
Variable-Strength Combinatorial Testing of Exported Activities
Based on Misexposure Prediction⋆

Xi Denga,c, Jiwei Yanb,c,∗, Shixin Zhangd, Jun Yana,b,c and Jian Zhanga,c

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
bTechnology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China
cUniversity of Chinese Academy of Sciences, Beijing, China
dSchool of Software Engineering, Beijing Jiaotong University, Beijing, China

A R T I C L E I N F O

Keywords:
Android Application
Exported Activity
Static Analysis
Robustness Evaluation
Combinatorial Testing

A B S T R A C T

Exported Activity (EA), a kind of activities in Android apps that can be launched by external
components, is one of the most important inter-component communication (ICC) mechanisms.
In combinatorial testing of EAs, although exhaustive testing of all possible combinations of
input elements is ideal, it is often not feasible due to the combinatorial explosion of test cases.
This paper presents ExaDroid, a novel variable-strength combinatorial testing framework for
generating test suites for exported activities. ExaDroid is based on two observations: many
activities are unintentionally exposed, and the complexity of input interactions in activities can
be very limited. ExaDroid uses misexposure prediction and complexity analysis to decide the
(default) testing strength of an EA. It also leverages input interactions to focus testing resources
on important combinations by setting stronger (variable) test strengths on certain attributes. Our
experiments have confirmed that ExaDroid is capable of trigger many unique crashes using a
dozen or so test cases. The tool successfully found 100 unique crashes across 135 EAs in 30
apps, at an average cost of 14.2 test cases per EA.

1. Introduction1

The Android app market has seen an increase in specialized and collaborative app functionality. For example, an2

electronic payment app can be invoked by multiple third-party e-commerce apps to perform the payment process. The3

Exported Activity mechanism (EA for short) allows for collaboration between apps, but it can also lead to malicious4

manipulation and data leakage [20, 44]. Thus, activities need to be carefully implemented to avoid errors such as5

accepting unexpected data and throwing uncaught exceptions. This paper proposes an efficient approach to detect such6

defects by studying how Exported Activities are exported and implemented.7

Statistics for real apps show that about two-thirds of apps have at least one exported activity (EA), with EAs8

accounting for about 8.6% of all activities [51]. The first question that arises is: Are all such exposures necessary? The9

recent Android 12 framework also mandates that developers be aware of the exposure state [11], but we found some10

EAs arise from copy-pasting or display debugging screens and may not be necessary. The second question is: How11

do the exported activities interact with callers? In this paper, we define a concept of Intent-handling complexity to12

express possible interactions between EAs and callers, where the Intent is the basic data structure for inter-component13

communication in the Android system. We found that many EAs are quite simple and generating hundreds or thousands14

of test inputs is a waste of resources.15

The current methods for testing Android apps lack awareness of these characteristics of EAs and do not utilize16

them to guide testing. Random generation or mutation-based fuzzing [45, 33] is time-consuming and hinders manual17

review of test results, as hundreds or thousands of test intents for an activity is generated. Symbolic execution-based18

approaches [52, 30] traverse execution paths in the activity but rely on constraint solving and cannot handle complex19

intent structures well. This paper presents ExaDroid, a novel variable-strength combinatorial testing (CT) framework20

⋆This work is supported by the National Natural Science Foundation of China (Grant No. 62102405 and No. 62132020) and the Key Research
Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC036).

⋆⋆We are grateful to Yajun Zhu for proofreading.
∗Corresponding author

dengxi@ios.ac.cn (X. Deng); yanjw@ios.ac.cn (J. Yan); zhangsx@bjtu.edu.cn (S. Zhang); yanjun@ios.ac.cn (J. Yan);
zj@ios.ac.cn (J. Zhang)

ORCID(s):

First Author et al.: Preprint submitted to Elsevier Page 1 of 28

Variable-Strength Combinatorial Testing of Exported Activities

that efficiently generate test suites for EAs and adapts testing strengths according to EAs’ characteristics. As shown21

in Figure 1, this paper extends our previous work [51] of misexposure characteristic prediction (marked in orange) to22

facilitate the combinatorial testing.23

Vulnerability Detection
by Variable-Strength

Combinatorial Testing

Combinatorial TestingStatic Analysis

Misexposure Predicting
from EA Declaration

Complexity Analysis of
Intent Handling in
EA Implementation

Guide

Figure 1: Misexposure Prediction and Intent Analysis Guided Combinatorial Testing on EAs

It is acknowledged that modeling of the complex input intents is of great importance. This is due to the flexibility24

of Intents in Android, as the Inter-Component Communication (ICC) mechanism allows for dynamic target selection25

and runtime binding [33]. Consequently, statically analyzing activity implementations to obtain specific structures26

is necessary for accurately modeling incoming intents for a given EA. We propose obtaining function summaries to27

express the input structures and to assist in model building. The next step is to select representative test intents from28

the model. While fuzzing-based methods are random and symbolic execution-based techniques are constrained by29

analysis and solving techniques, this paper adopts combinatorial testing technique to sample representative test cases.30

It is based on the observation that many faults are caused by combinations of a few input fields [40]. Combinatorial31

testing can achieve the coverage goal of combinations with as few test cases as possible.32

Considering the characteristics of the EA, we optimize the coverage target setting by employing an adaptive33

variable-strength strategy. The strength in combinatorial testing represents the size of the combination to be cov-34

ered [23]. We select model elements based on the functional summary of the EA and adjust the strength according35

to the EA’s characteristics. Misexposed activities have a lower strength, resulting in fewer test cases, while properly36

exposed activities undergo thorough testing with higher strength. We believe that the exposure or non-exposure of an37

activity imposes varying requirements on the activity’s robustness. The strength is also determined adaptively based38

on the complexity of the EA indicated by the function summary. During static analysis, we extract the activity path39

summary, which helps in generating structured caller intents and identifying dependencies among Intent attributes.40

By focusing more testing resources on these attribute combinations, ExaDroid effectively triggers errors and explores41

program behaviors.42

We have developed ExaDroid, a tool that takes an app as input and maintains a dataset of caller Intents. It43

provides misexposure prediction results and detects bugs. In our evaluation, we utilized comparative datasets and an44

open-source application benchmark [53]. The experimental results demonstrate the following findings: (1) ExaDroid45

identifies properly exposed EAs (MustEA), which exhibit greater robustness, and misexposed EAs (MustIA), which46

are more vulnerable. (2) Existing approaches that do not incorporate static analysis of EA implementations or adapt47

testing strategies to EA characteristics can result in numerous ineffective tests. (3) ExaDroid evaluates EAs effectively,48

requiring an average of 14.2 test cases. Furthermore, ExaDroid successfully uncovered 100 unique errors across 3049

applications, surpassing the results of symbolic execution-based approaches in terms of error detection.50

In summary, this work contributes in the following three aspects:51

1. Uncovering the phenomenon of misexposed and low-complexity EAs. We design a fully automated testing52

framework ExaDroid 1, based on the phenomenon, to improve the efficacy of testing approaches by considering53

variable-strength combinatorial testing;54

2. Employing multiple techniques for EA analysis. The framework utilizes techniques such as misexposure55

prediction, Intent-handling complexity analysis, and function summary abstraction to analyze EA declarations56

and implementations.57

1Both our tool and the related data are publicly available on GitHub (https://github.com/LightningRS/ExaDroid).

First Author et al.: Preprint submitted to Elsevier Page 2 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 1
Intent Attributes

Category Manifest Java Attribute Value Type

Basic ✓ ✓ action, data, type String

category set of String

Extra X ✓ extra
set of ⟨key, type⟩ pair,
key: String,
type: Primary, Object or Bundle

3. Implementing a prototype and experimenting on different benchmarks. The results demonstrate that ExaDroid58

effectively discovers unique crashes using an average of a few test cases.59

The paper is organized as follows. Section 2 presents the background information on Android Activity and Intents.60

Section 3 and 4 offer a motivating example to illustrate the challenges addressed in the paper and provide an overview61

of the ExaDroid testing framework. Section 5 presents the combinatorial testing strategy backed with static analysis62

results, which relies on the misexposure prediction technique and complexity analysis in Sections 6 and 7. Section 863

describes the implementation and experimental evaluation of ExaDroid. The paper concludes with the threats to64

validity, an overview of the related research, and a discussion of our future work.65

2. Background66

This section provides the background knowledge about Android system and exported activity.67

2.1. Android Activity68

The Android operating system, which is open-source and Linux-based, is primarily used on portable devices.69

Android apps are mainly written in Java and compiled into Dalvik byte-code, with some configuration files like the70

manifest file. Those apps have four types of components, including Activity, Service, Content Provider, and Broadcast71

Receiver, with Activity being the most commonly used component [29]. Activities can be internal (IA) or exported72

(EA), with the latter allowing other apps to launch it, making it an effective way for inter-component communication73

among multiple apps. This paper focuses on analyzing the activity declaration in manifest files, the activity’s Java code74

that handles ICC messages, and the caller’s Java code that sends ICC messages.75

2.2. Intent Attributes76

Intent [15] is the composition used for activity invocation and input wrapping. Intent attributes are divided into77

two types: basic and extra attributes. Basic attributes, such as action, category, data and type, represent the78

functionality of an activity and can be declared in the intent filters in the manifest file and used in Java files. The79

caller activity can attach an intent with different types of attributes via a series of overloaded APIs, as shown in80

Table 2. Column Manifest and Java use ✓and X to indicate whether the attribute is present. Often, owing to the Activity81

Exposing and Launching mechanism in Section 2.3, the manifest declares more values of attributes than those which82

are actually received and handled in the code[52]; however, the code can also accept values other than declared. There83

are often mismatches between the attribute declaration and usage.84

Besides basic attributes, ICC messages also accept extra attributes. The extra attribute has many fields in the85

form of key-value pairs, which can be categorized into primary, object, and bundle types based on the value type. This86

attribute is only used in code and can be retrieved by the receiver activity using Android APIs. According to Android87

API document [15], the value can be any type of the Java primitive data type, e.g., Integer, Boolean, or other88

types like String, Array and ArrayList, etc. For example, the use of API getIntExtra("city") is to retrieve an89

integer value according to the key city. The value of an extra field can also be an object type (Serializable and90

Parcelable) or a bundle type (Bundle). The object type denotes an object implementing a specific interface, and a91

bundle type is a set of key-value pairs that stores a group of sub-items in types of primary, object or nested bundle92

field.93

2.3. Activity Launching and Exposing94

In Android programming, an activity that can be called from outside the application is called an exported activity95

(EA), while an activity that cannot be accessed externally is called an internal activity (IA). The Android system96

First Author et al.: Preprint submitted to Elsevier Page 3 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 2
Common Attribute Assignment APIs of Intent

Intent Basic Attribute Intent Attribute Assignment APIs

component setClass(Context, Class), setClassName(String/Context, String),
setComponent(ComponentName), Intent(Context, Class)

action setAction(String), Intent(String)
category addCategory(String)
data setData(Uri)
action, data Intent(String, Uri)
action, data, component Intent(String, Uri, Context, Class)

allows activities to be exposed to other applications through the use of the android:exported attribute and intent97

filter. There are two rules to expose an activity, according to the Android reference [13].98

• An activity can be exposed if its android:exported attribute is set to true. This element sets whether the99

activity can be launched by components of other applications100

• If the attribute android:exported is not set, an activity will also exposed if it contains at least one intent filter.101

Each intent filter includes one or more instances of action, category and data. 2
102

Activities in Android can be invoked through explicit or implicit intents. Explicit intents use the fully-qualified103

activity class name, while implicit intents can invoke a component without knowing the exact component name [15].104

Intent filters are used to match implicit intents with activities, and the Android system compares the action, category,105

and data attributes of the intent with those declared in the intent filters. Any fields in an implicit intent must be included106

in an intent filter, then, the Android system determines that they are a matched. It is important for developers to include107

the default category to ensure the mapping with implicit intents, because android.intent.category.DEFAULT will108

be added by default when an intent is created without a category. Additional criteria, such as permissions and priority,109

can also be used for filtering insecure callers. If multiple intent filters are compatible for an intent sent by a caller, the110

system displays a dialog showing options for users to pick which component to start.111

3. Motivation112

This section explains the declaration, implementation, and launching process of Android EAs using a simple113

example. It also discusses the challenges and proposed solutions by analyzing the characteristics of the Android EA114

mechanism and the limitations of related works.115

3.1. Motivating Example116

Figures 2 and 3 show the declaration and implementation of an EA FooActivity, respectively. In the manifest file,117

this EA declares the element android:exported=“true” and an intent filter. The intent filter enables the EA to be118

launched by implicit Intents that contain the action com.intent.action.getDrink and have no category or only119

the default one. Whether in response to an explicit or implicit call, when the EA in Figure 3 is launched, its life-cycle120

method onCreate() will be called. In line 4, the activity gets the incoming Intent through the API getIntent().121

Then, the value of each attribute carried in the ICC message will be obtained through several APIs, e.g., using API122

getAction() to get the value of basic attribute action and using API getStringExtra(String str) to get the123

value of primary extra field with a specific key. These values are typically used for branch picking, logging, or other124

purposes.125

Figure 4 illustrates how to construct an intent in another activity to launch FooActivity. An intent instance is126

created with a string that denotes the action attribute. The category attribute can be set by invoking the method127

getCategoryStr() (line 4). If not set, a default value will be added automatically. Additionally, line 5 attaches an128

2After our previous paper [51] pointed out the misuse of this mechanism, Google’s new generation of Android system (Android 12, API level
31) requires the element android:exported to be set to an explicit value [13]. It suggests developers specify the element android:exported
as true for activities that contain intent-filters. That is, only the former exposure rule is allowed in the latest system. Considering that the old
versions of Android systems occupy most of the market (running on 86.7% of devices [27]), this article analyzes activities exposed in both ways.
The mis-exposure patterns under them are different but similar.

