
LAND: A User-Friendly and Customizable Test Generation Tool
for Android Apps∗

Jiwei Yan
Tech. Center of Softw. Eng.
Institute of Software, CAS

Beijing, China
yanjw@ios.ac.cn

Linjie Pan
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China

Yaqi Li
Tech. Center of Softw. Eng.
Institute of Software, CAS

Univ. of Chinese Academy of Sciences
Beijing, China

Jun Yan †

State Key Lab. of Computer Science
Institute of Software, CAS

Univ. of Chinese Academy of Sciences
Beijing, China

Jian Zhang
State Key Lab. of Computer Science

Institute of Software, CAS
Univ. of Chinese Academy of Sciences

Beijing, China

ABSTRACT
Model-based GUI exploration techniques are widely used to gen-
erate test cases for event-driven programs (such as Android apps).
These techniques traverse the elements of screens during the user
interaction and simultaneously construct the GUI model. Although
there are a number of automatic model-based exploration tools,
most of them pay more attention to the exploration procedure than
the model reusing. This paper presents LAND, an effective and
user-friendly test generation tool based on GUI exploration of An-
droid apps, which constructs an elaborate window transition model
“LATTE” that considers more Android specific characteristics and
provides a customizable test generation interface by reusing the
model. Experiments on 20 real-world Android apps are conducted
to construct their models as well as test cases. The experimental
results indicate that LAND can achieve higher code coverage and
trigger exceptions in shorter sequence. It is also demonstrated that
LATTE can be well reused under different requirements of test suite
generation. A demo video of our tool can be found at the website
https://www.youtube.com/watch?v=iqtr12eiJ_0.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

∗This work is supported by National Natural Science Foundation of China (Grant
No. 61672505), the National Key Basic Research (973) Program of China (Grant No.
2014CB340701), and Key Research Program of Frontier Sciences, CAS, Grant No.
QYZDJ-SSW-JSC036.
†Corresponding Author. Email: yanjun@ios.ac.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3229500

KEYWORDS
Android GUI Model; Targeted Test Generation; Dynamic Modeling

ACM Reference Format:
Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. 2018. LAND: A
User-Friendly and Customizable Test Generation Tool for Android Apps.
In Proceedings of 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA’18). ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3213846.3229500

1 INTRODUCTION
Test case is an essential element in the field of testing. For event-
driven programs, such as Android apps, a test case is an event se-
quence of unlimited length, which is composed of events (e.g., click,
scroll, input) in arbitrary order. An Android app can be regarded
as a collection of widgets, each of which is defined in an Activity
class that is provided by Android system to interact with users. The
user operations on the widgets will trigger corresponding events
and drive the app to transfer from one window to another. The
main challenge of GUI testing lies in how to generate effective test
cases to achieve higher code coverage and stronger fault detection
ability. In order to achieve this goal, GUI exploration techniques,
especially model-based ones, are widely adopted via the dynamic
information obtaining and event picking.

In recent years, several model-based GUI exploration approaches
[5–7] for Android apps have been proposed. Most of them focus
on generating test cases during exploration while ignoring the
reusing of generated models for further testing. The systematic ex-
ploration process for model construction is usually time-consuming.
However, the obtained model is rarely or merely used to generate
small-scale test suite, leading to the wasting of testing ability and
low efficiency of test generation.

Thus, we present LAND, a user-friendly and customizable test
generation tool for Android apps, to improve the efficiency ofmodel-
based GUI testing. Our tool can work without source code of the
application under test (AUT). It constructs the designed model dur-
ing exploration, which can be reused to satisfy different testing
requirements. To design an elaborate model of AUT, more Android
specific characteristics like the back stack [1], Activity launch mode

360

https://doi.org/10.1145/3213846.3229500
https://doi.org/10.1145/3213846.3229500
https://doi.org/10.1145/3213846.3229500

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang

as well as dynamic widget status information are considered. Be-
sides GUI information, we also link the transitions in this model to
the corresponding executed code snippets via a labeling mechanism.
Moreover, a metric named “state similarity” is proposed to balance
the accuracy and the cost during the analysis. Finally, users can
make use of the constructed model under several requirements of
test generation, including activity directed, widget directed, label
directed, graph traverse and record-and-replay. The generated test
cases are in the form of runnable, readable and editable test scripts.

