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Abstract—During software evolution, it is advocated that test
code should co-evolve with production code. In real development
scenarios, test updating may lag behind production code chang-
ing, which may cause compilation failure or bring other troubles.
Existing techniques based on pre-trained language models can
be directly adopted to repair obsolete tests caused by such
unsynchronized code changes, especially syntactic-related ones.
However, the lack of task-oriented contextual information affects
the repair accuracy on large-scale projects. Starting from an
obsolete test, the key challenging task is precisely identifying and
constructing Test-Repair-Oriented Contexts (TROCtxs) from the
whole repository within a limited token size.

In this paper, we propose SYNTER (SYNtactic-breaking-
changes-induced TEst Repair), a novel approach based on LLMs
to automatically repair obsolete test cases via precise and concise
TROCtxs construction. Inspired by developers’ programming
practices, we design three types of TROCtx: class context, usage
context, and environment context. Given an obsolete test case
to repair, SYNTER firstly collects the related code information
for each type of TROCtx through static analysis techniques
automatically. Then, it generates reranking queries to identify
the most relevant TROCtxs, which will be taken as the repair-
required key contexts and be input to the large language model
for the final test repair.

To evaluate the effectiveness of SYNTER, we construct a
benchmark dataset that contains a set of obsolete tests caused by
syntactic breaking changes. The experimental results show that
SYNTER outperforms baseline approaches both on textual- and
intent-matching metrics. With the augmentation of constructed
TROCtxs, hallucinations are reduced by 57.1%.

Index Terms—Software Evolution, Obsolete Test Repair, LLM,
Static Analysis

I. INTRODUCTION

Software evolution is a fundamental and significant aspect
of software development [1]. For large-scale software such as
Kafka [2], the project frequently evolves, where a new version
is released in one to two weeks on average and new commits
are submitted nearly every day. As production code usually
changes during software evolution, it is crucial to maintain
and co-evolve associated test code to ensure that they remain
effective in validating the software’s functionality [3], [4].
Specifically, for software invoked as libraries, it is important to
co-evolve the test code to follow the production code changes,

§Corresponding authors

which can help developers quickly notice the backward incom-
patible changes that may affect its clients [5].

To automatically co-evolve production code and test code,
previous studies analyze and mine the software code to extract
production-test co-evolution rules and patterns [6], [7]. How-
ever, as real-world code changes come in a great many forms,
they are hard to summarize into a small number of general pat-
terns. In recent years, with the rapid advancement of machine
learning and Large Language Models (LLMs) [8], [9], [10],
many studies have utilized learning-based techniques to assist
the production and test code co-evolution, including obsolete
test case identification [11], production-test co-evolution pair
extraction [12], etc., which yielded favorable results. To further
reduce the developer’s burden, researchers are also concerned
with repairing obsolete test cases automatically. For example,
Hu et al. [13] identified and updated obsolete test methods by
fine-tuning a pre-trained model initialized from CodeT5 [14],
which is currently the SOTA approach for repairing obsolete
test cases.

For this task, though directly using learning-based tech-
niques resulted in some positive outcomes, it still faces diffi-
culties in complex repositories. For example, API signature
changing is the most common and straightforward code-
changing type during software evolution. However, focusing
on this type of production change, the SOTA work CE-
PROT [13] fails to repair about three-quarters of test cases on
real-world projects (refer to Table II in Section V-A), which
means there is still some gap before existing learning-based
approaches can be applied in practice.

To fill this gap, we target repairing signature-related code
changes using the power of LLMs. Here, the signature-based
code changes are also called Syntactic Breaking Changes
(SynBCs) as they may lead to compilation errors if associ-
ated tests are not co-evolved. According to our investigation,
accurately repairing synBC-related obsolete test cases based
on LLMs faces the following key challenges.
C1: The repair-oriented code contexts are unclear. When

developers manually repair a test case, not only the
signature changes of the focal method but also many
other related code contexts are considered for better
understanding. When fixing tests with learning-based
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approaches, the repair-oriented code context must be
explicitly extracted. As existing works repair test cases
solely with the original and updated focal methods, they
are unaware of related contexts. It is essential to deter-
mine which types of contexts are essential for accurate
repair and how to extract them.

C2: The token size of code contexts is limited. Compared
to small-scale models, LLMs have demonstrated their
extraordinary capabilities. However, even though they
are designed with increasingly larger context windows,
it is impractical to simply include the entire repository
contents as input. Moreover, extra irrelevant information
may bring negative effects as well, which means that the
extracted code context is not the more the better. As the
number of context tokens for LLM input is restricted, for
all the code contexts that may have relations with the
changed signature, it is required to sort and pick out the
most relevant ones as input.

To this end, we propose SYNTER (SYNtactic-breaking-
changes-induced TEst Repair, originally called SYNBCIATR),
a novel approach for repairing obsolete test cases caused
by SynBCs at the method level. To address challenge C1,
SYNTER designs three types of contexts, including Class
Contexts (ClassCtxs), Usage Contexts (UsageCtxs), and En-
vironment Contexts (EnvCtxs) as Test-Repair-Oriented Con-
texts (TROCtxs). These contexts focus on different aspects
of changed codes to provide adequate contextual information
for test repair. For challenge C2, SYNTER identifies and
constructs qualified TROCtx from the repository in two stages.
❶ First, SYNTER collects all types of TROCtx by static
code analysis, specifically, using the Language Server [15]. ❷
Then, inspired by the idea of Retrieval-Augmented Generation
(RAG) [16], SYNTER generates reranking queries to identify
the most relevant TROCtxs in each type according to the repair
requirement extracted from the original test case, which is
based on Neural Rerankers [17]. After constructing TROCtxs,
SYNTER aggregates the test-repair-required information to a
final prompt and generates the repaired test case.

To evaluate the effectiveness of SYNTER, we construct a
benchmark dataset based on existing work which consists of
136 samples with diverse SynBCs. The evaluation is based
on both the textual match and intent match metrics. In terms
of the textual match, SYNTER achieves the best performance
against baselines specifically on CodeBLEU (83.3), DiffBLEU
(46.7), and Accuracy (32.4%). In terms of the intent match,
we conduct a human evaluation on verifying whether test
cases are correctly repaired without changing their original
intents, in which SYNTER correctly repairs 90.4% test cases,
achieving improvements of 248.6% and 9.8% when compared
to CEPROT and NAIVELLM respectively. Moreover, SYNTER
is capable of reducing 57.1% hallucinations caused by NAIV-
ELLM.