First Author et al.: Preprint submitted to Elsevier Page 4 of 28

Variable-Strength Combinatorial Testing of Exported Activities

1 <activity android:name="FooActivity" android:exported="true" >

2 <intent-filter>

3 <action android:name="com.intent.action.getDrink"/>

4 <category android:name="android.intent.category.DEFAULT"/>

5 </intent-filter>

6 </activity>

Figure 2: Manifest Declaration of FooActivity

1 public class FooActivity extends Activity {

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 Intent intent = getIntent();

5 String action = intent.getAction();

6 String drink, cake;

7 if(action.equals("android.intent.action.getDrink")){

8 drink = intent.getStringExtra("drink");

9 }else if(action.equals("android.intent.action.getFood")

10 && intent.getBundleExtra("food")!=null){

11 cake = intent.getBundleExtra("food").getString("cake");

12 }

13 if(drink!=null){

14 logger.info("haveDrink "+

15 intent.getBooleanExtra("haveDrink"));

16 }else{

17 logger.info("cake "+ cake.trim());

18 }

19 }

20 }

Figure 3: FooActivity Implementation

1 public class FooLaunchActivity extends Activity {

2 public void startWithData(String uriData) {

3 Intent intent = new Intent ("com.intent.action.getDrink");

4 //intent.addCategory(getCategoryStr());

5 intent.putExtra("drink", 0);

6 this.startActivity(intent);

7 }

8 }

Figure 4: Activity for Launching FooActivity

integer value of 0 to an extra field that has the key “drink”. Finally, the API startActivity is used to send the129

intent. It is important to note that the intent is essentially a data container that has a set of optional attributes.130

The objective of this paper is to automatically assess the robustness of EAs, which refers to their ability to handle131

unexpected data with sufficient testing. Robustness issues in EAs arise due to missing or inappropriate key-value pairs132

(in the basic attributes or fields of the extra attribute), which can lead to NullPointerException. For example, if133

a value is absent, the invocation getAction() in Figure 3 will return null. Further dereferencing manipulations134

like .equals() on the unexpected value could trigger an exception. Additionally, the input intents’ special values135

can cause wrong program execution, resulting in app crashes. For example, line 6 of Figure 3 declares two String136

variables drink and cake. As shown in the following lines, the value of action attribute is used in branch picking137

conditions. In the two branches, either the variable drink or cake gets values from the intent fields. The intent in138

Figure 4 carries action=“android.intent.action.getDrink”, so it will assign the variable drink. However,139

its extra field of the key “drink” is assigned an inappropriate type int, therefore the value of variable drink is null.140

Hence, line 13 to 18 of Figure 3 accept unexpected cases. The FooActivity in line 17 expects the cake variable is141

assigned in line 11. However, the cake variable is not initialized and calling trim() throws an exception.142

First Author et al.: Preprint submitted to Elsevier Page 5 of 28

Variable-Strength Combinatorial Testing of Exported Activities

3.2. Challenges and Solutions143

The first challenge in effectively detecting robustness defects lies in the modeling of the complex attributes of the144

input Intents. Under dynamic target selection and runtime binding [33], Intent can have a flexible structure, but an145

activity only responds to certain inputs reflected in its declaration and implementation. Additionally, the declaration146

and implementation may not be consistent, as shown in an example where the code uses a candidate value of action147

(android.intent.action.getFood) that is not declared in the manifest. Not to mention that the valid extra148

attribute structures and keys are only pictured in the implementation. Hence, to effectively model incoming Intents for149

a given EA, static analysis of the activity implementation is required to obtain specific attribute values and structures.150

The second challenge is how to select representative test intents from the model. Two existing approaches151

are generation or mutation-based fuzzing and symbolic execution-based approach. Fuzzing results in hundreds or152

thousands of test intents for each activity [45, 33], which is costly and hinders manual review of test results. Symbolic153

execution-based approach [52, 30] collects constraints along each execution path, but constraint solvers don’t handle154

attributes’ string values very well (operations like split() and lastIndexOf() can not be converted into SMT155

constraints [47]). Not to mention the complex data types of extra attribute and exception throwing conditions. So156

the symbolic execution-based works also use mutation to enhance testing with null value, boundary values, etc. The157

article proposes the use of combinatorial testing to generate a limited number of test cases from a test model. Given an158

EA’s Intent structure and attribute candidate values, combinatorial testing generates the fewest test cases that satisfy a159

heuristic coverage metric. It is based on the empirical finding that across various domains, all failures could be triggered160

by combinations of maximum four to six values [23]. Therefore, the heuristic 𝑡-way (𝑡 is an integer less than or equal161

to 6) coverage can sample a small number of tests to achieve error detection. The same finding also occurs in EA162

testing. On BenchFdroid that we adopt for experiments, with models that contain 10 to 38 parameters (flattened from163

intent attributes, see Section 5.1 for detail), we find that 32% of the failures are triggered by only a single parameter164

value, 88% by three-way combinations, and 98% by four-way combinations. An example of a two-way combination is165

action=android.intent.action.getDrink, extra_drink=null, which makes FooActivity throw exceptions for any intents166

that contain the combination.167

The third challenge is determining the coverage goal of each EA in combinatorial testing. While not all input fields168

have interactions [48], potential interactions must be identified as coverage targets. In our static analysis, we collect169

execution traces and trace attribute operations to form a summary of the EA to be tested. Attributes appearing on a170

path are believed to have interactions. The summary helps refine variable-strength testing. However, determining the171

value of 𝑡 for 𝑡-way coverage remains a problem. Existing works always take each EA equally, but it may lead to a waste172

of testing resources. From EA declarations, we find a set of EAs that are wrongly exported by developers. Many of173

EAs remove the category declaration, which reduces the possibility of such EAs being called implicitly. We identify174

such wrongly exported EAs from EA declarations and allocate a smaller 𝑡 for them, as their unrobustness may not be175

exploited. Since the exposure state precedes the activity’s input validation to secure the activity, it is more important176

to identify the misexposure and change the exposure state to an IA declaration to exclude all third-party callers. We177

also study EA implementations to set the number 𝑡. Thus, the coverage setting is adaptive to the EA under test.178

4. Framework Overview179

As shown in Figure 5, we have developed a tool called ExaDroid that takes an apk file as input, generates a group of180

test cases, and outputs the analysis and test execution results. The tool consists of two main modules: a static analysis181

module called ExaDroidmis and a test generation module called ExaDroidct.182

First, ExaDroidmis performs static analysis on the EA implementation to obtain a summary that describes the183

attribute usage information along execution paths. Then, ExaDroidct converts the summary into a combinatorial testing184

model. Next, based on the summary of EA implementations and the analysis results of EA declarations, ExaDroidmis185

represents EAs as feature vectors for classification. The classification process takes as input a dataset of caller intents186

from tens of thousands of apps and classifies EAs into four vulnerability exposure categories and two complex187

categories. The model then takes the classification result and summary to guide the coverage setting.188

5. Combinatorial Testing of Exported Activities189

Intent is essentially a data container with optional attributes, and the interaction among a few attributes or attribute190

fields is often the root cause of defects. To achieve interaction coverage, combinatorial testing can efficiently generate191

First Author et al.: Preprint submitted to Elsevier Page 6 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Function
Summary

Bytecode
Analyze
ICCBot

Misexposure
Report

Combinatorial
Testing Model

Test
Suite

Execution
Results

Bug
ReportApplication

ExecuteGenerate
ACTS

Variable
Strength

𝑬𝒙𝒂𝒎𝒊𝒔

Output

𝑬𝒙𝒂𝒄𝒕

Input

Manifest
Declaration

Analyze Featured
Representation

Reason
Prolog

EA
Classification

Caller Intents

Figure 5: Overview of Variable-Strength Combinatorial Testing of EAs

tests compared to existing approaches. Therefore, the static analysis method is employed to build a combinatorial192

testing model that represents the input structure of the exported activity and to guide the coverage goal setting.193

5.1. Summary-Based Test Model Building194

In this section, we consider an EA as a parametric model whose behavior is influenced by a limited number of input195

parameters, specifically intent attributes and attribute fields. The CT model of an EA consists of a set of parameters196

Param and candidate values for each parameter Value. The coverage goal is a set of combinations, where each element197

is a 𝑡-size combination 𝑐 (𝑡 ≤ |Param|) that assigns values for 𝑡 parameters.198

It is important to note that each combination 𝑐 must be covered by at least one test case, where a test case is a199

combination with all parameters assigned. Based on the model, the CT test generation process assigns values to each200

parameter to form a test case, and selects as few test cases as possible to achieve the coverage goal.201

It has been proven that CT can effectively detect interaction defects with fewer test cases, but the effectiveness to202

a large extent depends on the quality of the model [7]. Therefore, this section statically analyzes EA implementations203

for building CT models. The modeling methodology works in two steps, namely, static analysis-based input structure204

identification and flattening-based parameter modeling.205

5.1.1. Function Summary206

We try to capture input structure by obtaining function summaries. Algorithm 1 describes the analysis of the207

application containing the EA under test and returns a function summary of the EA’s entry method.208

Line 2 builds an acyclic function call graph of the app and rearranges items in a bottom-up order to get funcList.209

Then, for each function (the variable func) in funcList, we traverse its control flow graph to get all paths and traverse210

the path instructions.211

Variable pathSummary is a set used to store all the retrieved parameters (attributes and attribute fields) in a path,212

and it is initialized as an empty set. If the instruction (the variable ins) is an input intent obtaining instruction, that is, it213

belongs to relative Android APIs (such as getAction() and getStringExtra()), then function getParam extracts a triple214 ⟨param, type, canValue⟩ and adds it to pathSummary.215

Function getParam relies on du-chains in current function func, the result of an intra-procedural reaching definition216

analysis [50]. Thus, it can track the transfer of attribute receiving variables as well as the key declaration and value217

types of extra fields. A basic attribute retrieving statement, e.g., String action = intent.getAction(), will be218

recorded as param=action and type=String; an extra field retrieving statement, e.g., drink = intent.getStringEx219

tra(“drink”), will be recorded as param=extra_drink and type=String, where symbol “_” indicates that the extra220

attribute has a field with key “drink”. Then, function getParam collects a group of statements in 𝑝𝑎𝑡ℎwhich use the vari-221

able that stores basic intent attribute for comparison, and updates the candidate value set canVar with the comparing ob-222

jects (e.g., the string “android.intent.action.getDrink” in the statement action.equals("android.intent.action.223

getDrink") for variable action). Apart from these direct input intent obtaining instructions, if the instruction invokes224

function, then we add the summary of the callee function func′ (summaryMap[func′]) to pathSummary, which could225

be a set as a function summary may contain multiple paths.226

First Author et al.: Preprint submitted to Elsevier Page 7 of 28

Variable-Strength Combinatorial Testing of Exported Activities

The method merge operates on each element in pathSummary. Then, line 12 aggregates all paths to get the function227

summary. Finally, we get the function summary of the EA’s entry method (the variable func𝑒𝑛𝑡𝑟𝑦) from summaryMap.228

We use the ICC resolution tool ICCBot [54] for static analysis. Please refer to this tool for detailed Android APIs and229

the maximum number of paths limitation to avoid path exploration, etc.230

Algorithm 1 EA Implementation Analysis
Input: an apk
Output: the summary

1: summaryMap ← ∅
2: get function traverse sequence as funcList
3: for each function func in funcList do
4: summaryMap[func]← ∅
5: get all paths in the function as pathList
6: for each path in pathList do
7: pathSummary ← ∅
8: for each ins belongs to input intent obtaining instructions in path do
9: pathSummary.merge(getParam(ins, path, func))

10: for each ins belongs function call instructions in path do
11: pathSummary.merge(summaryMap[func′])
12: summaryMap[func] ← summaryMap[func] ∪ pathSummary
13: return summaryMap[func𝑒𝑛𝑡𝑟𝑦]

For the example provided in Section 3, we can get the function summary as summaryMap[func_{𝑒𝑛𝑡𝑟𝑦}]={231

{⟨action, String,{“getDrink”}⟩,⟨extra_drink, String, ∅⟩,⟨extra_haveDrink, Boolean, ∅⟩},232

{⟨action, String,{“getDrink”}⟩,⟨extra_drink, String, ∅⟩},233

{⟨action, String,{“getDrink”,“getFood”}⟩,⟨extra_food, Bundle, ∅⟩,⟨extra_haveDrink, Boolean, ∅⟩},234

{⟨action, String,{“getDrink”,“getFood”⟩,⟨extra_food, Bundle, ∅⟩},235

{⟨action, String,{“getDrink”,“getFood”}⟩,⟨extra_food, Bundle, ∅⟩,⟨extra_food_cake, String, ∅⟩,⟨extra_haveDrink,236

Boolean, ∅⟩},237

{⟨action, String,{“getDrink”,“getFood”}⟩,⟨extra_food, Bundle, ∅⟩,⟨extra_food_cake, String, ∅⟩}}.238