2 LAND
In this section, we introduce the system architecture and techniques
used in our tool LAND.

2.1 System Overview
LAND takes an Android app as input and outputs the constructed
LATTE model as well as the generated test cases. Figure 1 gives the
high-level overview of LAND, which contains four modules: Pre-
Processing, GUI Exploration, Test Generation and Report Generation.
• The Pre-Processing module instruments the AUT on Dalvik
byte-code for target labeling and coverage computing, and
it will automatically generate exploration profile according
to the features of AUT.
• The GUI Exploration module iteratively updates the con-
structed LATTE model in the loop of executing three sub-
modules, including the event choosing and triggering (Event
Executor), information monitoring (Monitor), as well as state
abstracting and model constructing (Model Constructor).
• Making use of the embedded information in LATTE, the Test
Generationmodule reuses the constructed model to generate
test cases under several requirements.
• The Report Generation module gives detailed code coverage
and crash reports for the corresponding exploration.

APK
Instrumentation

Profile
Generation

Pre-processing

GUI Exploration

Event

Executor

Model

Constructor

Monitor

Report Generation

Activity Directed

Test Generation

LATTE Model Configuration

Label Directed

Widget Directed

Other...

Coverage
Reports

Crash
Reports

Figure 1: System Overview

2.2 GUI Exploration
Our GUI exploration approach takes an instrumented Android apk
file and its profile as input, and outputs the corresponding LATTE
model. LATTE is awindow transition graphwho splits each Activity
into one or more states, depending on both the widget and back
stack, and records the transition information between windows.
Details of LATTEmodel can be obtained from our previous work [9].

The basic work-flow of this approach is an automatic iterative
operation of the GUI exploration and model construction.

We initialize a LATTE model with an empty state and an empty
transition set. The first event to be executed automatically by Event
Executor is app launching, after which the app will be driven to
its first state (usually corresponding to the MainActivity). Dur-
ing the event execution, the sub-module Monitor will record the
GUI widget information by Robotium [4] script and get the event
list to be executed. We also get the instrumentation-related logs
through Android Debug Bridge. Then,Model Constructor will use the
collected information to update the model. To avoid exploring too
many states and get an acceptable model size, we define a metric to
measure the similarity of two states. Any two states will be merged
if their similarity is greater than a pre-defined threshold. Besides
the package, activity and basic widgets information, the state sim-
ilarity is also measured according to the widget status and back
stack. After that, based on the current model, the first unvisited
state, i.e., the first state that still contains unvisited events, will
be picked using Depth-First Search (DFS) or Breadth-First Search
(BFS) traversal strategies. The first unvisited event (according to the
layout) in that state will be the next event to be executed. The app
may be driven to a new window after a new event is triggered, and
then we repeat the above procedure until all events are traversed.

2.3 Test Generation
After exploration, the constructed LATTE model can be used to
generate several types of test cases for further testing. For an app,
LAND could construct a LATTE model and provide five strategies
to generate different test cases, including activity directed, widget
directed, label directed, graph traverse and record-and-replay.

Activity Directed. If the test target is a specific activity, LAND
will use the corresponding activity name to retrieve states in LATTE
model and return a set of test cases to reach these states. The
generated test cases are in the form of Robotium runnable script, as
shown in Figure 2.

@Test
public void test01() {
//state=MainActivity, id=1, isTarget=false, isQuit=false
solo.clickOnView(solo.getView(2131296262));
/∗ other code ∗/
//state=TargetActivity, id=8, isTarget=true, isQuit=false
solo.clickOnScreen(45,1310);
}

Figure 2: A Test Case Example

Widget Directed. When one type of widget, e.g. Button, needs
to be comprehensively tested, LAND retrieves these widgets in
LATTE model and generates test cases to reach them. For specific
kind of widget, like EditText, which accepts string input from
users, LAND will reach these widgets and then generate various
strings based on black-box (e.g., boundary value analysis) and fuzz
testing techniques with some user-given special characteristics (e.g.,
asterisk) to test them thoroughly.

Label Directed. In practice, testers often pay more attention
to some specific parts of codes, for example, the methods related
to the functionality that they want to analyze. To embed the code

361

LAND: A User-Friendly and Customizable Test Generation Tool for Android Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

information into our model, we introduce a label set. In general,
each element in the set corresponds to a code snippet. For instance,
we can set each label to represent a distinct method of the app
(method label), all the methods in a class (class label), or instruc-
tions with a specific keyword (keyword label). The mapping rule
for the labels and the code snippets is designed according to the
actual testing or analysis requirements. With the mapping rule,
the labeling procedure is implemented via code instrumentation in
our approach. For example, the keyword label Camera represents
all code instructions containing the keyword “Camera”, e.g., code
instruction Landroid/hardware/Camera;->open(.

