4000 1814 2
WhoHasMS ContactsContract.content uri 8000 124 2

systematic testing techniques. In this section, we will introduce

several representative works based on these approaches and

highlight the differences between our work and theirs.

Model-Based Testing. Several researches construct the

model by static analysis for testing. W. Yang et al. [31] model

the GUI behavior of application as an FSM. They proposed

an approach that uses static analysis on Java source code of

Android to extract actions associated with view components on

a GUI state. S. Yang et al. [30] provided a similar model called

Window Transition Graph (WTG), with a more accurate static

callback analysis. It gives a more careful model containing

the stack and window transition information. There are some

differences between them and our work. The first one is that

their model construction relies on the source code of the

app, while we can handle the apk file directly. The second

one is that they build a model statically that might miss the

changes of GUI screen during runtime. Mirzaei et al. [27]

aim at extracting the dependencies of GUI elements to reduce

the number of test cases. The reduction is under the help of

Interface Model and Activity Transition Model (ATM), which

describe the GUI inputs of widgets and transition relationship

of Activities respectively. However, the ATM omits the back

stack attribute and the dynamic window changes.

Some researchers [16, 19] leverage dynamic techniques to

construct the model. Amalfitano et al. [10, 11] implemented

tool AnroidRipper to explore the GUI widgets of the app.

However, the approach always creates a new state in the model

after an event is triggered without calculating the similarity

between windows. As a result, each GUI window may be

included multiple times, which makes the size of the model too

large. Azim et al. [14] design a static analysis algorithm on the

app to extract the Static Activity Transfer Graph (SATG), and

use dynamic GUI exploration to handle dynamic Activities

layouts to complement the SATG. They also present a tool

A3E for systematically exploring real-world apps. However,

they regard the Activity as the minimum unit in ATG and also

do not consider the different statuses of widgets and the back

stack information of the same Activity. Because of automated

testing mostly falls short of handling mobile apps’ complex

interactions, Li et al. [23] present a user-guided technique

which exploits user insights to complement automated testing.

This approach can work with other GUI-testing approaches.
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There are many factors that affect the precision of the

model for testing. For example, our work has not taken into

consideration of the diversity of different mobile platform

features. Galindo et al. [18] proposed an approach that uses

automated analysis of feature models to optimize the testing

of variability-intensive systems. Their approach can help to

maximize the benefit while meeting a budgetary constraint of

testing cost.

We have tried several model-based testing tools, such as

Android Ripper and A3E. These tools were developed years

ago and are incompatible for newly released Android apps,

including most of our benchmarks, which also has been

mentioned by Mirzaei et al. [27]. Therefore, the experimental

comparison between these tools and LAND is not included in

this paper.

Random Testing. In random testing, the test events will

be generated randomly with less care of current state of the

application under test. Monkey [4] is a widely used black-

box testing tool, which can send sequences of random events

to Android apps. It is a simple and fully automatic tool that

can generate a great deal of test events within a short time.

Zent et al. [32] use Monkey to conduct an industrial case

study and report Monkey’s limitations in an industrial setting.

There are also works based on Monkey for detecting GUI bugs

[20] and security bugs [26]. However, Monkey is not suitable

for generating highly specific event sequences. Dynodroid

[25] proposed by Machiry et al. provides a more efficient

random GUI exploration approach compared with Monkey.

They define several strategies for selecting events to guide the

test generation procedure and support system event generation

by instrumenting the Android framework.

Systematic testing. Systematic testing is another testing

approach that will be applied in more complicated circum-

stances. For example, we must generate specific testing data

to reveal the specific application behavior. ACTEve [12] is

a concolic-testing tool that generates sequences of events

automatically and systematically. It symbolically tracks events

from the generated point in the framework to the handled

point in the app, thus both the framework and the application

under test need to be instrumented. Jensen et al. [21] provides

another concolic-testing approach that aims at automatically

finding event sequences that reach a given target line in the

application code. This approach improves automated testing

for Android applications that are not computationally heavy

but may have complex user interaction patterns. However, their

work using symbolic execution can only process Integer
but not String or other complex data types. In addition, this

approach also needs a model for test case generation and they

build it manually.

VIII. CONCLUSION

We proposed a widget-sensitive and back-stack-aware ex-

ploration approach for testing Android apps. During the ex-

ploration, we build the LATTE model which takes into con-

sideration the changes of GUI widgets during runtime omitted

by static analysis as well as the back stack information using

a dynamic construction approach. To balance the accuracy

and size of model, we introduce a metric “state similarity” to

merge similar states. Our model also represents some of the

code information via the label mechanism. The experimental

results show that with the help of comprehensive information

of widget and back stack, the GUI exploration approach can

describe the behavior of apps more accurately and completely

and thus achieve a higher coverage compared to the state-of-art

exploration tools. It also indicates that the generated LATTE

model is well-designed to be reused for further testing.

Currently the functionalities of our GUI exploration tool

rely on the testing framework for generating events to drive

the app. In the future, we will manage to enhance a testing

framework by supporting the cross-app testing and system

events, etc.
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