5.1.2. Combinatorial Testing Model239

The complex intent attributes should be converted into parameters with simple value types and discrete values,240

along with their corresponding relations and constraints. Attributes of non-string types, such as category and extra,241

as well as the structured attribute data (URI := scheme/path?query) are flattened into multiple parameters in the242

model. In the example provided in Section 3, the extra attribute is modeled as 5 parameters: extra (in a different243

font to distinguish parameter from attribute), extra_drink, extra_food, extra_food_cake, extra_haveDrink. The model244

contains constraints that organize these parameters into structured inputs. For instance, a Bundle field of the extra245

attribute is composed of a String sub-field, so extra_food is an abstract parameter that can only take empty or non-246

empty values, and the following constraints need to be met: if extra_food takes an empty value, extra_food_cake is247

also empty; otherwise, if extra_food_cake takes a specific string value, extra_food takes non-empty. We automatically248

extract parameters and constraints from the summary of an EA under test.249

For the Value function that maps a parameter to a finite set of candidate values, we support multiple value-taking250

strategies. The Base strategy is as follows. (1) For basic attributes, we traverse all path summaries in the function251

summary to obtain triples (⟨param, type, canValue⟩), and update Value(param) with the set canValue. (2) Since the252

static analysis traverses all functions in an apk, explicit intents constructed in other components with the EA under253

test as the invocation target are also parsed for candidate values. (3) A category attribute is flattened into several254

parameters. Each candidate value of this attribute can either exist or not, so we represent its occurrence with a Boolean255

parameter. (4) From the model, we build a test case as an explicit intent, so each attribute is optional and value empty256

is considered as a candidate value for all attributes. (5) Considering that missing key-value pairs may cause the most257

common exception, we update Value of attributes of type String with the value null. The difference is that value empty258

does not call the API to set the attribute, while value null calls the corresponding API and passes in a null value. (6)259

For an extra field or sub-field of the Primary type, the canValue is empty but the field can take arbitrary values. We260

First Author et al.: Preprint submitted to Elsevier Page 8 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 3
The Combinatorial Testing Model for FooActivity

Param Value
action [null, empty, getDrink, getFood]
category [empty, non-empty]
category_null [true, false]
category_empty [true, false]
extra [empty, non-empty]
extra_drink [null, empty, “a”]
extra_food [empty, non-empty]
extra_food_cake [null, empty, “b”]
extra_drinkNumber [empty, true, false]
data [null, empty, non-empty]
path [null, empty, non-empty]
scheme [null, empty, non-empty]
type [null, empty]
Constraints
category = empty → category_null = false ∧ category_empty = false
category_null = true ∨ category_empty = true → category = non-empty
extra = empty → extra_drink = empty ∧ extra_food = empty ∧ extra_drinkNumber = empty
extra_drink != empty ∨ extra_food != empty ∨ extra_drinkNumber != empty → extra = non-empty
extra_food = empty → extra_food_cake = empty
extra_food_cake != empty → extra_food = non-empty
data = empty → scheme = empty ∧ authority = empty ∧ path = empty
scheme != empty ∧ (authority != empty ∨ path != empty) → data = non-empty
scheme = empty → data = empty

generate a set of candidate values according to type, that is, true and false for Boolean type parameters, an empty and261

a random value for String type parameters, etc.262

For the example in Section 3, we can get the model as Table 3. The model consists of 13 parameters, each with a263

discrete range of values, and 9 constraints that restrict these parameters to form a valid Intent object. A constraint is264

a predicate on the value of some parameters. Static analysis identifies input structures and candidate values to build a265

target testing model for an EA.266

We offer various strategies, such as Manifest, Random, PresetBound, etc., to allow testers to customize their267

approach. The Manifest strategy utilizes the declared values of basic attributes in the intent filters in the manifest268

as candidate values. Unlike previous works [55, 58], we do not consider this strategy as the default due to the potential269

mismatch between declaration and implementation. The Random strategy constructs generators for Integer, String,270

URI, and other types. For example, the String generator enables testers to customize the maximum length (default is271

5) and randomly generates multiple strings between the minimum and maximum length. The PresetBound strategy272

provides invalid values for the category and data attributes, boundary values for numeric extra fields, and non-273

empty values for strings.274

5.2. Variable-Strength Coverage Setting275

Given a model, the coverage setting is an important factor that affects the size and error detection ability of the276

generated test set. The testing strength of a CT model is the size 𝑡 of combinations that should be covered. Black-box277

CT modeling often assumes that all parameters are likely to interact with the same strength, which is heuristic and278

leads to redundant testing. To address this issue, we propose a summary-based variable-strength coverage setting. The279

extracted summaries allow us to identify the dependencies among intent attributes, thus enabling us to focus testing280

on real interactions. A variable strength is a tuple (Param𝑖, 𝑡𝑖) where Param𝑖 ⊆ Param and 𝑡𝑖 is the strength on Param𝑖.281

Multiple such tuples could be given, denoted as 𝑡+ = {(Param1, 𝑡1), (Param2, 𝑡2),…}.282

5.2.1. Dependency of Intent Attributes283

Two attributes are considered dependent if the combination of their values affects an application’s control or data284

flow [37]. This is because the combination of their values can cause the program to execute a specific path that may285

contain incorrect code [34, 24] or result in incorrect calculations [43]. Figure 6 shows two examples of attribute286

dependency in the demo activity. In the left snippet, the value of the action attribute influences a string variable (the287

variable drink), whose value determines whether the extra field with the key “haveDrink” will be used. In the right288

First Author et al.: Preprint submitted to Elsevier Page 9 of 28

Variable-Strength Combinatorial Testing of Exported Activities

snippet, the use of a Bundle field with the key “food” depends on the comparison operation of the action attribute,289

and the use of the field “cake” depends on both conditions.290

1 if(action.equals("android.intent.action.getDrink")){

2 drink = intent.getStringExtra("drink");

3 }

4 if(drink!=null){

5 System.out.println("haveDrink "+

6 intent.getBooleanExtra("haveDrink"));

7 }

1 if(action.equals("android.intent.action.getFood")

2 && intent.getBundleExtra("food")!=null){

3 cake = intent.getBundleExtra("food").getString("cake");

4 }

Figure 6: Dependency Types in the Example Code

Inspired by works on symbolic execution-based testing, we capture the potential dependencies from the extracted291

function summaries. The main idea of coverage setting is that dependent parameters will appear on the same program292

execution path, and thus, the interaction between parameters on a path should be covered.293

5.2.2. Automated Strength Configuration294

Algorithm 2 outlines the process of setting variable-strength coverage based on the function summary. In Line 2, the295

function summary is simplified to obtain a set of non-overlapping path summaries (the variable simplifiedSummary).296

For instance, the demo function summary in Section 5.1.1 is simplified as {{⟨action, String,{“getDrink”}⟩,⟨extra_drink,297

String, ∅⟩,⟨extra_haveDrink, Boolean, ∅⟩}, {⟨action, String,{“getDrink”,“getFood”}⟩,⟨extra_food, Bundle, ∅⟩,⟨extra298

_food_cake, String, ∅⟩,⟨extra_haveDrink, Boolean, ∅⟩}}. The remaining path summaries are then analyzed. In299

Line 4-6, the triple in pathSummary is traversed to collect a subset of parameters (the variable Param′). These300

parameters are retrieved in the same path for branch picking and other purposes, so there may be interac-301

tion defects. Therefore, in Line 7, they are added, along with a given strength 𝑡, to the variable strength set302

𝑡+. The tuple requires that test suite generated should cover all combinatorial interactions of any 𝑡 (out of303 |Param′|) parameters in set Param′ at least once. For the motivating example, the algorithm returns 𝑡+ =304

{({action, extra_drink, extra_haveDrink}, 𝑡), ({action, extra_food, extra_food_cake, extra_haveDrink}, 𝑡)}.305

Algorithm 2 Combinatorial Coverage Identification
Input: function summary summaryMap[func𝑒𝑛𝑡𝑟𝑦], variable 𝑡
Output: variable strength 𝑡+
1: 𝑡+ ← ∅
2: simplifiedSummary ← simplify(summaryMap[func𝑒𝑛𝑡𝑟𝑦])
3: for each pathSummary in simplifiedSummary do
4: Param′ ← ∅
5: for each triple ⟨param, type, canValue⟩ in pathSummary do
6: Param′ ← Param′ ∪ (param)
7: 𝑡+ ← 𝑡+ ∪ (Param′, 𝑡)
8: return 𝑡+

The size of a combinatorial test suite increases rapidly as 𝑡 increases [22]. This highlights the important question of306

how the strength value should be set. A reasonable choice of 𝑡 requires experience with the software being tested. For307

example, within the NASA database application, 67% of the failures were triggered by only a single parameter value,308

93% by two-way combinations, and 98% by three-way ones [23]. Setting 𝑡 = 3 or fewer would cover one hundred309

percent of 𝑖-way combinations (where 𝑖 ≤ 𝑡) and also a good portion of larger combinations (e.g., a test case is a310 |Param|-way combination), providing a form of “pseudoexhaustive” testing. In fact, in many CT practices, choosing311

3-way testing is the default choice for testers. In EA testing, we study the characteristics and classification of EAs and312

provide two 𝑡 values (the common practice 𝑡 = 3 and a progressive 𝑡 = 1) for adaptive configuration, in contrast to313

assigning the same 𝑡 to all EAs. The following two sections will introduce our study.314

6. Misexposure Prediction from EA Declaration315

Existing works test all activities with the same coverage goal regardless of discrepancies in activity risk levels. One316

source of these discrepancies is whether activities are improperly exported. We find that developers may misunderstand317

the declaration mechanism of EA, causing some activities to take the unnecessary risk of external calls. For example,318

First Author et al.: Preprint submitted to Elsevier Page 10 of 28

Variable-Strength Combinatorial Testing of Exported Activities

an incorrectly exported activity with no default category value will never be invoked implicitly through the Android319

system mapping. As such, it can only be invoked by a caller who knows its component name, and of course its details, so320

it has less chance of accepting unexpected data in actual use; moreover, changing its exposure state can prevent it from321

malicious external exploitation. Therefore, the research in this section focuses on identifying patterns of misdeclared322

EAs, for two purposes. First, to issue a report to help developers fix the improper exposure status. Second, to allocate a323

smaller 𝑡 (𝑡 = 1) for combinatorial testing, that is, using a small number of tests to verify the report, but avoid wasting324

testing resources.325

Usually only the developer can define whether an activity should be exported or not, but the misexposure may326

come from developers’ misunderstanding or carelessness. Therefore, we conduct comparative and manual analysis to327

extract the misexposure patterns. In our previous work [51], we collected 13,873 Android apps from open-source app328

repositories including F-Droid, Google Play, and a Chinese app market Wandoujia to study the EA usage. From the329

benchmark, we obtained two small datasets using different picking criteria, in which Set MD contains EAs that belong330

to widely used apps and Set AR contains EAs that come from apps with abnormal ratio of EAs.331

We begin by extracting the declarations from the app’s manifest files. These declarations are then compared332

statistically to identify any differences. Next, a human inspector analyzes each EA declaration to investigate the cause333

of the differences and determine whether they represent spurious exposures. Finally, three human assessors collaborate334

to establish rules for identifying misexported activities.335

6.1. Comparative Analysis336

6.1.1. Construction of datasets337

We aim to create two sets of apps with contrasting characteristics: one mature and the other abnormal. To achieve338

this, we utilize two metrics: an anomaly detection metric and a metric indicating app popularity. The first metric we339

use is the Local Density Deviation (LDD) [8], which is a metric for unsupervised anomaly detection. We represent340

each app as a data point in a coordinate system where the abscissa is the number of activities and the ordinate is the341

proportion of EAs in activities. The second metric we use is the number of downloads, which is an indication of how342

widely used the app is and likely correlates positively with app maturity.343

Using these metrics, we obtain two sets of apps. The first set, called Set AR (Abnormal Ratio), contains apps344

with abnormally high ratios of EAs compared to most apps. Intuitively, an app should expose as few well-defined345

interfaces as possible, and that is what most apps do. However, the percentage of EAs in some apps is abnormally346

high. We conducted a small empirical study on those apps to investigate whether their EAs might be improperly347

exported. We selected the top 5 apps with the most abnormal LDD from the large-scale benchmark and extracted 327348

EAs from them. By launching each EA and inspecting its bytecode to judge the reasonableness of the exposure, the349

tester reported that 234 EAs (72%) are suspected to be misexposed. Thus, we assume that the apps with an abnormal350

ratio of EAs compared with most of the apps are more likely poorly programmed. is used to identify outliers based on351

density for LDD computation. However, apps with many activities and few EAs may also be identified as outliers by352

the LOF algorithm, even though they may be well-programmed apps. To address this issue, we filter out apps whose353

ratio of EAs is less than 0.1. Then, the top 50 outliers are labeled as outlier apps and added into Set AR.354

The second set is called Set MD (Most Downloads). In order to conduct a comparative analysis between normal355

apps and outlier apps in Set AR, we aim to extract EAs that have a higher likelihood of being well-declared. Since widely356

used apps are more likely to be developed under strict code regulations by skilled programmers and may have been357

thoroughly tested, the EAs corresponding to such apps are more likely to be well-declared and suitable for comparison.358

We also conducted a small empirical study to generate this dataset. We selected 5 apps with the most downloads and359

extracted 47 EAs from them. By launching each EA and inspecting its bytecode to assess the reasonableness of the360

exposure, we found that only 5 EAs (10.6%) were labeled as misexposed activities. Additionally, most of these widely361

used apps (4/5) provide specific SDKs (e.g., WeChat’s open SDK[49]) for external invoking.362