For label directed test generation, the set of transitions whose
label set contains at least one element in the target label set will
be retrieved. Then we leverage several graph algorithms on the
LATTE model to extract the dependency relationships between
states and transitions. Finally, we try to find event sequences that
cover these transitions with some heuristics.

Graph Traverse and Record-and-Replay. LAND also pro-
vides two other strategies that aim at generating test cases for the
whole app. For the graph traverse generation, LAND will traverse
the LATTE model to generate test cases that can cover all transi-
tions. And for the record-and-replay strategy, all the operations that
have been executed during the GUI exploration will be recorded
and transferred to a set of test scripts for replaying.

2.4 Usage
In this section, we will introduce how to use LAND to construct
a LATTE model and generate test cases for an Android app. The
major configuration items in LAND are shown in Figure 3.

Figure 3: Main Interface of LAND

When LAND is launched, the user first selects an apk to be tested.
Then LAND repackages it into a new apk file apk1 via decompi-
lation and instrumentation. The automatic exploration script that
implemented using Robotium will also be packaged as an apk file
apk2. After clicking the button “Install”, both apk1 and apk2 will be
installed on the device (or emulator). Then the user can start the
exploration by clicking “Start Explore”. Both the instrumentation
and exploration procedures can be configured by users with a set
of editable items. While exploring, the current model will be trans-
formed into dot format and be visualized using software graphviz,
which will be displayed on the window in real-time.

Figure 4: Coverage and Crash Reports

When finished, the user can obtain the coverage reports as well
as crash reports. Figure 4 shows one coverage report in different
granularity, including the app-level, package-level and class-level.
The covered methods during app execution are marked in green
color and the uncovered ones in red. It also displays a crash report
that contains the name of exceptions and corresponding scripts. For
each state in the LATTE model, LAND will record one screen-shot,
so that testers can view and understand the model intuitively.

Finally, testers can generate customized test cases to satisfy their
requirements. These generated test cases also can be executed by
clicking the button whose label is “Run Testcase”.

3 EVALUATION
To evaluate the effectiveness of our tool, we collect 20 real-world
apps to construct LATTE models and generate test cases for them.
Among these apps, ten are open-source ones downloaded from
F-droid [2] and the rest are from commercial markets (without
source code). Due to the limit of the space, we only show the sum-
mary information of these apps. Their sizes vary from 0.14MB to
14.86MB, and their functionalities are varied (like browser, media,
and finance). The maximal number of classes and methods are 3752
and 25461, respectively. All of our experiments are carried out on a
mobile smartphone with 1.82GHz CPU and 3GB RAM.

3.1 Code Coverage
Code coverage of AUT is taken as a significant measurement index,
which can be calculated by analyzing the basic byte-code informa-
tion and the run-time executed code information. To evaluate the
effectiveness of our approach, we pick two popular automatic test-
ing tools Monkey [3] and Dynodroid [8] as well as two well-known
model-based traversal tools A3E [6] and PUMA [7] for comparison.

During exploration, some tools fail to report the test results for
some instances. As shown in Figure 5, we give the number of apps
that can be successfully executed in our benchmark. For Dynodroid,
it fails to explore unsupported apps or inconsistent versions of app
(cannot execute on SDK 2.3). For PUMA, on the one hand, some

362

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang

PUMA, 15

A3E, 20

Dynodroid, 12
Monkey, 20

LAND, 20

0 4 8 12 16 20 24

Figure 5: Number of Available Apps for Exploration

69.9 69.6

56.0
60.5

36.1

64.1

53.1 53.0

42.3 45.1

26.1

48.6

0

10

20

30

40

50

60

70

80

LAND_DFS LAND_BFS Monkey Dynodroid A3E PUMA

Class Coverage Method Coverage

Figure 6: Coverage Comparison on Dalvik Byte-Code
apps are unsupported, which causes the tool to throw exceptions
during run-time. On the other hand, too short launch time leads to a
wrong model of some commercial apps and causes a low coverage.

Figure 6 shows the detailed information about class and method
coverage results. LAND, Monkey, and A3E work well for all the
20 apps, in which A3E may stop at the first window when testing
some commercial apps and thus have low coverage. We adopt two
traversal algorithms, DFS and BFS, in the exploration of LAND. The
results demonstrate that LAND can be applied to more apps and is
able to reach higher coverage in most cases.