We make the following contributions in this paper:

• We design three types of TROCtx to provide adequate
contextual information for repairing obsolete test cases

caused by SynBCs.
• We propose SYNTER to construct TROCtx by combining

the static collector and neural reranker, which is utilized
to enhance the repairing ability of naive LLM.

• Experimental results on the benchmark dataset demon-
strate that SYNTER can repair obsolete test cases caused
by SynBCs more effectively compared to both CEPROT
and NAIVELLM.

The data and code are both publicly available at: https://github.
com/nonsense-j/SynTeR.

II. BACKGROUND AND MOTIVATION

A. Task Definition

Referring to previous studies [5], [18], [19], Syntactic
Breaking (SynB) issues represent signature-based compilation
errors in API evolution, such as ClassNotFoundException and
NoSuchMethodError. In this paper, we name method signature
changes that may cause SynB issues as Syntactic Breaking
Changes (SynBCs).

We define the signature of a method (Method Signature)
as a 5-tuple ms = ⟨n, P, r,M,E⟩, where:

• n is the name of the method;
• P is a list of parameter types;
• r is the type of the return value;
• M is a set of modifiers;
• E is a set of exception types that can be thrown.
Given a method that changes from m to m′, we define a

Syntactic Breaking Change (SynBC) as:

m
SynBC−−−−→ m′ iff m.ms ̸= m′.ms,

where m.ms and m′.ms denote the method signatures be-
fore and after the change respectively. To determine whether
SynBCs are common in production-test co-evolution, we con-
ducted an empirical study to count the SynBCs in the breaking
change dataset released by CEPROT [13]. Each sample in the
dataset contains a change of focal method on a real-world
commit from GitHub. It reveals that signature-based focal
changes occur in over 40% samples of the dataset, in which
parameter and return type-related changes account for a large
proportion.

Specifically, we further categorize SynBCs into the fol-
lowing three types according to the changed elements in
the method signature. Note that, a SynBC whose parameter
and return types in the method signature both change is a
ParamSynBC and RetSynBC at the same time.

• Parameter-related Syntactic Change (ParamSynBC).
For a SynBC from m to m′, if the parameter type list in
the method signature changes, it is a ParamSynBC.

m
ParamSynBC−−−−−−−−→ m′ iff m.ms.P ̸= m′.ms.P

• Return-related Syntactic Change (RetSynBC). For a
SynBC from m to m′, if the type of the return value in
the method signature changes, it is a RetSynBC.

m
RetSynBC−−−−−−→ m′ iff m.ms.r ̸= m′.ms.r
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 Diff of focal method

@Override
- public void mount(AlluxioURI alluxioPath, AlluxioURI ufsPath, 
MountOptions options){...}
+ public void mount(AlluxioURI alluxioPath, AlluxioURI ufsPath, 
MountPOptions options){...}

 Original test method

@Test
public void mount() throws Exception {
  AlluxioURI alluxioPath = new AlluxioURI("/t");
  AlluxioURI ufsPath = new AlluxioURI("/u");
  MountOptions mountOptions = MountOptions.defaults();
  ...
  mFileSystem.mount(alluxioPath, ufsPath, mountOptions);
  ...
  verifyFilesystemContextAcquiredAndReleased();
}

Alluxio/alluxio: 8cc5a292

“Repair the obsolete test method based on the 
syntactic changes of the focal method” CEPROT and GPT4 without contexts

@Test
public void mount() throws Exception {
  AlluxioURI alluxioPath = new AlluxioURI("/t");
  AlluxioURI ufsPath = new AlluxioURI("/u");
  MountPOptions mountOptions = MountPOptions.defaults();
  ...
  mFileSystem.mount(alluxioPath, ufsPath, mountOptions);
  ...
  verifyFilesystemContextAcquiredAndReleased();
}

GPT4 and DeepSeekCoder with contexts

@Test
public void mount() throws Exception {
  AlluxioURI alluxioPath = new AlluxioURI("/t");
  AlluxioURI ufsPath = new AlluxioURI("/u");
  MountPOptions mountOptions =                
                   MountPOptions.getDefaultInstance();
  ...
  mFileSystem.mount(alluxioPath, ufsPath, mountOptions);
  ...
  verifyFilesystemContextAcquiredAndReleased();
}

TROCtxs collected from repo

// Defined in class MountPOptions
public static alluxio.grpc.MountPOptions getDefaultInstance() {
  return DEFAULT_INSTANCE;
}

// Usage diff in BaseFileSystem.java
- mount(alluxioPath, ufsPath, MountOptions.defaults());
+ mount(alluxioPath, ufsPath, MountPOptions.getDefaultInstance());

Fig. 1: A motivating example with a ParamSynBC collected from a commit (8cc5a292) of Alluxio/alluxio. The original test
method can be correctly repaired only when we provide precise Test-Repair-Oriented Contexts (shown as TROCtxs) to LLMs.

• Normal Syntactic Change (NormSynBC). For a SynBC
from m to m′, if it does not belong to ParamSynBC or
RetSynBC type, it is a NormSynBC.

m
NormSynBC−−−−−−−−→ m′ iff m.ms ̸= m′.ms ∧

m.ms.P = m′.ms.P ∧m.ms.r = m′.ms.r

Here, for a SynBC that happens between the original focal
method m and the updated focal method m′, ro′ denotes
the repository code that the method m′ belongs to, and t
denotes the obsolete test case associated with m. Based on
this knowledge, the test-repair task hopes to get the repaired
test case t′ as the final output. The whole task consists of two
main steps. First, we extract the repair-oriented contexts for
test t from repository ro′ according to the SynBC from m to
m′. That process can be denoted as:

Construct(m,m′, ro′, t) = C ,

where C represents the constructed contexts. Then, we repair
the obsolete test with the constructed contexts C, which can
be expressed as:

Repair(m,m′, C, t) = t′,

where t′ denotes the final repaired test case.