6.1.2. Observation363

The two selected sets are disjoint and each contains 50 apps. We analyze and compare the number and pattern of364

EA declarations in the two sets of apps to identify the statistical characteristics of misexposed EAs.365

Table 4 lists the general information, where the columns App_size and #EA report the sum values across the 50366

apps. Figure 7 displays the EA number distributions of the collected apps using box-plots. The number of EAs extracted367

from each app is on average 12 in Set MD and 113 in Set AR, as shown by the X mark symbol. Set MD contains one368

First Author et al.: Preprint submitted to Elsevier Page 11 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 4
General Information about Comparative Sets of Apps

#App App_Size #EA (percent.)
Set MD 50 1,332MB 598 (8.1%)
Set AR 50 1,522MB 5654 (38.5%)

outlier that is about four times greater than the median and Set AR contains two outliers that are about five times greater369

than the median, marked by the dot and solid median line.370

As we can see, the first difference between these two sets is the number of EAs. While the size is similar, apps in Set371

AR have many more EAs than those in Set MD. The last column gives the ratio of EAs, which shows that EAs in Set AR372

have a larger proportion. We further investigate how developers expose an EA with different exposure modes and show373

the results in Figure 8. The exposure mode “ExTrue” indicates the EAs whose attribute exported=true is explicitly374

declared, and “NoEx” indicates the EAs without that attribute. The ratio of activities declared with exported=true375

varies greatly in these two datasets, which is 50% in Set MD but only 15% in Set AR. This shows that the attribute376

exported, which demonstrates the intention of developers explicitly, is more often used in well-programmed377

apps.378

For EAs in mode “NoEx”, we further separate them into three types: “SysActData”, “SysActNoData” and379

“NonSysAct”, according to whether they contain any data and non-system action or not. Actions can take system380

values that are defined in the Intent.java file of Android source code, or take non-system values that are provided381

by third parties. The exposure mode “SysActData” indicates the EAs whose action attribute takes system values and382

contains data attribute, “SysActNoData” indicates the EAs without data attribute, and “NonSysAct” indicates the383

EAs whose action attribute takes non-system values. The results show that the mode “SysActNoData” is rarely384

used in both datasets. In our previous work [51], we studied action values used in intent filters. It was observed that385

69% of 63,758 used action values extracted from 13,873 Android apps are the officially provided system ones (57%386

are android.intent.action.VIEW used to display data to the user), so system action values are difficult to be taken387

as the identifier of an EA. Developers always add data, the URI object that assigns the data to be acted on, to limit the388

range of resolved activities. Therefore, the EA declaration that contains only system actions without data item required389

is likely to be misused. Thus, the mode “SysActNoData” is abnormal.390

12 113

Figure 7: EA Number Distribution

6.2. Misexposure Prediction391

6.2.1. Patterns of Improper EA Declarations392

The comparative analysis results guide the extraction of misexposure patterns. Additionally, manual inspection of393

100 apps from Set MD and AR, as well as the Android reference, is conducted to aid in the identification of these394

patterns. Five patterns of improper declaration are identified, which are unlikely to be invoked by third-party callers.395

These patterns are detailed in our previous paper [51] and are shown in Table 5. P1 and P2 prevent an EA from being396

called implicitly or reduce the possibility of it being called. P1 is extracted from the Android reference, while P2 is397

First Author et al.: Preprint submitted to Elsevier Page 12 of 28

Variable-Strength Combinatorial Testing of Exported Activities

50%

15%
25%

42%

18%

34%

7%

10%

0%

20%

40%

60%

80%

100%

ExTrue NoEx ExTrue NoEx

SetMD SetAR

P
ro
p
o
rt
io
n

NonSysAct SysActData SysActNoData

Figure 8: Exposure Mode Comparison

Table 5
Patterns of Improper Declaration

Pattern Explanation Case Study Detection
P1: Missing Default
Category.

An EA must include the DEFAULT

category to be called by implicit
Intents [14].

An example EA in Mozilla will
show a blank window and give the
WindowLeaked error in logcat.

Analyzing the
intent-filers of each
EA.

P2: System Action
and No Data.

Mode “SysActNoData” is rare
because the system action can-
not identify one EA, so there
must also be a data.

The declaration of an EA in
UCMobile only uses the most
frequently used system action
android.intent.action.VIEW.

Analyzing the
intent-filers of each
EA.

P3: Abnormally
High Percentage of
EA.

The comparative results in Ta-
ble 4 show that poorly pro-
grammed apps may have a higher
EA percentage.

All functions in Mobile collaboration rely
on log-in, but 58/59 of activities are
EAs that can be easily accessed without
login, which may violate the intention of
developers.

EA ratio statistic.

P4: Copy-Pasted
EA Declaration.

Copy-pasted EA declarations
widely exist in Set AR and MD.

Up to 124/128 of EAs in app ToolWiz
Photos are declared using mode “Ex-
True”. Developers do not expose the EAs
deliberately since starting activities will
cause app crash.

Calculating the ra-
tio of each mode in
one app.

P5: Debugging
Functionality.

Some activities are designed and
exposed to ease the debugging,
according to their names. For-
getting to remove them in the
release versions may threaten the
database security.

An EA whose android:name attribute is
“com.dianping.debug.DebugDomainSele
ctActivity” is used for domain testing.

Keyword retrieving

from our observation in Section 6.1.2. An EA that meets P1 is considered to be misexported, and an EA that meets P2398

requires further analysis. P3 is the hypothesis used to extract Set AR and was confirmed by our manual analysis. P4 is399

a possible cause of P3. P5 is found through our manual analysis of the extracted EA declarations and is surprisingly400

one of the main functionalities used by developers. In [51] we manually categorize the 300 most used action values401

into several functionalities, including Display, Send, Other, SDK, Search, Setting, and Debugging. These patterns can402

all be automatically detected, as shown in the Detection column of Table 5. We provide further details on P2 and P4403

in this section.404

P2: System Action and No Data. 1) Explanation: According to the Android reference and manual inspection, it405

has been found that the officially provided system action values are commonly used with a data attribute. Therefore,406

an EA declaration that contains only system actions without a required data item is likely to be misused. 2) Case407

Study: To facilitate understanding, a real case in UCMobile is discussed. As shown in Figure 9 (a), it declares an EA408

First Author et al.: Preprint submitted to Elsevier Page 13 of 28

Variable-Strength Combinatorial Testing of Exported Activities

with the most frequently used system action android.intent.action.VIEW only. When an implicit call that only409

contains this system action is sent, dozens of EAs are matched as candidate options available to the user, sorted by410

priority value. However, this intent filter only has default priority and may not even show up in the dialog. 3) Detection:411

This pattern can be identified by analyzing the intent-filers of each EA. While this pattern reduces the likelihood of412

activities being invoked and is therefore a dubious usage, users are still authorized to use it in exported activities. To be413

conservative, only EAs that satisfy this pattern are considered misexported if the developer does not explicitly declare414

android:exported=true.415

P4: Copy-Pasted EA Declaration. 1) Explanation: When developers want to declare an activity correctly,416

the most convenient way is to imitate the last declared one, i.e., declare by copy-and-paste. By manual inspection417

of the manifest files of the selected apps in both datasets, it has been found that copy-pasted EA declarations are418

widely used. 2) Case Study: An app called ToolWiz Photos has a total of 197 activities and 128 of them are EAs.419

Surprisingly, up to 124 EAs in this app are declared using the mode “ExTrue”. In Figure 9 (b), some of them are420

shown and all the expose-irrelevant attributes are removed. If the activity UserInfoActivity is started using the adb421

command, the app will crash and throw an exception, which means that the developers did not deliberately expose it.422

And SelectiveColorActivity is used for adjusting the tone for a photo. External invocation is allowed to directly423

start it without a target image, which makes this activity invalid and even causes a crash. 3) Detection: Misexposures424

in this pattern can be found by calculating the ratio of each exposure mode in one app. Some thresholds are set to425

classify a ratio as indicating misexposure or not.426

1 <activity android:name="com.ucweb.activity.

2 LifeAssistantActivity">

3 <intent-filter>

4 <action android:name="android.intent.action.VIEW"/>

5 <category android:name="android.intent.category.

6 DEFAULT"/>

7 </intent-filter>

8 </activity>

(a) System Action and No Data

1 <activity android:exported="true" android:name="

2 com.toolwiz.photo.community.UserInfoActivity" />

3 <activity android:exported="true" android:name="

4 com.btows.photo.editor.ui.SelectiveColorActivity"/>

(b) Copy-Pasted EA Declaration

Figure 9: Improper Declared EAs

6.2.2. Misexposure Characterization and Identification427

We begin by abstracting an EA declaration to evaluate whether it conforms to the pattern mentioned above.428

ExaDroid𝑚𝑖𝑠 takes an apk file and a Caller Intent database as input. From the manifest files in the apk, we identify429

all the ⟨𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦⟩ tags and collect the activity attribute (e.g., android:exported) as well as the intent filter (e.g.,430

android:action) information. The Intent database is obtained from the reaching definition analysis [50] of 13,873431

apps. We use the Java bytecode analysis framework Soot [6] to determine how EAs are invoked and store all invocations432

used in the program. We query the database and map an EA declaration to caller intents to analyze whether the EA433

would be invoked externally. The parsing results of manifest files and the query results of the database are encoded434

into the features in Table 6, which are divided into three categories:435

• The first 8 features represent the exposure mode of one EA, obtained by analyzing the manifest file.436

• The following 3 features come from all EAs in the app, also obtained by analyzing the manifest file.437

• The last 2 features come from querying the database and indicate the invocation of a specific EA.438

Then, an EA declaration is encoded as a vector 𝑒𝑎𝑑,𝑐 (𝑑 for declaration and 𝑐 for calling), where each element
∀𝑓 ∈ 𝑒𝑎𝑑,𝑐 , 𝑓 ∈ {0, 1} is a feature in Table 6. The second column describes the condition to make 𝑓 = 1. We
summarize a series of rules to determine the necessity and reasonability of the exposure. These rules apply to the
featured representation of the EA. A function 𝑅 will return the predicting result of an EA, i.e.,

𝑅(𝑒𝑎𝑑,𝑐) ∈ {MustIA, MayIA, Unclear, MustEA}.

The class Must and May differ in that May contains some coarse-grained rules that can not tell which specific EA439

is misexposed. The predicting follows the patterns of improper declaration, and the classification conditions are in440

First Author et al.: Preprint submitted to Elsevier Page 14 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 6
Features of EA Declaration

Category Feature Description

Declaration

exTrue declares exported=true

ifTrue contains intent filter

mainAct contains android.intent.action.Main and android.intent.category.LAUNCHER

noDefault omits the default category
sysActNoData declares only system action without data
priority contains priority setting of intent filter
permission contains permission setting of activity

debug
contains keywords such as “test”, “debug”, “Test”, and “Debug” in the action, category
or activity name

similar
belongs to an app that declared EA with the similar exposure mode shown in Figure 8,
including ExTrue, SysActData, SysActNoData and NonSysAct.

highRatio belongs to an app that has high value of #EA/#A
clsDeclare with classname that has been declared more than three times in manifest

Invocation clsInvoke with classname that has been externally invoked
actInvoke with non-system action that has been externally invoked

Table 7. The columns also show the priority (column Pr) of rules and the judgment conditions (column Condition),441

which uses single or the combination of features listed in Table 6. About the priority setting, three Android testers reach442

a conclusion after discussion. Classification results from high-priority rules are considered more credible. One EA may443

satisfy several conditions at the same time, when condition collision occurs, the final classification is determined by the444

priority value. For example, Figure 10 shows an activity declaration that contains android.intent.action.MAIN445

(Class MustEA, Pr 0), and omits the default category, and contains intent filters (Class MustIA, Pr 2). Obviously, the446

main activity is the component that the developer expects to be called externally, although it cannot respond to implicit447

calls. It will be classified as MustEA at last.448

1 <activity android:name="ch.hgdev.toposuite.entry.MainActivity">

2 <intent-filter>

3 <action android:name="android.intent.action.MAIN" />

4 <category android:name="android.intent.category.LAUNCHER" />

5 </intent-filter>

6 </activity>

Figure 10: Priority Setting Example

Compared to our previous work [51], the classification rules in Table 7 have been updated. Pr 9 and Pr 10 are449

Android mechanisms that allow third-party apps to invoke the activity. EAs that fall into these two categories do not450

satisfy any rule from 0-8, nor do they show a clear tendency for improper exposure or proper exposure. In the original451

version, we divided Pr 9 as MayEA and Pr 10 as MayIA, since in Section 6.1, the exposure mode ExTrue showed a452

significantly higher proportion in Set AR. However, the recent release of Android 12 requires that android:exported453

should be explicitly assigned to pass the compilation. The probability that a misexposed EA will be in the mode ExTrue454

also increases. Therefore, we introduce the category Unclear for Pr 9 and Pr 10.455

We implemented 𝑅 using Prolog, a logic programming language that automatically identifies misexposures. The456

program logic is expressed in terms of relations, represented as facts and rules [10, 35]. A fact consists of an attribute457

and its value, while a rule is in the form of Head:-Body., in which the Head is the conclusion and the Body contains458

several facts. If the facts in Body are true, the Head is also true. Figure 11 shows part of our implementation using459

Prolog, where the declaring order of rules determines the priority of matching. We attributes of fact listed in Table 6,460

whose values can be extracted through EA declaration and invocation analysis. For each EA, we can obtain 11 facts461

to aid in classification. We define ten rules using conditions and their classes in Table 7, where the IA classification462

conditions are linked to misexposure patterns. For example, line 4-5 in Figure 11 represent a rule, which means if the463

fact clsDeclare(true) is satisfied, the class of corresponding activity is MustEA. For other rules that contain several464

facts, these facts are combined, where the comma indicates “and”, and the semicolon indicates “or”. For instance,465

lines 1-3 mean that if an EA satisfies (noDefault(true) and not ifTrue(true) and not exTrue(true))466

or (debug(true)), it belongs to class MustIA.467

First Author et al.: Preprint submitted to Elsevier Page 15 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 7
The Classification Conditions of EA Declaration

Class Pr Condition

MustIA
1 sysActNoData and ifTrue and not exTrue

2 noDefault and ifTrue

3 debug

MustEA

0 mainAct

4 clsInvoke or actInvoke
5 clsDeclare

6 priority or permission

MayIA 7 similar

8 highRatio

Unclear 9 exTrue

10 ifTrue and not exTrue

activity(mustIA):- noDefault(true), not(ifTrue(true)), not(exTrue(true)); debug(true);

activity(mustEA):- clsDeclare(true).

