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Abstract

�e widely-used Compiler-Based Tools (CBT), such as static ana-

lyzers, process input source code using data structures inside a

compiler. CBTs can be invoked together with compilers by inject-

ing the compilation process. However, it is seldom the best practice

for the inconvenience of running various CBTs, the unexpected

failures due to interference with compilers, and the e�ciency degra-

dation under compilation dependencies. To �ll this gap, we propose

Panda, an e�cient scheduler for C/C++ CBTs. It executes various

CBTs in a compilation-independent manner to avoid mutual inter-

ference with the build system, and parallelizes the process based

on an estimated makespan to improve the execution e�ciency. �e

assessment indicates that Panda can reduce the total execution time

by 19%–47% compared with compilation-coupled execution, with

an average 39.03×–52.15× speedup with 64 parallel workers.

CCS Concepts

• So�ware and its engineering→ Development frameworks

and environments.
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1 Introduction

Compilers collect rich information during the compilation process,

which is also helpful to manufacturing code utilities, such as pro-

gram static analyzers, code transformation tools, and so on. Some
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of them are Integrated Tools (IT), which are provided as a part of a

full-volume compiler; while others are Singleton Tools (ST) that con-

tain only necessary components to collect desired information. To

make their dependent compiler components properly con�gured,

the command line arguments launching a compiler are fundamental

to executing Compiler-Based Tools (CBT).

To feed CBTs with compiler arguments, two approaches have

been proposed for ITs and STs respectively. ITs are usually exe-

cuted by directly overriding the compiler to be invoked, such as

CpyChecker [8]; whereas STs will utilize their specialized drivers

to capture and convert compiler arguments into tool arguments to

launch them, such as the Scan-Build scheduler of Clang-SA [14].

For both approaches, the build system concurrently schedules the

execution of CBTs during the project compilation. However, the

approaches still face the three challenges below.

First, customized the execution of di�erentCBTs. Tool users

usually use several di�erent ITs and STs together, also with cus-

tomized con�gurations [15]. For ITs, multiple tools cannot be ex-

ecuted by overriding the compiler, as the build system can only

schedule one exact kind of compiler. And customizing tool usages

by adjusting the command line arguments can seldom be automati-

cally carried out. For STs, their specialized drivers cannot run other

tools. And advanced functionalities, such as unstable features un-

der alpha tests, may be unavailable from their drivers. Hence, it is

di�cult for users to �exibly use CBTs.

Second, interference with the build system. Running a CBT

during compilationmay introduce undesired failures, and themixed

output of both CBT and compiler will make it di�cult to collect.

For instance, CpyChecker reports bugs through compiler warnings,

which are mixed with compilation warnings. And when the com-

piler arguments contain -Werror, which converts a warning to an

error, bug reports generated by the analyzer will be considered com-

pilation failures and hence interrupt the build process. As di�erent

tools have various ways of generating output, it is di�cult to avoid

the interference when executing CBTs together with compilers.

�ird, e�ciency degradation due to compilation depen-

dencies. In the build system, dependees should be built before

the depender. However, in most cases when executing a CBT, �les

are always independent of each other. Running a CBT on one �le

will not depend on the outputs of the executions on other �les.

When executing CBTs together with the compiler during compila-

tion, these unnecessary pauses scheduled by the build system based

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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on compilation dependencies will greatly degrade the e�ciency of

concurrent execution of CBTs.

To �ll the gap, we design Panda as a generic scheduler for con-

currently executing common C/C++ CBTs to respond to these chal-

lenges. (1) Panda is designed as a compilation-independent process

to avoid mutual interference with the build system. �is also makes

it able to isolate the execution of various CBTs. (2) It can customize

the execution of various CBTs according to a corresponding con-

�guration by automatically modifying the compiler arguments.

(3) It schedules CBT executions according to a lightweight online

estimation of makespan for be�er performance.

2 �e Panda Tool

Figure 1 presents the system structure and work�ow of Panda,

whose corresponding intermediate representations of processing

the record in Figure 2 are presented in Figure 3 and 5.

CDB 
Parser

Job 
Creator

Job-Size 
Estimator

Compilation 
Database (CDB)

CBT Execution 
Configuration

Source Files

Concurrent
Job Scheduler

Worker-1

Worker-2

Worker-n

…

CBT Output

Figure 3

Panda
Figure 1

Figure 5

§2.1

§2.2

§2.3

§2.3

Figure 4

Figure 1: System Structure and work�ow of Panda

Panda takes a pre-captured Compilation Database as input, ex-

tracts the information essential to execute a CBT independently to

the build system (§2.1, challenge 2), constructs the command line

arguments for CBT executions based on a CBT Execution Con�gu-

ration to customize the execution of di�erent kinds of CBTs (§2.2,

challenge 1), and concurrently schedules the CBT executions in a

dependency-free manner to gain further speedup compared with

compilation-coupled execution (§2.3, challenge 3).