B. Language Server and Neural Reranker

A Language Server consists of programming language-
specific tools like static analyzers and compilers. In mod-
ern Integrated Development Environments (IDEs), language
servers provide language-specific features like ‘autocomplete’,
‘goto definition’, ‘find usages’, and others [20]. Recently,
the Microsoft team has created a standard JSON-RPC-based
protocol, called Language Server Protocol (LSP) [15], based
on which multiple IDEs can communicate with the same
language server to access intelligent programming features.

A Neural Reranker is a type of machine learning model [21]
used to reorder a given set of documents based on their
relevance to a given query, which is the initial request for infor-
mation expressed as keywords or complex expressions [17]. It
is widely used in research fields such as information retrieval,

natural language processing, and recommendation systems. In-
stead of ranking based on simple heuristics like the frequency
of query terms appearing in the query, neural rerankers are
trained to take into account more complex features, like the
semantic similarity between the query and the documents.

C. Motivating Example

The example in Fig. 1 is used to demonstrate our motivation.
It was collected from a real commit in project Alluxio [22].
As shown in the given commit, there is a ParamSynBC for
the focal method (named mount), where the third parameter
changes from MountOptions to MountPOptions. If the
associated original test case (also named mount) does not co-
evolve with the change of the focal method, the test will fail
for compilation errors (cannot resolve type).

To automatically repair the obsolete test method, we first
apply existing learning-based techniques directly. However,
both CEPROT and GPT-4 fail due to using an undefined
method (MountPOptions.defaults()) to construct the
third parameter, where the correct method invocation should be
MountPOptions.getDefaultInstance(). This hal-
lucination occurs for lacking Test-Repair-Oriented Contexts
(TROCtxs) in the input. After providing the required con-
texts shown in Fig. 1, by including either the definition of
getDefaultInstance in class MountPOptions or the
usage change of focal method in other production code, LLMs
can generate the correct repaired test.

When developers are asked to repair test for this case
in IDEs, it is convenient for them to refer to the related
contexts (TROCtxs in Fig. 1) with the programming features
(such as ‘goto definition’ and ‘find usages’) provided by
language servers. Inspired by these practices, SYNTER con-
structs TROCtxs by simulating developers’ behaviors in IDEs.
Specifically, SYNTER collects related contexts by interacting
with the language server and filters out unnecessary ones based
on neural rerankers. Finally, SYNTER uses LLMs to repair
obsolete test cases with constructed TROCtxs.
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III. METHODOLOGY

In this section, we first show the overall framework of
SYNTER. Then we demonstrate all the types of TROCtxs
identified by SYNTER. Finally, we introduce the technical
details of the main modules in SYNTER.

A. Overview

The overall pipeline of SYNTER is depicted in Fig. 2.
Given the change of the focal method and the obsolete test
method as inputs, SYNTER consists of three major steps.
(1) Collecting TROCtxs: SYNTER analyzes all the related
contexts from inputs and requests the language server to
collect and process them into candidate chunks; (2) Reranking
TROCtxs: SYNTER reranks candidate chunks with queries
constructed from the inputs; (3) Generating full prompt:
SYNTER aggregates the inputs and final TROCtxs to generate
the full prompt, which is used to repair the test with LLM.
We also provide a detailed overview in Fig. 3.

B. Types of TROCtx

Based on the characteristics of the test-repair task, we
categorize TROCtxs into three types: Class Contexts (ClassC-
txs), Usage Contexts (UsageCtxs), and Environment Contexts
(EnvCtxs). In alignment with real-world developers’ practices,
these categories of contexts can provide comprehensive and
sufficient contextual information for test repair.
⋆ ClassCtxs include the member accesses (method and

field accesses) of a specific class and its parent classes.
These contexts indicate the accurate operations supported
by a given class type, serving to alleviate the hallucination
of LLMs. Since new class types can be introduced in
parameter types and the return type, ClassCtxs will be
collected specially for ParamSynBCs and RetSynBCs.
For example, the ClassCtxs for the case caused by a
ParamSynBC in Fig. 1 are partly demonstrated in List-
ing 1.

// defined in MountPOptions and its parent classes
// methods are simplified as signatures
...
public static final int READONLY_FIELD_NUMBER = 1;
public boolean hasReadOnly();
public static MountPOptions getDefaultInstance();
...

Listing 1: ClassCtxs of the new class MountPOptions.

Repair Test Case

Rerank TROCtxsCollect TROCtxs

Final

 TROCtxs

All

 TROCtxs

Repaired

Test

Queries
Construct TROCtxs

Generate Full Prompt

Fig. 2: Overall pipeline of SYNTER.

⋆ UsageCtxs include the changes of usages for the focal
method in the diff format. Usages of the updated focal
method in other parts of the repository can illustrate
how to properly call the method in the associated test.
UsageCtxs will be collected for all the types of SynBCs.
For example, the UsageCtxs for case introduced in Fig. 1
are partly demonstrated in Listing 2.

...
- mount(alluxioPath, ufsPath, MountOptions.defaults()
+ mount(alluxioPath, ufsPath,

MountPOptions.getDefaultInstance()↪→
...

Listing 2: UsageCtxs of the focal method mount().

⋆ EnvCtxs include the environmental changes of the focal
and test method in the diff format. Given a method m,
we define the class containing it and its parent classes
as the environment of m. Only code changes external to
m in the environment will be collected to construct its
EnvCtxs. These contexts can indicate updates of related
identifiers and similar change patterns. EnvCtxs will be
collected for all the types of SynBCs. For example, the
EnvCtxs of the focal method for the case introduced in
Fig. 1 are partly demonstrated in Listing 3.

// code diffs of class containing mount and its parents
...
- return openFile(path, OpenFileOptions.defaults());
+ return openFile(path,

OpenFileOptions.getDefaultInstance());↪→
...

Listing 3: EnvCtxs of of the focal method mount().

SYNTER aims to collect and rerank different types of
TROCtxs respectively. In the following subsections, we will
describe the details of how each type of TROCtx is collected,
reranked, and ultimately aggregated as displayed in Fig. 3.

C. Collecting TROCtxs

To collect repo-level contexts, SYNTER interacts with lan-
guage servers via LSP [15]. Every request message conforms
to the JSON-RPC-based protocol, which consists of the request
type (such as ‘goto definition’) and the cursor position of the
request identifier, including the file path and the indices of the
line and column for the identifier within the file.