Figure 11: Part of the Implementation Using Prolog

7. Complexity Analysis of Intent Handling468

In this section, we will demonstrate that many EAs rarely process input Intents. With this in mind, we propose an469

EA classification method based on the number of paths that handle Intents and the retrieved Intent attributes along470

paths. It evaluates whether the EA will respond to inputs from external invocation. We also describe the reasons for471

setting different testing strengths 𝑡 for different categories.472

7.1. Comparative Analysis473

7.1.1. Construction of Datasets474

Using the EA declaration predicting on apps of Set AR and Set MD, we obtain different sets of EAs to analyze475

their implementations. The analysis is based on function summaries, so 15 apps are excluded out of 100 apps in476

Set AR and Set MD: 1 app failed Soot analysis, and the other 14 apps were obfuscated so that the activity names477

in code could not correspond to the manifest declaration. The other apps contain 2,834 EAs: 439 are classified as478

MustEA. Table 8 shows different sets of EAs classified by misexposure prediction. Column #Path comes from the479

function summary. A path is a list of triple ⟨param, type, canValue⟩, e.g., {⟨action, String,{“getDrink”}⟩,⟨extra_drink,480

String, ∅⟩,⟨extra_haveDrink, Boolean, ∅⟩} in the example in Section 5.1.1. The list is non-empty because the summary481

has filtered out intent-independent paths that do not retrieve the input intent (getIntent) or any intent attributes (e.g.,482

getAction and getStringExtra(key)). The number of such paths (#Path) is the cardinality of the function summary set,483

i.e., |summaryMap[func_{𝑒𝑛𝑡𝑟𝑦}]|. If #Path= 0, column Empty Summary indicates the EAs whose execution will not484

retrieve intent attributes. Otherwise, we count the mean and median of the number of paths for different categories of485

EAs. Figure 12 displays the path number distributions of EAs whose #Path> 0 using box-plots. As we can see, the486

median shown by the solid lines in the four sets ranges from 2 to 5, indicating that half of the EAs have path counts487

that do not exceed these values. The mean ranges from 12.5 to 26.9, as shown by the X mark symbols. In each plot,488

the median and mean are not similar because there are some particular outliers in the set. Under the path number489

threshold set by ICCBot to prevent path explosion, we still got some EAs with hundreds or thousands of paths. The490

entire inter-quartile range box represents half (i.e., 75%-25%) of the data in a set, and the height of the inter-quartile491

range box shows the degree of data concentration. Of the four sets, Set Unclear has the most scattered data, and Set492

MustIA has the most concentrated data.493

7.1.2. Observation494

The first interesting finding from Table 8 is that over half (53%) of the EAs do not process any input Intent495

attributes. Figure 13 (a) shows an example of EA that will throw an exception when the app’s configuration variable496

Constants.DEBUG is set to False. Figure 13 (b) shows another example where a main activity is designed to execute497

without external inputs. External invocation may not be able to change the value of app configurations or internal498

First Author et al.: Preprint submitted to Elsevier Page 16 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 8
Information about Comparative Sets of EAs

#EA Empty Summary Non-Empty Summary
#EA (percent.) #EA (percent.) Mean. #Path Median. #Path

Set MustEA 439 210 (48%) 229 (52%) 26.5 3
Set Unclear 643 284 (44%) 359 (56%) 26.9 5
Set MayIA 1377 766 (56%) 611 (44%) 15.8 3
Set MustIA 375 252 (67%) 123 (33%) 12.5 2

SUM 2,834 1,512 (53%) 1,322 (47%) 20.3 3

Figure 12: Path Number Distribution

variables that an app maintains during runtime. It may be useless to generate more invocation Intents for these EAs499

because no further program behavior can be performed.500

1 public class DebugActionsActivity extends Activity {

2 @Override

3 public void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5 if (!Constants.DEBUG) {

6 throw new UnsupportedOperationException();

7 }

8 // do something without read intent object

9 }

(a) Misexposed Debug Activity

1 public class LoginActivity extends BaseActivity{

2 @Override

3 public void onCreate(Bundle savedInstanceState) {

4 // do something without read intent object

5 }

6 }

(b) Login Activity

Figure 13: EAs without Intent-dependent Paths

Then, we compare Set MustEA with Set MustIA. Figure 12 shows that the first difference between Set MustEA501

and Set MustIA is the number of paths. Properly exported activities usually have more paths. On that account, test502

evaluation of real EAs needs to cover those paths. The Median. Path of all sets also indicates that exported activity503

might have a simple structure. If there is only an intent-dependent execution path, it is very likely that an EA will also504

not differentiate any inputs. The EA with fewer paths may not provide rich functions.505

We further investigate how exported activities retrieve and use Intent attributes by comparing Set MustIA and506

MustEA. Figure 14 shows the results. In the inner circle, the blue and gray denotes whether EAs will process any507

Intent attributes or not. For EAs in #Path>0, we further study their usage of two specific Intent attributes: action508

and extra. Category “ActExtr”, “ActNoExtr” and “ExtrNoAct” denotes whether an EA calls any action and extra509

related API or not.510

Actions denote the functionality an activity can provide, and the extra structures pack complex external data.511

The exposure mode “ActExtr” indicates the EAs that retrieve both attributes in their implementations. Comparing512

Set MustEA and MustIA in the #path>0 section, the ratio of activities using action as well as extra attributes513

(represented in yellow) varies a lot, which is 48% (25% / 52%) on Set MustEA but only 6% (2% / 33%) on Set MustIA.514

First Author et al.: Preprint submitted to Elsevier Page 17 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 9
Features of EA Implementation

Category Feature Description

Implementation

noIntent does not retrieve intents in any execution path
exceedT contains number of paths exceed a threshold 𝜖
useExtra uses extra in at least one execution path
useAction uses action in at least one execution path

It shows that the attribute action representing functionality and the attribute extra carrying functionality-515

specific data are used together to enrich the exposed interface of an app.516

48%

67%

25%

2%

22%

29%

3%

0%

20%

40%

60%

80%

100%

#path=0 #path>0 #path=0 #path>0

MustEA MustIA

P
ro
p
o
rt
io
n

ActExtr ActNoExtr ExtrNoAct NoActNoExtr

Figure 14: Intent Attribute Handling Comparison

7.2. Complexity Analysis517

Through observation, we have defined Intent-Handling Complexity (IHC) as a means of describing whether an EA518

will provide rich functionality to external invocations. IHC is a binary classification (HighIHC and LowIHC) based519

on an EA’s function summary, which is measured by the number of paths and whether action and extra attributes are520

retrieved. Table 9 lists the features/elements used for classification, which are divided into two categories.521

• The first two features represent the richness of intent-dependent paths, by comparing |summaryMap[func_{𝑒𝑛𝑡𝑟𝑦}]|522

with 0 and 𝜖;523

• The last two features represent the usage of intent attributes, by retrieving triples whose param starts with524

“extra_” or equals “action” in a function summary.525

Then, an EA implementation is encoded as a vector 𝑒𝑎𝑖 (𝑖 for implementation), where each element 𝑓 ∈ {0, 1}526

represents a feature in Table 9. We classify an EA into HighIHC or LowIHC classes, and assign 𝑡 = 1 to significantly527

reduce the number of tests for LowIHC EAs, and assign 𝑡 = 3 to HighIHC EAs. To be conservative when assigning528

𝑡 = 1 to EAs, we follow the priorities and rules shown in Table 10. An EA is classified as LowIHC only if the number529

of paths does not exceed 𝜖 and the EA does not use operations and extra attributes.530

In the example in Section 3, FooActivity is classified as (MustEA,HighIHC). The classification results in 𝑡+ =531

{({action, extra_drink, extra_haveDrink}, 𝑡 = 3), ({action, extra_food, extra_food_cake, extra_haveDrink}, 𝑡 = 3)}.532

8. Evaluation533

To evaluate the effectiveness of our approach, we have implemented the proposed approach as a tool called534

ExaDroid. We conducted experiments with ExaDroid to answer the following research questions:535

First Author et al.: Preprint submitted to Elsevier Page 18 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 10
The Classification Conditions of EA Implementation

Class Pr Condition

HighIHC 1 useAction and useExtra

2 exceedT

LowIHC 0 noIntent

3 not exceedT

• RQ1 (Misexposed EA Behavior): Is there a difference in the behavior of EAs that ExDroid classifies as536

misexported and those correctly exported?537

• RQ2 (Classification Distribution): What is the distribution of misexposed EAs and the Intent-handling538

complexity of EAs? Do the results vary in different datasets?539

• RQ3 (Testing Effectiveness): How effective is ExaDroidct in terms of detecting bugs with fewer test cases? How540

do different strategies perform?541

All of our static analysis is performed on a machine with an Intel(R) Xeon(R) E5-2680 v4 CPU @ 2.40 GHz,542

256G RAM memory, and Ubuntu 20.04 operating system with OpenJDK 9. For dynamic testing, we use an emulator543

LDPlayer(64) 4.0.83 with a 4 Core CPU, with 6144MB RAM memory, and Android 7.1.2 operating system.544

Benchmark. To evaluate our approach, we consider BenchFdroid from an existing work on ICC resolution545

evaluation [53]. It includes 31 open-source apps in F-droid, ranging in size from 1M to 93M, with an average of546

1,010 GitHub stars. We successfully ran ExaDroid on 30 of the 31 applications in this benchmark. The failure case547

observed in the app Conversations specifically pertains to the ICC resolution tool ICCBot. It is important to note548

that the experimental data presented below are derived from the remaining 30 applications, as the failed app named549

Conversations was excluded due to the issue with ICCBot. Finally, we performed combinatorial testing on 135 EAs550

across these 30 apps.551

8.1. Implementation552

Hyperparameters. When implementing the two rules of mayIA, certain thresholds were set, including the number553

of EAs in an app and the ratio. For the coarse-grained rule highRatio, we identified apps that have more than 50554

EAs and a ratio of EAs larger than 0.4. For rule similar, we only detected apps that have more than 30 EAs and555

used thresholds ranging from 0.5 to 0.7 for different exposure modes. For rule exceedT, we chose the path number556

threshold 𝜖 to be 3, which is the Median. #Path value in Table 8.557

We set hyperparameters with conservative values to more accurately identify misexposed and low-complexity558

activities, and to avoid missed defects caused by setting 𝑡 = 1 to generate fewer test cases. For instance, rule highRatio559

is extracted from Set AR, whose comparative dataset (Set MD) consists of apps that have no more than 50 EAs (as560

shown in Figure 7). Therefore, this rule only applies to apps that have more than 50 EAs. These hyperparameters561

are user-configurable. If users want to find more possible misexposures or to reduce the number of test cases more562

aggressively, they can adjust by reducing these thresholds.563

Test Case Generation and Execution. We utilize ACTS [60] for generating combinatorial test cases. The in-564

parameter-order-general strategy [26] adopted by ACTS can be described as follows: for a testing model with 𝑡 or565

more parameters, where 𝑡 denotes the size of combinations to cover, the strategy builds a 𝑡-way test set for the first 𝑡566

parameters, extends the test set for the first 𝑡+1 parameters, and then continues to extend the test set until the coverage567

goal is achieved and all the parameters are included.568

To execute the generated test cases, we develop a test bridge app, which is installed on the emulator. Each test569

case from the combinatorial testing model is transformed into a caller intent. We did not choose the widely adopted570

adb-form command for test execution because it has limited capability in carrying parameters. If a test case contains571

any Java object, such as Bundle or ArrayList object, it cannot be sent through adb. Instead, within the test bridge572

app, intents with richer types and structures can be constructed through the native API. For each extra field, we create573

objects according to its type. For bundle type, we reconstruct the proper data structure. The caller intents will not be574

affected by special characters.575

First Author et al.: Preprint submitted to Elsevier Page 19 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 11
The Performance of ExaDroid on BenchFdroid

Cat. #Test #P #F #EA #EA1−𝐹 #EA𝐴−𝐹 #Test/#EA
MustIA 208 128 (62%) 80 (38%) 45 23 (51%) 12 (27%) 4.6
Unclear 1099 695 (63%) 272 (25%) 54 21 (39%) 4 (7%) 20.4
MustEA 609 531 (87%) 78 (13%) 36 11 (31%) 1 (3%) 16.9