2.1 Parsing Compilation Database

To independently execute CBTs, it is essential to know how the

compiler is originally invoked to replay the compilation process

in a CBT. Such information is available in a Compilation Database

(CDB) [12]. It is a JSON-forma�ed text �le storing the command

line arguments and the working directory of invoking a compiler on

each Translation Unit (TU), i.e. one main �le (.cpp) and all header

�les (.h) it includes. Figure 2 presents a record in a CDB, which is

1 [..., –

2 ”command”: ”clang -x c++ -c temp.c -o temp.o -g -MD

-MF temp.d -Werror -Wall -DVERSION =“” version 1.0“”

-I/path/to/dependency”,

3 ”directory”: ”/path/to/project”,

4 ”file”: ”temp.c”

5 ˝, ...]

Figure 2: A compilation database with an example record.

• arguments: [-x, c++, temp.c, -DVERSION=”version 1.0”,

-I/path/to/dependency]

• directory: /path/to/project

• �le: /path/to/project/temp.c

• language: C++

Figure 3: ACDB record generated for the example in Figure 2

composed of a file �eld providing the path to the main �le of the

TU, a directory �eld recording in which directory the main �le is

compiled, and a command �eld storing the compiler arguments. �e

CDB Parser will read the JSON text of an input CDB to load the

records in it and produce a CDB record as presented in Figure 3.

To unify the representation of the information in an input CDB

generated by various kinds of producers, the content in the original

JSON object will be adjusted. �e path to the main �le in �eld file

will be converted to an absolute path according to �eld directory.

And the compiler argument string in �eld command will be split

into a list of strings storing each argument separately.

�en the string list of compiler arguments will be parsed to �lter

out unnecessary ones and update information in the output CDB

record accordingly. �e language type will be updated if it is speci-

�ed explicitly with argument -x. And the original compiler as well

as the arguments about compiler actions (such as -c, -save-temps,

and so on), output (-o), debug (-g options), diagnostics (-W options),

and dependency (-M options) will be pruned from the arguments

list as they are unrelated to the compilation process.

2.2 Creating Description for Jobs

�e Job Creator generates the job descriptions describing how to

execute a CBT on a TU, which will be scheduled concurrently in

later steps. To make the execution customizable to users, the CBT

execution con�gurations are introduced to guide the process under

the intent of users.

As mentioned in §1, we separate the common C/C++ CBTs into

two categories: (1) Integrated Tools: they are invoked in the same

way as compilers, and (2) Singleton Tools: they accept compiler

arguments a�er their speci�c options. Hence, both descriptions

and con�gurations have two corresponding formats (as shown in

Figure 4).

In a con�guration, type determines how to organize the com-

mand line arguments of invoking the CBT; prompt is the output

message when executing the job; tool and arguments customize the

CBT and its speci�c command line arguments to be executed, source

indicates the output is generated by the CBT (�le), or collected from

standard streams (stdout or stderr); and extension denotes the ex-

tension name of the output �le to be generated. And in a generated

description (Figure 5), arguments and directory present how and

where to invoke the CBT; output shows the path to the output �le;

and source and prompt are the same as in the input con�guration.

When creating descriptions from a con�guration for an IT (in

Figure 3
40
−−→ 50), the CBT to be executed is determined according

to the language type. �en we add the arguments from the CDB,

the input con�guration, and for se�ing output paths. Similarly, for

the con�guration for an ST (in Figure 3
41
−−→ 51), its arguments are

composed of the tool, the main �le of the TU, arguments from the

con�guration, a delimiter (--), and the compiler arguments.
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• type: Integrated Tool

• prompt: ”Generating LLVM-IR code”

• tool: {C: clang, C++: clang++}

• arguments: [-c, -emit-llvm, -S]

• source: �le

• extension: ”.ll”

(a) Generating LLVM-IR code dump by invoking the Clang compiler

• type: Singleton Tool

• prompt: ”Matching goto statement”

• tool: clang-query

• arguments: [-c, ”match gotoStmt()”]

• source: stdout

• extension: ”.clang-query”

(b) Identifying all goto statementswith code audit tool Clang-�ery

Figure 4: Example CBT Execution Con�gurations for gener-

ating the Job Descriptions shown in Figure 5a and 5b

• arguments: [clang++, -x, c++, temp.c, -DVERSION=”version 1.0”,

-I/path/to/dependency, -c, -emit-llvm, -S, -w, -o,

/path/to/output/path/to/project/temp.c.ll]