For every type of TROCtx, SYNTER first automatically
analyzes the inputs and locate key identifiers (identifiers
that need to find definitions and references by LSP) with
their positions using the static parser tree-sitter1. The required
contexts are further collected through the language server
using the python library multilspy2.

1https://tree-sitter.github.io/tree-sitter/
2https://github.com/microsoft/monitors4codegen
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§3.5  Generate full prompt

Updated 

Method

§3.3  Collect TROCtxs

Original 

Method
 

Syntactic

Diff

      ClassCtx Collector      ClassCtx Collector

      UsageCtx Collector      UsageCtx Collector

      EnvCtx Collector

Original TestOriginal Test

        Construct Operation Queries        Construct Operation Queries

All Class 

Contexts

All Usage 

Contexts

All Env 

Contexts

Focal method diff:

Original test method:

Focal method diff:

Original test method:

Related contexts:

…

Focal method diff:

Original test method:

Related contexts:

…

Repaired TestRepaired Test

§3.4  Rerank TROCtxs

Language Server Language Server 

      Get Signature      Get Signature      Get Signature
Class Contexts 

with signature

      Split Diff
Usage Contexts with original 

usage and updated usage 

Original Test Syntactic Diff Original Test Syntactic Diff

        ClassCtx Reranker        ClassCtx Reranker

[Query]

 Operations

        UsageCtx Reranker        UsageCtx Reranker

       Construct Statement Queries

[Query] Obsolete 

Statements

[Query] SynBC behavior description 

& Obsolete statements

        EnvCtx Reranker        EnvCtx Reranker

Language Server 

Protocol

           Repository Commit           Repository Commit

Fig. 3: Overview of SYNTER.

1) Collecting ClassCtxs: Based on the syntactic diff of
the focal method, SYNTER first identifies the new class types
introduced in the method signature of the updated version
(both parameter types and the return type will be checked).
These new class types are considered as key identifiers for
collecting ClassCtxs. Through requesting the language server,
SYNTER collects the definitions of these new class types as
well as their parent classes. To split the collected contexts
into identical chunks, SYNTER cleans up all comments and the
definition body is divided into member access operations. Only
non-private declarations of fields and methods are collected.
Specifically, for classes and private field accesses with Lombok
annotations3(@Data, @GETTER, @SETTER), SYNTER also
retains their related private field accesses.

For the case in Fig. 1 as an example, the updated focal
method uses a new parameter type (MountPOptions). SYN-
TER will collect all the declarations of field and method to
construct ClassCtxs, as demonstrated in Listing 1.

2) Collecting UsageCtxs: For UsageCtxs, the name identi-
fier of the updated focal method is considered as the key iden-
tifier. The collecting procedures are described in Algorithm 1.
On line 3, SYNTER locates the name identifier of the updated
focal in the repository. On line 4, all the usages of the updated
focal method are fetched by requesting the language server.
For each usage, SYNTER collects the usage-diff texts (diffs
that contain the change of usage) in two steps, generating the
diff (lines 6- 10) and gathering the required contexts (lines 11-
18). SYNTER formats the files that contain usages before
generating diff to avoid missing information. Also, since
usage-diff of invocation is not sufficient for ParamSynBCs
and RetSynBCs, SYNTER collects additional backward and
forward surrounding contexts respectively (lines 13 and 16).

For the case in Fig. 1, SYNTER finds ten usages in the
repository. After filtering out usages in comments and repeated
ones, four usage-diff texts are collected, one of which is
demonstrated in Listing 2.

3https://projectlombok.org/features/

Algorithm 1 Algorithm of Collecting UsageCtxs
Input: mori: original focal method, mupd: updated focal method,

p: focal relative path, lsp: object interacting with the language
server, repo: object interacting with the repository commit

Output: UsageCtxs: a set of usage contexts in diff format
1: Initialize UsageCtxs as an empty set
2: synbc← getSynBC(mori,mupd)

▷ get the syntactic changes of the focal method
3: pos← getMethodNamePos(repo.getSrcFile(p),mupd)

▷ get the cursor position of the name identifier in mupd

4: usages← lsp.requestUsages(p, pos)
▷ request the language server for usages of mupd

5: for all usage in usages do
6: ufori ← repo.getSrcFile(usage.relpath)
7: ufupd ← repo.getTgtFile(usage.relpath)

▷ get the original and updated files that contain usage
8: uffori ← format(ufori)
9: uffupd, posfmt ← formatWithCursor(ufupd, pos)

▷ format the original and updated files (pos also updates)
10: udiffs← generateDiff(uffori, uffupd)
11: utext← collectInvokeStmt(udiffs, posfmt)

▷ initialize usage-diff text with invocation statement
12: if synbc contains change in parameter types then
13: utext← collectBeforeCtx(udiffs, posfmt) + utext
14: end if▷ enrich usage-diff text with contexts before invocation

15: if synbc contains change in return type then
16: utext← utext+ collectAfterCtx(udiff, posfmt)
17: end if ▷ enrich usage-diff text with contexts after invocation
18: UsageCtxs.add(utext)
19: end for

3) Collecting EnvCtxs: EnvCtxs represent additional con-
texts indicating environmental changes, namely env-diff texts.
SYNTER collects EnvCtxs for the focal and test method respec-
tively. Specifically, the class file to which the method belongs
and its parent classes are treated as the method’s environment.
Here, the class name identifiers are the key identifiers, which
are used to find out the related parent classes and collect their
diffs as env-diff texts. Also, diffs are generated after cleaning
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comments and reformatting.
For the case in Fig. 1, the environment of the test method

remains unchanged. Therefore, only environmental changes of
the focal method are collected as env-diff texts to constructed
EnvCtxs, which are partly shown in Listing 3.

D. Reranking TROCtxs

SYNTER utilizes neural rerankers to filter and retain the
most relevant contexts. As the test cases should be functionally
consistent before and after the evolution, they have high
similarity. Thus, our primary idea of rerankers is to make use
of the original test to construct queries for TROCtx reranking.
For the case in Fig. 1, from the collected ClassCtxs of the
new class MountPOptions, we hope to filter out unrelated
member accesses and precisely retain the required method dec-
laration “MountPOptions.getDefaultInstance()”.
Given the text ‘MountOptions.defaults()” as a
query, we can rerank the ClassCtxs to get the most
similar APIs with neural rerankers. As shown in List-
ing 4, the reranking result reveals that the required API
“MountPOptions.getDefaultInstance()” is ranked
with the highest score under the given query.