All 1916 1354 (71%) 430 (22%) 135 55 (41%) 17 (13%) 14.2

The test bridge app not only generates intents but also executes them. It is connected with test scripts in ExaDroid576

through a socket. After the test case transformation is complete, all tests will be automatically executed by calling the577

startActivity function to start the target component. Test results are automatically recorded and evaluated.578

Test Result Identification. ExaDroid determines the execution results of a test caseby monitoring the foreground579

activity through the dumpsys command and analyzing the execution logs through the logcat command. Two types580

of test execution results are considered as failures (Fail): (1) when the called activity throws an exception, which is581

captured by logcat, and crashes, or (2) when the called activity returns to the test bridge app or the android launcher,582

and logcat may not capture the stack trace. Otherwise, the test passes (Pass): the foreground activity either remains the583

target component for several seconds, or the EA jumps to other activities other than the test bridge and launcher.584

8.2. RQ1: Misexposed EA Behavior585

Table 11 shows the test execution and misexposure prediction results on BenchFdroid. The table is summarized586

according to misexposure identification categories (column Cat.). Column #Test, #P, and #F denote the number and587

ratios of generated, passed, and failed test cases. Column #EA denotes the number of identified EAs. Column #EA1−𝐹588

and #EA𝐴−𝐹 represent EAs that contain at least one failed test and EAs that fail for all generated test cases, respectively.589

Column #Test/#EA shows the average number of test cases generated for each EA. Cells with aqua and gray color in590

the failure-related columns highlight the highest and lowest values of ratios, respectively. On this dataset, no activity591

is identified as MayIA.592

We observe that EAs identified by ExaDroid as misexposed (MustIA) are more vulnerable. The MustIA593

category has the highest ratios in columns #F and #EA1−𝐹 , and approximately 27% of all EAs in this category crashed594

completely for all external invocations, as shown in column #EA𝐴−𝐹 . It is important to note that EAs that crash for any595

caller intent may not necessarily be the ones the developer intended to expose. On the other hand, EAs identified by596

ExaDroid as properly exposed (MustEA) are more robust. The MustEA category has the lowest ratios of failed tests,597

EAs that fail at least once, and EAs that fail for all external invocations. The Unclear category has the highest ratios of598

failed tests and EAs that fail at least once. The sum of values in #P and #F is not equal to 1, because ExaDroid generated599

135 tests for component org.inaturalist.android.ObservationEditor, but only 3 of them are executable, and600

the others require the system camera app, which is not supported by the emulator.601

In summary, some activities are misexposed by developers and have apparent testing behavior, i.e., no caller can602

successfully invoke them. Our misexposure prediction method can distinguish these components.603

8.3. RQ2: EA Distribution604

We conducted a static analysis of EAs in apps from three sets: SetMD (Most Downloads), SetAR (Abnormal Ratio),605

and BenchFdroid. Figure 15 shows the results of our misexposure prediction from EA declarations and Intent-handling606

complexity analysis from EA implementations. Note that, as in Section 7.1.1, we excluded activities in obfuscated apps.607

The statistics of misexposure classification rules and complexity analysis rules are shown in Figure 16 and Table 12,608

respectively.609

Our comparison of misexposed EA ratios in the three sets conforms to our assumptions. In Set AR, 14% of610

EAs are classified as MustIA with high certainty. Overall, about three-quarters (74%) of EAs are suspected to be IAs,611

whose exposure may not be suggested. In Set MD, only 12% of EAs are suspected to be IAs. In BenchFdroid, the612

proportion of such EAs is 33%, somewhere in between.613

To gain an intuitive understanding of the rules by which we classify EAs as MustIA (rule 1-3 in Table 7) or MayIA614

(rule 7 and 8), we counted the hitting number of each rule on the three sets. Figure 16 shows the hit ratio calculated615

by the formula where the numerator is the number of hits for a rule, and the denominator is the number of activities616

classified as MustIA and MayIA. We observed that rule 7 and 8 of MayIA hit top for Set AR, which illustrates the617

high proportion of MayIA in Set AR. In contrast, BenchFdroid does not contain any MayIA nor the use of rule 7618

First Author et al.: Preprint submitted to Elsevier Page 20 of 28

Variable-Strength Combinatorial Testing of Exported Activities

14%

14%

11%

33%

46%

60%

1%

23%

12%

68%

40%

13%

12%

15%

5%

3%

2%

6%

22%

All

SetAR

SetMD

BenchFdroid

MustIA MayIA Unclear MustEA MustEA(main)

(a) Misexposure Distribution

13% 34% 14% 10% 29%

27%

40%

29%

All

SetAR

SetMD

BenchFdroid

LowIPC HighIPC

73%

60%

71%

(b) EA Complexity Distribution
Figure 15: Static Analysis Results on Three Datasets

Table 12
Statistics of Each Complexity Analysis Rule

Rule HighIHC LowIHC
1 useAction and useExtra 2 exceedT 0 noIntent 3 not exceedT

SetAR 193 (8%) 424 (18%) 1290 (56%) 392 (17%)
SetMD 82 (15%) 131 (24%) 223 (41%) 103 (19%)

BenchFdroid 21 (16%) 18 (13%) 59 (44%) 37 (27%)
All 296 (10%) 573 (19%) 1572 (53%) 532 (18%)

and 8, mainly because open-source apps contain fewer EAs. Another observation is that for the MustIA category, rule619

2 constitutes the majority of EAs declared in ExTrue mode (android:exported=true), while rule 1 only hits the620

NoEx mode. Both rules indicate that the EA will not or is unlikely to be called implicitly. As ExTrue is the suggested621

mode in Android 12, it is expected that the proportion of rule 2 might increase in more and more updated apps. Since622

ExTrue is a proposed mode in Android 12, users can choose a less conservative strategy to have rule 1 also apply to623

EAs declared in this mode. This can be achieved by removing “ifTrue and not exTrue” in the condition of rule 1 in624

Table 7.625

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ExTrue

NoEx

ExTrue

NoEx

ExTrue

NoEx

Se
tA

R
Se

tM
D

B
e

n
ch

Fd
ro

id

1 ifTrue and not exTrue and sysActNoData 2 noDefault 3 debug 7 similar 8 highRatio

Figure 16: Statistics of Each Misexposure Prediction Rule for MustIA and MayIA Category

The EA complexity distribution in BenchFdroid is consistent with our observations in the EAs of Set MD and626

AR, as shown in Figure 15. The vast majority of EA implementations for each set have low Intent-handling complexity,627

with LowIHC ratios ranging from 60% to 73%. Table 12 indicates that more than half (53%) of EAs do not retrieve628

nor process any Intent attributes from external calls.629

We further investigate the relationship between EA complexity and misexposure classification. Although each630

misexposure category contains EAs that belong to LowIHC, the conditional probabilities of LowIHC show a631

correlation with the misexposure category. The shape fills of the legend in Figure 15 represent the four classification632

categories in misexposure prediction. The EAs that constitute LowIHC come from all classes. We then compute the633

conditional probability under each class. The likelihood of an EA having low complexity based on the fact that the634

First Author et al.: Preprint submitted to Elsevier Page 21 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 13
Error Triggering Comparison

Tool #App Duration (minutes) #Error
ExaDroid 30 (16.4, 2.7) 100

Fax 26 (3.8, 60) 58
IntentFuzzer 30 - 24

EA belongs to MustIA is 𝑃 (LowIHC|MustIA) = 13%∕14% = 0.93, where the values 14% and 13% come from All in635

Figure 15. The conditional probability is greater than 𝑃 (LowIHC|MustEA) = 10%∕(13% + 2%) = 0.66.636

In conclusion, activities that are exposed by mistake or have low complexity in Intent handling are widely present637

in different datasets. Therefore, although the Android market exposes many components, the interaction and638

cooperation among applications are not sufficient.639

8.4. RQ3: Testing Effectiveness640

In this section, we compare ExaDroid with related works on BenchFdroid. The related works employ two641

approaches: symbolic execution and fuzzing. For the first type, Fax [52] introduces the concept of constructing an642

activity testing model through symbolic execution, which leads to the successful launch of a larger number of activities.643

In comparison to state-of-the-art Android testing tools, Fax significantly improves testing coverage. For the second644

type, IntentFuzzer [36] is a fuzzing-based tool that is readily available and widely used by Android developers. It645

generates intents with null values and serializable data.646

Table 13 provides an overview of the error triggering capabilities of each tool examined in this study. Column #App647

shows the number of successfully analyzed apps, Duration shows the average time cost for static analysis and dynamic648

execution on each app, and #Error indicates the number of unique errors being triggered by generated test cases.649

Whenever an error-level exception is encountered, we record the runtime log information and collect the stack trace.650

Uncaught exceptions have the potential to crash the application, resulting in a negative user experience. Therefore, we651

use the number of uncaught stack traces to represent the number of errors.652

The results show that ExaDroid demonstrates a significant capability to trigger a substantial number of unique653

crashes. It triggers 100 errors, which is 42 more errors than Fax. It is also worth noting that the static analysis of the app654

OsmAnd required 269 minutes, leading to an increase in the overall average duration. As for Fax, it failed to analyze two655

apps and to instrument another two apps. Its dynamic execution threshold is one hour by default. Out of the 58 errors656

identified by Fax, ExaDroid successfully reproduces 48 of them. Upon manual analysis of the errors that ExaDroid657

failed to reproduce, we found that five of them were attributed to delayed crashes because Fax waits 10 seconds but658

ExaDroid will return in 4 seconds. Since Fax also employs random mutation strategy, we run the tool twice to obtain659

the average, but its performance is stable. IntentFuzzer triggers 24 errors after removing those caused by serialiazable660

input. Since it does not distinguish EAs from IAs and it requires manual operation on the simulator, so there is no661

running time statistics. It can be seen that some EAs throw exceptions for simple null inputs.662

Besides, it can be observed that ExaDroid is capable of effectively testing an EA with only a dozen or so test663

cases. As shown in Table 11, ExaDroid generates a total of 1916 test cases for 135 EAs, with an average cost of 14.2664

intents per EA. Table 14 illustrates the test reducing effectiveness of ExaDroid, based on static analysis results and665

testing behaviors. The value A-P (or A-F) represent that an EA pass (or fail) in all generated test cases. We mark the666

values in the last column that exceed the mean value of 14.2 in blue. It can be observed that MustIA and LowIHC667

have fewer blue markers compared to other categories. By setting the testing strength 𝑡 = 1, ExaDroid generates 430668

test cases for 102 EAs of MustIA or LowIHC, which account for the majority (76%) of all EAs in BenchFdroid, thus669

reducing the average number of test cases. However, the question remains whether these small test suites fully trigger670

all possible behaviors of the EA. Out of the 102 EAs, 68 belong to A-P, 16 belong to A-F, and only 18 have both pass671

and fail behavior. By experimentally assigning 𝑡 = 3 to all EAs, we find that 4 A-P EAs now have failed test cases, but672

it brings 4783 more test cases, as shown in Table 15.673

Table 15 presents the results of controlled experiments in which ExaDroid is purposefully configured for selected674

value-taking strategies (or testing strength settings). We compare the Base value-taking strategy with other user-675

customizable strategies described in Section 5.1.2, as well as compare the testing strength setting that adaptively assigns676

𝑡 = 1 or 𝑡 = 3 based on EA classification with fixed strength settings. It is evident that keeping the testing strength677

setting the same, making the value-taking strategy additionally consider manifest, boundary, or random values brings678

First Author et al.: Preprint submitted to Elsevier Page 22 of 28

Variable-Strength Combinatorial Testing of Exported Activities

Table 14
Testing Behavior of BenchFdroid

Misexposure Complexity TestBehavior #EA #Test #Test/#EA

MustIA

LowIHC
A-P 19 59 3.1
A-F 12 36 3.0

other 8 26 3.3

HighIHC
A-P 3 36 12
A-F - - -

other 3 51 17

Unclear

LowIHC
A-P 25 100 4.0
A-F 3 12 4.0

other 5 24 4.8

HighIHC
A-P 7 262 34.7
A-F 1 16 16.0

other 13 685 52.7

MustEA

LowIHC
A-P 21 69 3.3
A-F 1 6 6.0

other 2 11 5.5

HighIHC
A-P 4 141 35.3
A-F - - -

other 8 382 47.8

Table 15
Controlled Experiments

Base, Value-Taking Strategy Strength Strategy

Adaptive Strength Base+
Manifest

Base+
PresetBound

Base+
Random

Base+
ALL 𝑡 = 1 𝑡 = 3

#Error 100 106 106 104 114 77 118
#Test 1916 2971 (1.6x) 3630 (1.9x) 8206 (4.3x) 18264 (9.5x) 552 (0.3x) 6699 (3.5x)

Execution Time
(hh:mm:ss) 01:22:04 02:24:21 02:53:01 05:51:55 13:26:22 00:27:11 05:01:52

many test cases but few new errors. In particular, only considering random values may result in many useless tests.679

For a given number of parameters in a CT model, the size of a combinatorial 𝑡-way test suite increases exponentially680

with the number of values that each parameter can take [22]. The size of a combinatorial 𝑡-way test suite also increases681

rapidly as 𝑡 increases. The table shows the number of tests and error detection capabilities for fixing 𝑡 = 1 or 𝑡 = 3. The682

adaptive strength setting reduces the number of test cases for a fixed 𝑡 = 3 and detects more bugs than 𝑡 = 1. When 𝑡683

is increased to 4, the numbers of test cases for Base and Base+All strategies are 19488 and 1,006,040, respectively.684