We also record the number of exceptions detected by Monkey,
Dynodroid, and LAND, which is 14, 5, and 22, respectively. The
results indicate that the higher coverage helps LAND to find more
crashes than other GUI traversal tools under our benchmark. We
also find that the average length of event sequences generated by
LAND to trigger exceptions is less than 10, which means we can
use a short event sequence to trigger the exception.

3.2 Target Directed Test Generation
Firstly, we use widget directed test generation to test EditText
widgets. By testing, we observe that some apps crash by throwing
exceptions, e.g, app Budget will throw NumberFormatException
when the input string is too large to be cast into a number, and app
aGrep will throw PatternSyntaxException when the input text
begins with “*” as a regular expression. Besides, some apps display
unfriendly interfaces, including empty item name, messy string
displaying and blank window caused by abnormal font size setting.
Some of these abnormal displays are shown in Figure 7.

(a) WhoHasMyStuff (b) Budget

(c) Cradio (d) TomDroid
Figure 7: Abnormal Displays

Then, we use label directed test generation to test the label
related transitions with randomly picked labels. Experiments are
carried out between LAND and Monkey to compare the minimal
sequence length they need to cover the given target. To get the
minimal sequence length of Monkey, we implement a script to
repeatedly run Monkey with the event limits increased by 1000 in
each iteration, until the given target is covered. The results show
that both LAND and Monkey can trigger all transitions that cover
all labels. However, the average length of test cases generated by
LAND that cover all labels is 5, while the number for Monkey is
11000, which shows that using LATTE we can generate effective
and compact test cases for user-specified testing.

4 RELATEDWORK
Some researchers focus on constructing the model by static analysis.
S. Yang et al. [10] provided a model called Window Transition
Graph, with a more accurate static callback analysis. A recent work
[11] constructs Activity Transition Graph with consideration of the
launch-mode of each activity to capture transitions more precisely.
Note that they built models statically that might miss the changes
of GUI screen during run-time.

Some researchers leverage dynamic techniques to construct the
model. Amalfitano et al. [5] implemented AnroidRipper to explore
the GUI widgets of the app. However, the approach always creates
a new state in the model after an event is triggered without cal-
culating the window similarity, which may cause state explosion.
Azim et al. [6] statically extracted the Static Activity Transfer Graph
of the app, and used dynamic GUI exploration to complement it.
However, they regarded the activity as the minimum unit which
may cause the loss of accuracy. Besides, all these works pay less
attention to the model reusing and specific test generation.

5 CONCLUSION
This paper describes a user-friendly test generation tool for Android
apps, which constructs an elaborate LATTE model considering
more Android specific characteristics and can be configured for
user customized test generation. In the future, we will enrich our
LATTE model and enhance our approach by supporting non-crash
failures detection through assertion instrumentation.

REFERENCES
[1] Back-Stack. https://developer.android.com/guide/components/activities/

tasks-and-back-stack.
[2] F-Droid. https://f-droid.org.
[3] Monkey. http://developer.Android.com/tools/help/monkey.html.
[4] Robotium. http://code.google.com/p/robotium/.
[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and A. M. Memon.

Using GUI ripping for automated testing of Android applications. In ASE, pages
258–261, 2012.

[6] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic
testing of Android apps. In OOPSLA, pages 641–660, 2013.

[7] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan. PUMA: programmable
ui-automation for large-scale dynamic analysis of mobile apps. InMobiSys, pages
204–217, 2014.

[8] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: an input generation system
for Android apps. In ESEC/FSE, pages 224–234, 2013.

[9] J. Yan, T. Wu, J. Yan, and J. Zhang. Widget-sensitive and back-stack-aware GUI
exploration for testing android apps. In QRS, pages 42–53, 2017.

[10] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev. Static window
transition graphs for Android. In ASE, pages 658–668, 2015.

[11] Y. Zhang, Y. Zhang, and J. Xue. Launch-mode-aware context-sensitive activity
transition analysis. In ICSE2018 Accepted.

363

https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://f-droid.org
http://developer.Android.com/tools/help/monkey.html
http://code.google.com/p/robotium/

	Abstract
	1 Introduction
	2 LAND
	2.1 System Overview
	2.2 GUI Exploration
	2.3 Test Generation
	2.4 Usage

	3 EVALUATION
	3.1 Code Coverage
	3.2 Target Directed Test Generation

	4 RELATED WORK
	5 Conclusion
	References