// methods are simplified as signatures
public static MountPOptions getDefaultInstance(); // top1
public MountPOptions getDefaultInstanceForType(); // top2
...

Listing 4: Reranked ClassCtxs of class MountPOptions.

1) Constructing Queries: Based on the above ideas, the
quality of the query texts decides the reranking results. How-
ever, as we have three types of TROCtxs but their formats
(or granularity) are different, SYNTER reranks each type of
TROCtxs with distinct queries instead of using a general one.
In terms of granularity for TROCtx, ClassCtx is a fine-grained
one where each context is a specific member access operation
within the corresponding class (Listing 1), while UsageCtx
and EnvCtx are coarse-grained ones whose contexts directly
refer to the diff texts of statements (Listings 2 and 3). Over-
all, SYNTER constructs two kinds of corresponding queries,
operation queries and statement queries.

Constructing operation queries. We define operation as
member access to a given class. Operation queries are used
to rerank method and field declarations in ClassCtxs for new
class types. Based on our insight, the operations used in
the original test can be reused as queries, namely operation
queries, to rerank ClassCtxs. For new class types in ParamSyn-
BCs and RetSynBCs, SYNTER constructs fine-grained queries
by extracting operations that could potentially be accessed
in the repaired test as shown in Algorithm 2. Specifically,
SYNTER constructs operation queries for new parameter and
return class types respectively.

To construct operation queries for collected ClassCtxs
in ParamSynBCs, starting from the invocation of the focal
method in the original test, SYNTER extracts backward oper-
ations related to the obsolete parameters, which are modified

Algorithm 2 Algorithm of Constructing Operation Queries
Input: mori: original focal method, mupd: updated focal method, t:

original test method
Output: OpQueries: a tuple of queries consisting of operations for

new parameter and return class types
1: Initialize ParamOpQ,RetOpQ as empty sets
2: synbc← getSynBC(mori,mupd)

3: if synbc is a ParamSynBC then
4: for all arg in getObsArgs(mori,mupd) do
5: op← getSetOp(arg)

▷ construct operation queries for obsolete parameters
6: ParamOpQ.add(op)
7: end for
8: ops← backwardParamsOps(t, synbc)

▷ backward analysis to extract operations based on synbc
9: ParamOpQ.update(ops)

10: end if
11: if synbc is a RetSynBC then
12: ops← forwardReturnOps(t, synbc)

▷ forward analysis to extract operations based on synbc
13: RetOpQ.update(opso)
14: end if
15: OpQueries← (ParamOpQ,RetOpQ) ▷ aggregate queries

during the given SynBC. Since the obsolete parameters may
be refactored to be set by new parameters, SYNTER first
adds additional operation queries in the form as set_xxx
on lines 4- 6. Then, on line 8, SYNTER traverses the def-
use chains [23] of the obsolete parameters to extract directly
used operations, including method accesses and field accesses.
These operations are also collected as operation queries.

To construct operation queries for collected ClassCtxs in
RetSynBCs, starting from the invocation of the focal method
in the original test, SYNTER applies forward propagatability
analysis by traversing the references of the return object for
the focal method. During the analysis, related operations of
the return object are extracted as the operation queries.

For the focal method in Fig. 1, only the parameter types
changed. Therefore, SYNTER only extracts operation queries
for the newly added parameter class type MountPOptions,
which is shown as follows.

▷ ParamOpQ: {‘MountOptions.defaults()’, ‘setOptions()’}
Constructing statement queries. SYNTER constructs

coarse-grained queries for reranking diff texts of statements.
In our settings, diff texts are collected after reformatting so
that every line in the diff contains a separate statement. Since
we only keep changed parts in diff texts, we should extract
obsolete statements from the original test as the query, namely
statement query, to rerank diff texts in UsageCtxs and EnvCtxs.

As recent studies have shown that LLM specializes in code
summarizing and understanding tasks [24], [25], SYNTER
uses an LLM to extract obsolete statements from the original
test. Following existing works [26], [27], we adopt LLMs
with Few-Shots Learning and Chain-Of-Thought prompting
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to identify obsolete statements with the syntactic change of
the focal method and original test method as input. The LLM
is first asked to summarize the syntactic differences of the
focal method, and then find the obsolete test statements. Both
the SynBC behavior description (in natural language) and
obsolete statements (stmts) are collected as coarse-grained
statement queries. Specifically, the SynBC behavior descrip-
tion is used as coarse queries for reranking the EnvCtxs of
the focal method, while the EnvCtxs of the test method are
reranked with the obsolete statements.

For the example in Fig. 1, the extracted statement queries
are demonstrated as follows.
▷ SynBC behavior description: “The method mount() has

been updated to accept an object of type ‘MountPOp-
tions’ instead of ‘MountOptions’ as its third parameter.”

▷ obsolete stmts: “MountOptions mountOptions = Moun-
tOptions.defaults(); mFileSystem.mount(alluxioPath, ufs-
Path, mountOptions;”

2) Reranking TROCtxs with Queries: SYNTER reranks
each type of TROCtxs with different queries as shown in
Fig. 3. During a single reranking process, the top three most
relevant contexts are retained by default.

To rerank ClassCtxs, first, all the constructor declarations
in ClassCtxs are retained since they are necessary to con-
struct instances for the class. Then, for other method and
field declarations, SYNTER transforms method declarations in
ClassCtxs into their signatures before reranking. According to
the SynBC, ClassCtxs of new parameter and return class types
are reranked with ParamOpQ and RetOpQ respectively.

To rerank UsageCtxs, every usage-diff text in the UsageCtxs
is divided into original usage (by removing added lines in
diffs) and updated usage (by removing deleted lines in diffs).
SYNTER reranks both the original and updated usages with
obsolete statements as query, in which the maximum reranking
score determines the relevance of the given usage-diff text.

To rerank EnvCtxs, EnvCtxs of the focal method are directly
reranked with the SynBC behavior description, while EnvCtxs
of the test method are reranked with the obsolete statements.