Based on the generated tests and execution results for a fixed 𝑡 = 3 strength, we analyzed the root causes of 118685

errors. Combinatorial testing researchers believe that a failed test run is caused by a specific combination, known as686

a failure-inducing interaction (FIC) [63]. The number of conditions required to trigger a failure is called the FIC size.687

One tester follows the practice [39] of manually analyzing FICs based on execution results. The tester distinguishes688

between passed and failed runs, finds combinations that are only covered by failed runs, and progressively excludes689

irrelevant conditions from them to find the smallest FIC sizes. For EAs that contain multiple types of errors/unique690

stack traces, we use whether one type of error occurs as the criterion for distinguishing between passed and failed691

runs. Initially, the tester was unable to analyze 13 errors in 13 EAs because all test cases failed with one error type692

and there were no passed runs. Another 22 errors in 5 EAs were also ruled out because the number of failed runs was693

insufficient for analysis or the execution results were unstable due to an implementation error of ExaDroid. Finally, we694

obtained 90 FICs for 83 errors in 41 EAs. Some errors can have more than one FIC. Figure 17 shows the results of695

the 90 identified FICs. The abscissa represents the FIC size, the main ordinate represents the number of FICs, and the696

sub-ordinate represents the cumulative distribution. The FIC size is usually less than or equal to 6, and the distribution697

of FIC appears to follow a power law, similar to the findings from the existing CT empirical research [23]. We found698

that 32% of the errors are triggered by only a single parameter value, 88% by three-way combinations, and 98% by699

four-way combinations.700

First Author et al.: Preprint submitted to Elsevier Page 23 of 28

Variable-Strength Combinatorial Testing of Exported Activities

29
27

23

9
1 1

32%

62%

88%
98% 99% 100%

0%

20%

40%

60%

80%

100%

0

5

10

15

20

25

30

1-way 2-way 3-way 4-way 5-way 6-way

P
e
rc
e
n
t

#F
IC

#FIC coverage

Figure 17: Failure Triggering Interactions, Cumulative Distribution

Experiments have demonstrated that ExaDroid has the ability to trigger many unique crashes with fewer test cases,701

utilizing variable-strength combinatorial testing strategies.702

9. Threats to Validity703

Construct validity This paper’s definition of three concepts may lead to certain risks. The first concept is the activity704

exposure modes. Older Android versions, which are more widely used, allow exporting activities in two ways, while705

Android 12 only allows one way. Since the former occupies more market share, our misexposure reasoning analyzes706

both ExTrue and NoEx exposure modes. As shown in Figure 16, there are misexported activities under both modes.707

The second concept is misexported activity. Usually, only the developer can specify whether an EA is intended to be708

exported or not. Instead, our definition is based on the likelihood that an EA is invoked and whether the exposure is709

due to poor programming practices by developers. Additionally, a tester dynamically executed activities that fit the710

definition and confirmed that they usually cannot provide functionality to external invocations. The third concept is711

the unique error-level stack trace. The definition in Section 8.4 is accepted in the Android testing community. Based712

on this definition, we compare the results of three testing tools.713

Internal Validity The validity of the study is at risk due to various factors such as the manual analysis phase,714

hyperparameters of the implementation, static analysis module, and the experimental dataset. To infer EA classification715

rules, comparative datasets are constructed and combined with manual analysis. The selection metrics for constructing716

SetAR and SetMD were verified on 10 apps by a tester who launched each EA and examined its bytecode. The accuracy717

of misexposure classification for constructing Set MustIA and Set MustEA was validated in previous work [51] by718

comparing it with manual classification on 50 randomly selected apps by three testers. The distribution of studied719

activities suggests that there is no data source imbalance. However, the identification results are limited by the720

Caller Intent Dataset and the hyperparameters. The dataset is collected across three repositories with a variety of721

categories, but it is currently outdated due to the time-consuming extraction of caller intents from each app. The values722

of hyperparameters in this paper are conservative, which reduces the probability of classifying an EA as MustIA723

or LowIHC, leading to more tests. Users can lower the thresholds or adjust the priority to be more aggressive in724

finding misexported EAs and reducing the number of test cases. The extracted function summary influences the725

test modeling as well as the test generation. However, it has been found that the static analyzer does not model the726

API equalsIgnoreCase() for string items, affecting the accuracy of the complexity calculation. Lastly, the limited727

scale of the apps used for experimentation may affect the answers to RQs. To mitigate this, the study follows related728

works [52, 30] and adopts the widely used BenchFdroid.729

External Validity The external validity of our research is mainly determined by the scope of our study. In typical730

Android applications, there are four types of components that can be used. While our study focuses only on the most731

commonly used component, i.e., activities, our proposed method can be easily adapted for other components as well.732

These components are exported in similar ways, and we believe that the misexposure of other components has similar733

First Author et al.: Preprint submitted to Elsevier Page 24 of 28

Variable-Strength Combinatorial Testing of Exported Activities

characteristics. We plan to investigate them in our future studies. Furthermore, although we have studied and tested734

exported activities in this paper, the complexity analysis and combinatorial testing strategy can also be applied to735

internal activities.736

10. Related Work737

ICC Attack Detection. The design of ICC has its limitations, which may cause bugs or security flaws. A study by738

Ahmad et al. [1] discussed the challenges it brings to Android development. Chin et al. [9] provide the tool ComDroid739

to describe application communication vulnerabilities caused by the misunderstanding of the intent passing system,740

such as unauthorized intent receipt and intent spoofing. The research [20] proposes an iterative test generation approach741

to detect the ICC vulnerabilities (e.g., XSS, SQL injection, etc.) of Android apps. In each iteration, they recover the742

custom fields (variables) of intent by instrumenting the APIs that are used to read such fields and monitoring the app743

execution. Bagheri et al. [5] implement the tool Covert that can detect the permission leakage caused by the lack of744

permission requirements of exposed components. They first perform static analysis techniques to obtain the model of745

program behavior, then use the alloy language (an object modeling notation) to model the combination of apps, and746

finally perform the formal analysis technique to verify the model.747

In addition to a wide variety of approaches to identifying vulnerabilities, an exploit generation tool LetterBom [18]748

based on a path-sensitive static analysis (using symbolic execution) is provided, which can be used to reduce the749

number of false positives in vulnerability detection. To determine whether the vulnerability really exists, Zhou et750

al. [64] also propose a path-sensitive symbolic execution-based static analysis as well as a testing technique to reduce751

false positives. They detect the capability leak for illegal goals and utilize CFG reduction and CG search optimization752

to optimize symbolic execution.753

A more recent research [44] uncovers an atypical ICC mechanism. It finds that a component with Android objects754

(e.g., PendingIntent or IntentSender) can be invoked through some methods whose role is not primarily to start a755

component but to perform some action, such as set an alarm or send an SMS. The vulnerability that PendingIntent756

could bring has been studied by Groẞ et al. in [19]. Besides ICC, there are other inter-app code invocations for757

different reuse scenarios. Gao et al. [17] expose the general workflow that enables app developers to access and invoke758

functionality (either entire Java classes, methods, or object fields) implemented in other apps using official Android759

APIs. They showed a case that video database can be accessed even with security guards. They propose the tool760

DICIDer for detecting direct inter-app code invocations in apps.761

In our work, we pay more attention to another aspect, i.e., detecting whether activities should be exposed or not.762

ICC Resolution. ICC mechanism introduces implicit control flow, which makes generating precise call graphs and763

control flow graphs very difficult. In recent years, several researchers have aimed to expose such implicit transitions764

through intent analysis [42, 41, 28]. Octeau et al. provided the tool Epicc [42] for obtaining ICC methods and765

their parameters. They also provided IC3 [41] which modeled ICC messages with the proposed COAL language766

and implemented the associated solver that performs string analysis to figure out the ICC specification in Android767

apps. Based on Epicc and IC3, Li et al. [29] developed IccTA, a static analysis tool for detecting inter-component768

privacy leaks in Android apps. The links between components are detected by code instrumentation and static analysis769

techniques. Raicc [44] by Samhi et al. complements IccTA with atypical inter-component communication methods.770

Yan et al. resolved the component transitions connected by Android fragments, and provided context-sensitive tracking771

of data transfer among methods calls through ICCBot [54]. In this work, we employ ICCBot to obtain the object772

summaries for EAs to empirically study the processing of Intent attributes. In our previous version, we adopted intra-773

procedural reaching definition analysis to maintain the dataset of intents sent by caller apps and get the target variable774

related du-chains in each method. Thus, we can track the assignments of each ICC field as well as the key declaration775

and value of extra data items. Our caller dataset can be used not only for misexposure prediction but also for other776

ICC resolution tools to find vulnerable ICC links.777

Intent Fuzzing. Fuzzing is the most widely adopted method for discovering intent vulnerabilities. Maji et al. [33]778

presented the first empirical evaluation of the robustness of ICC in Android through fuzzing methodology. They779

used straightforward strategies, such as “Semi-valid/Blank/Random Action and Data” to generate fuzzing test cases.780

However, the inherent weakness of fuzzing is that the number of test cases is very large. In their experiment, around781

9,000 intents were sent to test an activity. Some works rely on static analysis to avoid aimless exploration with invalid782

parameters. Null Intent fuzzing and randomized approaches are applied to generate Intents, not only for cross-app783

First Author et al.: Preprint submitted to Elsevier Page 25 of 28

Variable-Strength Combinatorial Testing of Exported Activities

communication [25], but also for cross-platform communications, e.g., Android Wear OS [59]. The declaration in784

manifest files enables many researchers to improve the fuzzing strategy [33, 55, 58]. However, according to [52], only785

collecting the declaration values is not sufficient for activity modeling. There are mismatches between the attribute786

declaration in manifest files and its usage in Java codes. The actually used attribute may not be related to implicit787

invocation and may not be declared. The approach we propose in this paper takes advantage of basic attribute values788

as well as extra types and structures in code. But the tool also enables users to configure the source of the value for789

various usage scenarios. Sasnauskas et al. [45] built a tool on Monkey [12] and FlowDroid [4]. Similar to our work,790

they extract key-type pairs of the extra attribute and then fuzz on top of empty intent templates. Instead, we define791

the combination coverage of Intent attributes to avoid endless fuzzing. It is a pity that all those tools do not consider792

allocating reasonable testing resources for different components. This paper shows in empirical research that it does not793

make sense to perform extensive fuzzing on simple components, mainly MistIA category. The misexposed components794

should be identified, preferably with their exposure status turned off.795

Android GUI Testing. Due to the event-based nature of Android apps, test cases take the form of GUI events. To796

conduct GUI testing, automatic exploration approaches have been proposed, including random exploration [12, 61, 32],797

model-based exploration [57, 38, 56], and systematic exploration [3, 21]. These approaches aim to cover more798

components or transitions. Another approach is to adjust the single-entry testing explored from the default entry point799

to simplify the calling context construction of components. Wang et al. [46] propose test case decomposition and800

re-combination, while TimeMachine in [16] utilizes test state capture and resume. Most relevant to the topic of this801

paper is the multi-entry testing strategy in [52], which changes the exported attribute of an IA to directly invoke the802

activity for testing.803

Combinatorial Testing Combinatorial testing has become an active field in recent year, with the major trends being804

the minimization of test set sizes for a given combinatorial criterion. Optimization algorithms proposed in [62, 2] use805

variable-strength combinatorial test generation. Another trend is the application of combinatorial testing in various806

fields, including Android testing. For example, TrimDroid [37] is an approach that statically extracts dependencies807

among widgets to reduce the number of combinations in GUI testing. Prefest [31] proposes the dependency of test808

cases to Preference, the setting options provided by Android, and uses both static and dynamic analysis to configure809

preferences for existing test cases. These works are all focused on Android GUI testing. However, our goal is not GUI810

testing for application-wide component coverage, but rather robustness testing for specific components. Since an EA is811

an additional entry point to the app, we avoid the difficulty of generating test sequences to reach an activity. Additionally,812

our use of combinatorial testing is more granular, taking advantage of the variable-strengths in combinatorial testing.813

11. Conclusion814

In this paper, we have investigated two characteristics of exported activities: the likelihood of misexposure and the815

complexity of Intent processing. Exported activities are vulnerable to malicious ICC attacks and thus require exhaustive816

testing. However, existing testing efforts that are unaware of such exported activity characteristics can lead to resource817

wastage. Therefore, the key challenge lies in identifying the misexposure and computing the complexity. With the help818

of static analysis, we have identified typical misexposed activities from tens of thousands of real-world apps. Through819

comparative analysis, we have extracted rules to automatically classify an EA into four misexposure categories and820

two complexity categories based on static analysis results. Then, based on the classification results, we have designed821

various strategies to improve the efficiency of dynamic combinatorial testing of exported activities to discover exposure822

vulnerabilities. We have implemented a tool called ExaDroid, and experiments on real-world apps show that it can823

reasonably allocate testing resources to different exported activities and can effectively trigger unique crashes with as824

few test cases as possible.825

ExaDroid can improve the quality and robustness of Android applications by reporting exported activity character-826

istics and finding bugs. In the future, we will improve ExaDroid by using more concise static analysis and better value827

strategies. We will also conduct further studies on how to locate the failure-triggering combinations based on the test828

results of the test suite. This is useful for developers to fix bugs. We hope this tool could be widely used to help reduce829

exposure vulnerabilities in the Android market and enable richer interactions between components.830

First Author et al.: Preprint submitted to Elsevier Page 26 of 28

Variable-Strength Combinatorial Testing of Exported Activities

References831

[1] Ahmad, W., Kästner, C., Sunshine, J., Aldrich, J., 2016. Inter-app communication in Android: developer challenges, in: Proceedings of the832