• directory: /path/to/project

• output: /path/to/output/path/to/project/temp.c.ll

• source: �le

• prompt: ”Generating LLVM-IR code”

(a) Job description of Integrated Tools generated from Figure 4a

• arguments: [clang-query, temp.c, -c, ”match gotoStmt()”,

--, -x, c++, temp.c, -DVERSION=”version 1.0”,

-I/path/to/dependency]

• directory: /path/to/project

• output: /path/to/output/path/to/project/temp.c.clang-query

• source: stdout

• prompt: ”Matching goto statement”

(b) Job description of Singleton Tools generated from Figure 4b

Figure 5: Job descriptions generated from corresponding

CBT execution con�gurations in Figure 4

Finally, each Worker in the Concurrent Job Scheduler will

fork the process to launch the CBT. �e output of the standard

streams will be stored in the output �le if speci�ed in the description.

2.3 Concurrently Scheduling Job Execution

Since we assume that there are no precedence orders among TUs

when invoking CBTs, the Concurrent Job Scheduler can be mod-

eled with the Identical-Machines Scheduling problem whose target

is minimizing the maximum completion time (% | |�<0G ). �e prob-

lem is NP-hard, and solving it is a signi�cant overhead that an

online scheduler cannot a�ord. A widely used approximate solu-

tion is a list-scheduling algorithm called Longest Processing Time

First, which prioritizes the execution of jobs with longer makespans.

When scheduling under a concurrency of<, the total makespan is
4
3 − 1

3< times of the optimal schedule in the worst case [4].

Hence, the key to a be�er execution sequence is to estimate the

makespan of each job, i.e. to estimate how long a tool will execute

with a given TU. Besides, as an online scheduler that estimates the

makespan and schedules the jobs at the same time, we need to keep

the overhead of the scheduler as small as possible.

To achieve this, the Job Size Estimator needs to set a value to

each job description as the key to sorting the schedule list. Since

a smaller overhead is preferred, to select a be�er key, we have

measured the makespan of running the Clang-SA on every TU in

project LLVM. And multiple approaches suggest that token semi-

colon (;) has higher importance and correlation to the makespan.

Hence, we use the number of semicolons to sort the TUs.

�e Job Size Estimator wraps every job description with the

number of appearances of semicolons in the main �le of the TU.

And the Concurrent Job Scheduler dispatches the descriptions

to a process pool of Workers with a priority queue.

2.4 Usage of Panda

Panda is provided as a command-line tool. In this subsection, we

will introduce the functionalities of Panda with its options.

• Customizing CBT Executions. As mentioned in §2.2, users

can customize the execution of CBTs. �is can be achieved by de�n-

ing an execution con�guration, which overcomes the �rst challenge.

For example, the execution con�guration presented in Figure 4b

can be de�ned with a plugin in JSON format in Figure 6. Besides,

Panda also has built-in con�gurations for generating compiler in-

termediate representations.

1 – ”type”: ”Singleton”,

2 ”action”: – ”prompt”: ”Match goto statement”,

3 ”tool”: ”clang -query”,

4 ”args”: [”-c”, ”match gotoStmt ()”],

5 ”extension”: ”.clang -query”,

6 ”source”: ”stdout” ˝ ˝

Figure 6: Plugin version for the con�guration in Figure 4b

• Controlling Concurrent Execution. As a concurrent sched-

uler, users can also customize the number of workers executing

CBTs in parallel, the strategy of the job scheduler (among the First-

Come-First-Service (FCFS) and the Longest-Processing-Time-First

(LPTF) strategies), and the feature of measuring job size (among

semicolon and LoC). By default, LPTF and semicolon are used. Ac-

cording to our experimental results in Figure 8, we suggest se�ing

the worker number to 10%–20% of the TU number and using the

FCFS strategy with at least 2–4 parallel workers on small projects

for smaller scheduler overhead. Figure 7 shows the duty (green)

and idle (red) durations of four parallel workers when executing

the con�guration in Figure 4a on project B�pd.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Seconds since first worker starts

Worker-�

Worker-�

Worker-�

Worker-�

duty idle preprocess

Figure 7: Panda’s schedule of parallel workers

• Controlling Input/Output. Panda allows users to customize

the range of TUs to be processed. �is makes it possible to �exibly

do a partial or incremental analysis on an updated project. And
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users can also determine the directory for storing the output �les.

�is makes it easier to collect CBT outputs and hence can avoid

interference with the source code and the build system.

3 Evaluation

We assess Panda to answer the following two research questions.

• RQ 1: How much time can be saved by executing CBTs

independently with the build system?

• RQ 2: How e�cient is our concurrent scheduler with the

increment of number of parallel workers?

�e �rst research question evaluates the e�ciency improvements

from compilation dependency and responds to the third challenge.