E. Generating Full Prompt

The full prompt consists of the unified diff of the focal
method, the original test, and the related contexts (TROCtxs).

Following existing works using LLM for code tasks [27],
[28], SYNTER cleans comments in codes to avoid influencing
inferring program intentions. Then, SYNTER generates the
unified diff of the focal method after formatting.

The general structure of the final prompt is demonstrated
in Fig. 3. Specifically, we start by setting up the system role
of LLM as an expert in Java software evolution and briefly
describe the test-repair task caused by syntactic changes of the
focal method. Then, we introduce the original test that needs
to be repaired followed by the unified diff of the focal method.
At last, we categorize TROCtxs according to their types and
ask LLM to treat these contexts as references. For each group
of contexts, we also provide the basic description. For the
case in Fig 1 as an example, we automatically generate a

description (‘Defined in class MountPOptions’) for ClassCtxs
of MountPOptions.

Finally, SYNTER requests the LLM with the generated full
prompt to generate the repaired test.

IV. EXPERIMENTAL SETUP

Before the evaluation, in this section, we first introduce the
construction of our benchmark dataset and then describe the
baselines and metrics used in the evaluation. Finally, we will
briefly show the implementation settings of our approach.

A. Benchmark Datasets

In this study, we focus on repairing obsolete test cases
caused by syntactic changes in the focal method. To the best of
our knowledge, CEPROT is the first and SOTA learning-based
approach to co-evolve test cases at the method level [13].
Therefore, we reuse and refine the dataset provided by CE-
PROT, in which all the samples are collected from the top
1,500 Java projects on GitHub by Liu et al. [29].

The evaluation dataset, i.e., testing dataset, of CEPROT
contains 520 samples extracted from 128 real-world Java
projects. Based on that, we first filter out the samples without
syntactic changes in the focal method. After this step, 211
samples remain. Then, to ensure the high quality of the dataset,
we manually filter noisy samples and augment new samples
referring to the corresponding repository commit.

Filtering noisy samples. Samples with the following char-
acteristics are filtered out as noises in the dataset:

• the test method is incomplete or not yet implemented;
• the focal method is incomplete with only the signature;
• the focal method is not used in the given test.

We manually resolve the problems above by extracting correct
co-evolution pairs with SynBCs from the repository.

Augmenting new samples. To improve the diversity and
generality of the dataset, we mine new samples to enrich the
dataset. Specifically, we augment at most two samples from
the real-world repository with different changing patterns for
each commit in the original dataset.

To sum up, the final benchmark dataset consists of 137
samples from 54 projects. As shown in Fig. 4, the samples
are diverse in the types of associated SynBCs.

24%

46%

19%

11%

Fig. 4: Distribution of samples based on the type of SynBCs.
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B. Baselines

To assess the effectiveness of SYNTER, we consider two
baselines from existing studies and our investigation, namely
CEPROT and NAIVELLM.

CEPROT is the SOTA learning-based approach in updating
obsolete test cases. According to Hu et al. [13], CEPROT is
built on a code language model fine-tuned from CodeT5 and
outperforms previous techniques. Taking notes that CEPROT
needs edit sequences of the focal method as input, we repro-
duce it with clang-format4 and difflib5. With the replication
package of CEPROT, we retrained the model and saved the best
checkpoint with the highest F1. According to the result of our
replication (accuracy: 11.9%), the performance is consistent
with the statistics in the paper (accuracy: 12.3%) [13].

NAIVELLM is developed based on LLM without related
contexts. Compared with CodeT5, LLM is trained on huge sets
of data with a much larger number of parameters. Therefore,
LLM is more intelligent in general code tasks. In NAIVELLM,
we directly use LLM to repair the test case with the focal diff
(the unified diff of original and updated focal methods) and
the original test method as input. Following the pre-processes
in SYNTER, comments in codes are cleaned and all the filtered
codes are reformatted to a standardized style.

C. Metrics

Based on previous studies [13] [30], we design metrics to
measure the quality of repaired test cases from two aspects,
and finally get five metrics.

Textual Match. We use three specific metrics to measure
how the generated code is close to the ground truth. (1)
CodeBLEU. Developed from the classical machine translation
evaluation metric BLEU [31], CodeBLEU [32] is widely used
in evaluating code generation tasks by measuring the similarity
with code semantics. Thus, we use CodeBLEU to assess the
similarity between the generated method and the ground truth.
(2) DiffBLEU. As only a part of statements are modified, we
design the metric DiffBLEU to concentrate on the modified
ones specifically. To compute it, we calculate the BLEU
score of the repaired test whose unchanged statements are
removed. DiffBLEU serves as a complement to CodeBLEU.
(3) Accuracy (%). This metric represents the percentage of
samples where the generated method is identical to the ground
truth (exactly match textually).

Intent Match. Besides textual match metrics, we also
design two other specific metrics to measure whether the
generated repaired test cases are correct. Ideally, test repair
should not change the intent of the test case, which means
that the repaired test should keep the same assertions and
input values. Referring to the original test and the ground
truth respectively, we use two specific metrics to evaluate the
repairability. (1) Repairabilityori (%). Repairabilityori repre-
sents the repairability referring to the original test. Specifically,
we calculate Repairabilityori as the percentage of samples

4https://clang.llvm.org/docs/ClangFormat.html
5https://docs.python.org/zh-cn/3/library/difflib.html

where the generated test can be successfully compiled and
shares the same assertions and input values with the origi-
nal test. (2) Repairabilitygt (%). Similar to Repairabilityori,
Repairabilitygt is calculated referring to the ground truth. For
each repaired test case, two developers with more than three
years of Java programming experience are asked to perform
manual evaluation separately. If they can’t reach an agreement,
they will have a discussion on uncertain samples until they
agree on consistent conclusions.

In addition, we also record the Syntax Pass Rate (SPR) and
Compilation Pass Rate (CPR) as the success rate of syntax
checking and compilation for generated codes respectively.

D. Implementation Settings

SYNTER is built based on LangChain [33], which is a
framework designed to simplify the procedures of developing
applications powered by LLMs. With the APIs provided by
LangChain, SYNTER utilizes the SOTA LLM (GPT-4) [34]
developed by OpenAI and the widely-used open-source neural
reranker (bge-reranker-v2-m3) [35] released by BAAI [36].
To reduce the impact of randomness, for each case in the
dataset, we request LLM with the temperature as 0.1 three
times and keep the best one for both NAIVELLM and SYNTER
in evaluation.