13th International Conference on Mining Software Repositories, MSR 2016, pp. 177–188.833

[2] Ahmed, B.S., Zamli, K.Z., 2011. A variable strength interaction test suites generation strategy using particle swarm optimization. Journal of834

Systems and Software 84, 2171–2185.835

[3] Anand, S., Naik, M., Harrold, M.J., Yang, H., 2012. Automated concolic testing of smartphone apps, in: Proceedings of the ACM SIGSOFT836

20th International Symposium on the Foundations of Software Engineering, pp. 1–11.837

[4] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L., Octeau, D., McDaniel, P., 2014. Flowdroid: precise context,838

flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps, in: Proceedings of the 2014 ACM SIGPLAN Conference on839

Programming Language Design and Implementation, pp. 29:1–29:11.840

[5] Bagheri, H., Sadeghi, A., Garcia, J., Malek, S., 2015. COVERT: compositional analysis of Android inter-app permission leakage. IEEE841

Transactions on Software Engineering 41, 866–886.842

[6] Bodden, E., 2022. Soot. http://www.bodden.de/2008/09/22/soot-intra.843

[7] Borazjany, M.N., Ghandehari, L.S.G., Lei, Y., Kacker, R., Kuhn, R., 2013. An input space modeling methodology for combinatorial testing,844

in: IEEE International Conference on Software Testing, Verification and Validation, pp. 372–381.845

[8] Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J., 2000. LOF: identifying density-based local outliers, in: Proceedings of the 2000 ACM846

SIGMOD International Conference on Management of Data, pp. 93–104.847

[9] Chin, E., Felt, A.P., Greenwood, K., Wagner, D.A., 2011. Analyzing inter-application communication in Android, in: Proceedings of the 9th848

International Conference on Mobile Systems, Applications, and Services (MobiSys 2011), pp. 239–252.849

[10] Clocksin, W.F., Mellish, C.S., 2003. Programming in PROLOG. Springer Science & Business Media.850

[11] Developers, A., 2021a. Behavior changes: Apps targeting android 12. https://developer.android.com/about/versions/12/851

behavior-changes-12.852

[12] Developers, A., 2021b. UI/application exerciser monkey. http://developer.android.com/tools/help/monkey.html.853

[13] Developers, A., 2022a. activity. https://developer.android.com/guide/topics/manifest/activity-element.html.854

[14] Developers, A., 2022b. <category>. https://developer.android.com/guide/topics/manifest/category-element.855

[15] Developers, A., 2022c. Intents and Intent Filters . https://developer.android.com/guide/components/intents-filters.html.856

[16] Dong, Z., Böhme, M., Cojocaru, L., Roychoudhury, A., 2020. Time-travel testing of android apps, in: 2020 IEEE/ACM 42nd International857

Conference on Software Engineering (ICSE), IEEE. pp. 481–492.858

[17] Gao, J., Li, L., Kong, P., Bissyandé, T.F., Klein, J., 2020. Borrowing your enemys arrows: the case of code reuse in android via direct inter-app859

code invocation, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the860

Foundations of Software Engineering (ESEC/FSE), pp. 939–951.861

[18] Garcia, J., Hammad, M., Ghorbani, N., Malek, S., 2017. Automatic generation of inter-component communication exploits for Android862

applications, in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, pp. 661–671.863

[19] Groß, S., Tiwari, A., Hammer, C., 2018. Pianalyzer: A precise approach for pendingintent vulnerability analysis, in: European Symposium on864

Research in Computer Security, Springer. pp. 41–59.865

[20] Hay, R., Tripp, O., Pistoia, M., 2015. Dynamic detection of inter-application communication vulnerabilities in Android, in: Proceedings of866

the 2015 International Symposium on Software Testing and Analysis, pp. 118–128.867

[21] Jensen, C.S., Prasad, M.R., Møller, A., 2013. Automated testing with targeted event sequence generation, in: Proceedings of the 2013868

International Symposium on Software Testing and Analysis, pp. 67–77.869

[22] Kuhn, D.R., Bryce, R., Duan, F., Ghandehari, L.S., Lei, Y., Kacker, R.N., 2015. Combinatorial testing: Theory and practice. Advances in870

Computers 99, 1–66.871

[23] Kuhn, D.R., Wallace, D.R., Gallo, A.M., 2004. Software fault interactions and implications for software testing. IEEE Transactions on872

Software Engineering 30, 418–421.873

[24] Kuhn, R., Lei, Y., Kacker, R., 2008. Practical combinatorial testing: Beyond pairwise. It Professional 10, 19–23.874

[25] Labs, M., 2021. Drozer. https://labs.mwrinfosecurity.com/tools/drozer/.875

[26] Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J., 2007. Ipog: A general strategy for t-way software testing, in: 14th Annual IEEE876

International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS), IEEE. pp. 549–556.877

[27] Li, A., 2022. Android 12 distribution numbers. https://9to5google.com/2022/08/12/android-12-distribution-numbers/.878

[28] Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L., 2015a. Apkcombiner: Combining multiple Android apps to support inter-app analysis,879

in: Proceedings of 30th International Conference on ICT Systems Security and Privacy Protection, pp. 513–527.880

[29] Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L., Arzt, S., Rasthofer, S., Bodden, E., Octeau, D., McDaniel, P., 2015b. IccTA: Detecting881

inter-component privacy leaks in Android apps, in: Proceedings of the 37th IEEE/ACM International Conference on Software Engineering,882

pp. 280–291.883

[30] Liu, A., Guo, C., Dong, N., Wang, Y., Xu, J., 2022. Dalt: Deep activity launching test via intent-constraint extraction, in: 2022 IEEE 33rd884

International Symposium on Software Reliability Engineering (ISSRE), pp. 482–493.885

[31] Lu, Y., Pan, M., Zhai, J., Zhang, T., Li, X., 2019. Preference-wise testing for android applications, in: ACM Joint Meeting on European886

Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 268–278.887

[32] Machiry, A., Tahiliani, R., Naik, M., 2013. Dynodroid: An input generation system for android apps, in: Proceedings of the 2013 9th Joint888

Meeting on Foundations of Software Engineering, pp. 224–234.889

[33] Maji, A.K., Arshad, F.A., Bagchi, S., Rellermeyer, J.S., 2012. An empirical study of the robustness of inter-component communication in890

android, in: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012), IEEE. pp. 1–12.891

[34] Mathur, A.P., 2013. Foundations of software testing. Pearson Education India.892

[35] Merritt, D., 2012. Building expert systems in Prolog. Springer Science & Business Media.893

First Author et al.: Preprint submitted to Elsevier Page 27 of 28

http://www.bodden.de/2008/09/22/soot-intra
https://developer.android.com/about/versions/12/behavior-changes-12
https://developer.android.com/about/versions/12/behavior-changes-12
https://developer.android.com/about/versions/12/behavior-changes-12
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/category-element
https://developer.android.com/guide/components/intents-filters.html
https://labs.mwrinfosecurity.com/tools/drozer/
https://9to5google.com/2022/08/12/android-12-distribution-numbers/

Variable-Strength Combinatorial Testing of Exported Activities

[36] MindMac, 2017. IntentFuzzer. https://github.com/MindMac/IntentFuzzer.894

[37] Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S., 2016a. Reducing combinatorics in gui testing of android applications, in: 2016895

IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE. pp. 559–570.896

[38] Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S., 2016b. Reducing combinatorics in gui testing of android applications, in: 2016897

IEEE/ACM 38th International Conference on Software Engineering (ICSE), IEEE. pp. 559–570.898

[39] Nie, C., Leung, H., 2011. The minimal failure-causing schema of combinatorial testing. ACM Trans. Softw. Eng. Methodol. 20, 15:1–15:38.899

[40] Nie, C., Wu, H., Niu, X., Kuo, F., Leung, H.K.N., Colbourn, C.J., 2015. Combinatorial testing, random testing, and adaptive random testing900

for detecting interaction triggered failures. Information & Software Technology 62, 198–213.901

[41] Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P., 2015. Composite Constant Propagation: Application to Android Inter-Component902

Communication Analysis, in: Proceedings of the 37th International Conference on Software Engineering, pp. 77–88.903

[42] Octeau, D., McDaniel, P.D., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.L., 2013. Effective inter-component communication mapping904

in Android: An essential step towards holistic security analysis, in: Proceedings of the 22th USENIX Security Symposium, pp. 543–558.905

[43] Sabharwal, S., Aggarwal, M., 2017. A novel approach for deriving interactions for combinatorial testing. Engineering Science and Technology,906

an International Journal 20, 59–71.907

[44] Samhi, J., Bartel, A., Bissyandé, T.F., Klein, J., 2021. Raicc: Revealing atypical inter-component communication in android apps, in: 2021908

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE. pp. 1398–1409.909

[45] Sasnauskas, R., Regehr, J., 2014. Intent fuzzer: crafting intents of death, in: Proceedings of the 2014 Joint International Workshop on Dynamic910

Analysis (WODA) and Software and System Performance Testing, pp. 1–5.911

[46] Wang, J., Jiang, Y., Xu, C., Cao, C., Ma, X., Lu, J., 2020. Combodroid: generating high-quality test inputs for android apps via use case912

combinations, in: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, pp. 469–480.913

[47] Wang, M., Cui, B., Yan, J., Yan, J., Zhang, J., 2022. String test data generation for java programs, in: Proceedings of the International914

Symposium on Software Reliability Engineerings, pp. 251–262.915

[48] Wang, Z., Nie, C., Xu, B., 2007. Generating combinatorial test suite for interaction relationship, in: International Workshop on Software916

Quality Assurance, pp. 55–61.917

[49] WeChat, 2017. Open SDK. https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&918

verify=1&id=1417751808&token=&lang=en_US.919

[50] Wikipedia, 2022. Reaching definition. https://en.wikipedia.org/wiki/Reaching_definition.920

[51] Yan, J., Deng, X., Wang, P., Wu, T., Yan, J., Zhang, J., 2018. Characterizing and identifying misexposed activities in android applications, in:921

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE), pp. 691–701.922

[52] Yan, J., Liu, H., Pan, L., Yan, J., Zhang, J., Liang, B., 2020. Multiple-entry testing of android applications by constructing activity launching923

contexts, in: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), IEEE. pp. 457–468.924

[53] Yan, J., Zhang, S., Liu, Y., Deng, X., Yan, J., Zhang, J., 2022a. A comprehensive evaluation of android icc resolution techniques, in: The 37th925

IEEE/ACM International Conference on Automated Software Engineering (ASE).926

[54] Yan, J., Zhang, S., Liu, Y., Yan, J., Zhang, J., 2022b. Iccbot: Fragment-aware and context-sensitive icc resolution for Android applications.927

The 44th International Conference on Software Engineering, (ICSE) Demo Track .928

[55] Yang, K., Zhuge, J., Wang, Y., Zhou, L., Duan, H., 2014. Intentfuzzer: detecting capability leaks of Android applications, in: Proceedings of929

the 9th ACM Symposium on Information, Computer and Communications Security, pp. 531–536.930

[56] Yang, S., Wu, H., Zhang, H., Wang, Y., Swaminathan, C., Yan, D., Rountev, A., 2018. Static window transition graphs for android, in:931

Automated Software Engineering, Springer. pp. 833–873.932

[57] Yang, W., Prasad, M.R., Xie, T., 2013. A grey-box approach for automated gui-model generation of mobile applications, in: International933

Conference on Fundamental Approaches to Software Engineering, Springer. pp. 250–265.934

[58] Ye, H., Cheng, S., Zhang, L., Jiang, F., 2013. Droidfuzzer: Fuzzing the android apps with intent-filter tag, in: Proceedings of International935

Conference on Advances in Mobile Computing & Multimedia, pp. 68–74.936

[59] Yi, E.B., Zhang, H., Maji, A.K., Xu, K., Bagchi, S., 2020. Vulcan: Lessons on reliability of wearables through state-aware fuzzing, in:937

Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, pp. 391–403.938

[60] Yu, L., Lei, Y., Kacker, R.N., Kuhn, D.R., 2013. Acts: A combinatorial test generation tool, in: 2013 IEEE Sixth International Conference on939

Software Testing, Verification and Validation (ICST), IEEE. pp. 370–375.940

[61] Zeng, X., Li, D., Zheng, W., Xia, F., Deng, Y., Lam, W., Yang, W., Xie, T., 2016. Automated test input generation for android: Are we941

really there yet in an industrial case?, in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software942

Engineering, pp. 987–992.943

[62] Zhang, Z., Yan, J., Zhao, Y., Zhang, J., 2014. Generating combinatorial test suite using combinatorial optimization. Journal of Systems and944

Software 98, 191–207.945

[63] Zhang, Z., Zhang, J., 2011. Characterizing failure-causing parameter interactions by adaptive testing, in: Proceedings of the 20th International946

Symposium on Software Testing and Analysis, ISSTA, pp. 331–341.947

[64] Zhou, M., Zeng, F., Zhang, Y., Lv, C., Chen, Z., Chen, G., 2019. Automatic generation of capability leaks’ exploits for android applications,948

in: 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW), IEEE. pp. 291–295.949

First Author et al.: Preprint submitted to Elsevier Page 28 of 28

https://github.com/MindMac/IntentFuzzer
https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US
https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US
https://open.weixin.qq.com/cgi-bin/showdocument?action=dir_list&t=resource/res_list&verify=1&id=1417751808&token=&lang=en_US
https://en.wikipedia.org/wiki/Reaching_definition