And the second one assesses the e�ectiveness of the Job-Size Esti-

mator and the e�ciency of the Concurrent Job Scheduler.

�e benchmark is composed of �ve popular C/C++ projects of

di�erent sizes. �e �rst two columns of Table 1 show their names

and sizes (measured with TU numbers). �e experiments are exe-

cuted on a Linux server with Intel® Xeon® Platinum 8153 CPU. All

data are measured with the mean value of �ve runs.

To answer the �rst research question, we measure the total time

consumption of compilation and CBT execution against Scan-Build,

the specialized command line argument converter of Clang-SA [10].

�e compilation of all projects in the benchmark are scheduled

with GNU Make. Table 1 shows the total time consumption of these

two schedulers, where Scan-Build fails to execute the Clang-SA

on project LLVM. �e third column shows the number of parallel

workers (#PW), which are determined based on the suggestions

in §2.4. �e fourth column (TCoupled) denotes the total time con-

sumption of compilation and CBT execution under compilation

dependencies. And the last two columns represent the separated

time consumption of compilation (TCompile) and CBT execution

(TPanda, scheduled by Panda). As we can see from the table, due

to the dependency-induced pause during compilation, the time

consumption of Scan-Build is 19%–47% higher than Panda.

Table 1: Time consumption of Scan-Build and Panda

Project #TU #PW TCoupled TCompile + TPanda

B�pd 12 4 10.19 0.61 + 7.64

LibOsip2 112 16 23.48 3.81 + 11.59

Curl 379 32 39.80 5.93 + 15.32

Aria2 388 32 72.98 25.28 + 34.03

LLVM 2,959 256 — 381.00 + 799.83

Besides, to answer the second research question, we measure the

speedup against sequential execution with di�erent concurrency,

as shown in Figure 8. Each curve represents a benchmark instance,

whose TU numbers are shown in the parenthesis. In this experiment,

we use Panda to schedule the syntax checker of GCC and the Clang-

SA, which respectively represent light-weight CBTs and heavy-

weight CBTs that have more onerous computations or iterations.

�e average speedup among all projects with 64 parallel works is

52.15× for GCC and 39.03× for Clang-SA. �e main performance

bo�leneck lies in the size of the project. It makes Panda reach the

performance upper-bound when scheduling with more parallel

workers than the number of TUs (e.g. B�pd).

B�pd (12) LibOsip2 (112) Curl (379) Aria2 (388) LLVM (2,959)

1 2 4 8 16 32 64 128 256

1

2

4

8

16

32

64

113

Number of Concurrent Workers (=)

Speedup

(a) GCC Syntax Check

1 2 4 8 16 32 64 128 256

1

2

4

8

16

32
43

Number of Concurrent Workers (=)

Speedup

(b) Clang-SA

Figure 8: Speedup of di�erent concurrency con�gurations

4 Related Work

Scheduling tool executions concurrently has been implemented

with multiple approaches. As mentioned in §1, tools can be exe-

cuted directly by overriding the compiler executed during compi-

lation. Analyzer CpyChecker [8] and driver blight [9] achieve this

by using environment variables. Whereas Scan-Build [14] directly

injects the build system and replaces the compiler with its compiler

wrapper. However, due to the interference with the build system,

this approach usually leads to a failed build.

Besides, tool execution can also be scheduled with its speci�cally

designed driver. CodeChecker [3] is an integrated system for exe-

cuting the Clang-SA and presenting the bug reports. �e run-tool

script in Chromium is a driver designed for their internally-used

tools [13]. In addition, the Clang-Tidy [11] and Infer Analyzer [2]

also provide their drivers to execute the tool under a pre-extracted

CDB. However, all of them are designed and optimized for speci�c

analyzers with the First-Come-First-Service strategy only.

In the literature, Panda has already been used to schedule the ex-

ecution of PyRefcon [7]. For other tools similar to PyRefcon [5, 6, 17],

they can also be adapted to be scheduled with Panda. Besides, it can

also be used to generate inputs (such as LLVM-IR and Preprocessed

source code) for other static analyzers [1, 16].

5 Conclusion and Future Work

In this paper, we propose a compilation-independent concurrent

scheduler for executingmultiple Compiler-Based Tools according to

the records in a Compilation Database, which can avoid interference

with the build system and e�ciency degradation due to compilation

dependencies. In the future, wewill continue addingmore strategies

for more accurate job size estimation and higher e�ciency.

Tool Availability

For the archived version of Panda for the ISSTA 2024 conference,

please visit the demo branch of its GitHub repository via https://gi

thub.com/Snape3058/panda/tree/demo. A demo video introducing

its usage can be found at https://youtu.be/YQTg5LsId5k.
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