V. EVALUATION

Based on the constructed benchmark dataset, we evaluate
the effectiveness of our approach and conduct a comprehensive
analysis of the results. We address these research questions:

• RQ1:(Effectiveness of SYNTER) Can SYNTER effec-
tively repair obsolete tests caused by SynBCs?

• RQ2:(Effectiveness of TROCtx) To what extent do the
TROCtxs contribute to correctly repairing the test?

• RQ3:(Failure Analysis) Under which cases does SYN-
TER fail to repair?

• RQ4:(Efficiency) What is the efficiency of SYNTER?

A. RQ1: Effectiveness of SYNTER

1) Basic Evaluation on Effectiveness: To evaluate the per-
formance of SYNTER compared with baselines, we adopt
different approaches to repair obsolete test cases in the bench-
mark dataset.

First, we conduct syntax validation on the generated test
codes. As shown in Tab. I, the Syntax Pass Rate (SPR) of
CEPROT is 47.8%, while LLM-based approaches all pass the
validation (100%), which means that LLM demonstrates a
higher proficiency in producing syntactically accurate code
than CodeT5. Then we use the three textual metrics to
measure the average similarity between the generated test
code and the ground truth. The column Textual Match in
Tab. I demonstrates that our approach outperforms baselines in
terms of all three metrics. Specifically, LLM-based approaches
have average improvements of 12.4% and 72.4% in terms of
CodeBLEU and DiffBLEU compared with CEPROT, which
indicates that LLM is more capable of understanding the
semantics of code and generating repaired tests. With the
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highest scores on CodeBLEU and DiffBLEU, SYNTER is
also able to accurately repair 32.4% of the test cases, which
also achieves varying degrees of improvement over CEPROT
(4.4%) and NAIVELLM (28.7%).

TABLE I: Effectiveness of repairing obsolete test cases caused
by SynBCs based on textual match.

Approach SPR(%) Textual Match

CodeBLEU DiffBLEU Accuracy(%)

CEPROT 47.8% 73.5 26.3 4.4%
NAIVELLM 100% 81.9 44.0 28.7%
SYNTER 100% 83.3 46.7 32.4%

2) Human Evaluation on Effectiveness: Since textual met-
rics focus on measuring the similarity of tokens and AST
structure for the given codes, they can not well represent
the correctness of repair. To bridge this gap, in this part, we
replace the obsolete test cases with the generated repaired ones
in the repository and manually check whether the replaced
test is correct or not, where a correct repair should pass the
compilation and keep the intent of the test unchanged.

The column CPR in Tab. II represents the success rate of
compilation after repairing the original test case in the repos-
itory. As a result, SYNTER fixes the most compilation errors
caused by SynBCs. In terms of the two metrics of repairability,
SYNTER both outperforms the baselines. As shown in the
column Intent Match, we can observe that SYNTER correctly
repair 75.0% (102/136) and 90.4% (123/136) test cases in
alignment with the intent of the ground truth and the original
test respectively.

As for Repairabilityori specifically, SYNTER achieves im-
provements of 248.6% and 9.8% when compared to CEPROT
and NAIVELLM respectively.

Answering RQ1: SYNTER outperforms the baselines on
all the metrics in the benchmark dataset. It indicates that
our approach can effectively help developers to correctly
repair obsolete test cases caused by SynBCs.

B. RQ2: Effectiveness of TROCtx
As introduced in Section I, SYNTER constructs TROCtxs

to enhance LLMs, which serves as contextual information to
reduce hallucinations during the generation of LLM (LLM
below all refers to GPT-4). In this research question, we focus
on illustrating the effectiveness of TROCtxs. Therefore, we
compare our proposed SYNTER with NAIVELLM based on the
remaining hallucinations.

According to existing work [37] and our investigation, we
define hallucinations as using undefined methods, variables,
or classes in the LLM-generated codes. Based on the results
of human evaluation, we manually identify hallucinations and
summarize them into two types: common hallucinations and
outdated hallucinations.

Common hallucinations. Common hallucinations are
caused by the lack of direct contextual information from the

TABLE II: Effectiveness of repairing obsolete test cases
caused by SynBCs based on intent match.

Approach CPR(%) Intent Match

Repairabilitygt(%) Repairabilityori(%)

CEPROT 33.3% 19.9% (27) 25.7% (35)
NAIVELLM 88.5% 69.1% (94) 82.4% (112)
SYNTER 96.2% 75.0% (102) 90.4% (123)

change of focal method signature. For the case in Fig. 1, a new
class (MountPOptions) is set as the third parameter type.
Therefore, the LLM falls into common hallucination without
the required class contexts of MountPOptions.

Outdated hallucinations. Outdated hallucinations are
caused by the lack of implicit contextual information beyond
the focal method signature. For the example in Fig. 5, the
method findUnknown used in the test is refactored to be
accessed from an instance of class BitstreamFormat.
Without this specific knowledge, the test generated by LLM
still uses the method in an outdated way, which causes a
hallucination.

This method has been refactored 

 Diff of focal method

@Override

- public BitstreamFormat getFormat() {

     return bitstreamFormat;

+ public BitstreamFormat getFormat(Context context) throws SQLException {

     return getBitstreamService().getFormat(context, this);

}

Test repair in ground truth

@Test

public void testGetFormat() throws SQLException{

-   assertThat("testGetFormat 0", bs.getFormat(), notNullValue());

-   assertThat("testGetFormat 1", bs.getFormat(),               

                      equalTo(BitstreamFormat.findUnknown(context)));

+   assertThat("testGetFormat 0", bs.getFormat(context), notNullValue());

+   assertThat("testGetFormat 1", bs.getFormat(context),     

                      equalTo(bitstreamFormatService.findUnknown(context)));

}

Dspace/DSpace: 54222f3

Test repair by NaiveLLM & SynTeR

@Test
public void testGetFormat() throws SQLException{
-   assertThat("testGetFormat 0", bs.getFormat(), notNullValue());
-   assertThat("testGetFormat 1", bs.getFormat(),               
                      equalTo(BitstreamFormat.findUnknown(context)));
+   assertThat("testGetFormat 0", bs.getFormat(context), notNullValue());
+   assertThat("testGetFormat 1", bs.getFormat(context),     
                      equalTo(BitstreamFormat.findUnknown(context)));
}

Fig. 5: An example of outdated hallucination in which LLM
incorrectly generates the test with a refactored method.

To assess the effectiveness of TROCtxs constructed by
SYNTER, we collect all the hallucinations for NAIVELLM
and SYNTER. As shown in Tab. III, hallucinations occur
in both approaches. For the 6 common hallucinations that
NAIVELLM fails, SYNTER fixes all of them and correctly
generates repaired tests with related contexts, indicating that
SYNTER has the general capability to precisely and effectively
collect required contexts from the syntactic change of the focal
method. Besides, SYNTER also reduces outdated hallucina-
tions by 25%, in which two cases are fixed with the constructed
TROCtxs (UsageCtxs and EnvCtxs specifically).
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TABLE III: The number of different types of Hallucinations.

Approach Common Hall. Outdated Hall. Total

NAIVELLM 6 8 14
SYNTER 0 (-100.0%) 6 (-25.0%) 6 (-57.1%)

Answering RQ2: The TROCtxs constructed by SYNTER
can effectively reduce the total hallucinations of LLM by
57.1%, in which all the common ones are fixed.

C. RQ3: Failure Analysis

SYNTER is designed to repair the original test case with
its intent unchanged. Considering that the ground truth may
contain semantic changes such as adding new assertions and
altering input values, we further investigate the 13 cases that
fail in terms of Repairabilityori according to Tab. II. Finally,
we summarize three reasons for the failure.

• Uses unimported classes. For four cases, LLM directly
uses classes that are not imported in the file of the test
method when generating codes. The key reason is that we
focus on collecting contexts by analyzing the syntactic
change of the focal method at the method level. Without
analyzing the focal class and changes in the methods, the
constructed contexts by SYNTER may be inadequate and
result in failure. Fortunately, this type of failure is easy
to fix.

• Complex focal changes. For eight cases, LLM fails to
correctly generate the expected tests with limited contexts
as the changes of focal methods in class-level or repo-
level upgrades are complex. Specifically, the complex fo-
cal change leads to outdated hallucinations and incorrect
invocations. This type is challenging to resolve because
of the difficulty of collecting implicit contexts and the
limited capability of current LLMs.

• Fails to construct TROCtxs. Specifically for one case,
we find that the language server fails to provide intelligent
features for repositories containing configuration errors,
which results in the failure of SYNTER to construct
TROCtxs. Overall, it is hard even for developers to
manually repair tests in these repositories, in which they
can not infer related contexts in IDEs either.

Answering RQ3: SYNTER fails to repair obsolete tests
mainly for using unimported classes, being unaware of
complex focal changes, and encountering errors when
initializing the language server.

D. RQ4: Efficiency

As shown in RQ1, the performance of CEPROT lags behind
other approaches because of the limited model backbone.
Although CEPROT can repair tests fast, most of the generated
codes are incomplete and contain syntax errors (52.2%).
Therefore, we focus on comparing the efficiency of NAIV-
ELLM and SYNTER in this research question.

Compared to NAIVELLM, SYNTER adds the steps to con-
struct TROCtxs. When querying LLM to repair the test, the
prompt of SYNTER is longer with the constructed TROCtxs.
In this research question, we evaluate the time efficiency and
the token count of SYNTER compared to NAIVELLM.

In particular, we divide the process of SYNTER into con-
structing TROCtxs and querying LLM for repair. As shown in
Fig. 6, the time cost of SYNTER mainly depends on the process
of constructing TROCtxs, while the response time of LLM
API of the two approaches is close. We also notice that the
language server may fail to synchronize old repositories due
to connection timeout for missing dependencies, which results
in the outliers with much longer time. In our design, SYNTER
trades time for accuracy. Besides, the average time of SYNTER
falls into 10s to 30s, which is acceptable for developers since
test repair is not an interactive task.

In terms of the token cost of SYNTER, we observe that the
tokens of the prompt roughly doubled in number after being
augmented with TROCtxs from Fig. 7. This evidence also
indicates that the TROCtxs constructed by SYNTER are precise
considering the large token size of the whole repository.

Time / s

NaiveLLM

Query LLM

in SynTeR 

Construct TROCtxs

in SynTeR 

SynTeR

0 20 40 60 80 100 120 140

Fig. 6: The time cost of NAIVELLM and SYNTER

Token Count

NaiveLLM

SynTeR

500 1000 1500 2000 2500

Fig. 7: The token cost of NAIVELLM and SYNTER

Answering RQ4: SYNTER trades time for accuracy, in
which the average time of constructing TROCtxs is 10s
to 30s. Besides, the final prompt of SYNTER contains
roughly twice as many tokens as NAIVELLM.

VI. DISCUSSION

A. Limitations

The key limitations of SYNTER exist in its two main
modules, the static collector and the neural reranker. First,
SYNTER cannot construct related contexts if the language
server fails to initialize due to configuration errors in the
repository. Second, the approach’s effectiveness is influenced
by its reranking strategy. Despite crafting tailored reranking
queries for different contexts, we cannot always ensure the
precision of reranking. Additionally, our approach focuses
on method-level signature changes and does not improve the
performance of test repair for class-level or complex implicit
changes specifically.
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B. Threats to Validity

External Validity. The main threats to external validity come
from the evaluation dataset. We reuse the existing dataset,
which may not be representative of all possible real-world
syntactic changes, so we check and augment the dataset to
collect diverse samples from related commits. Besides, it is
inevitable to avoid data leakage from popular open-source
projects in GitHub. These projects widely use standard design
patterns [38], which can be learned by LLM during training.
Although experimental results show that NAIVELLM correctly
repairs some of the tests with data leakage, it does not affect
the effectiveness evaluation of SYNTER. According to the
analysis in RQ2, SYNTER outperforms NAIVELLM in cases
where NAIVELLM fails for hallucinations.

Internal Validity. In our experiments, a major threat to
internal validity is the possible bias in human evaluation. To
mitigate it, we invite two senior developers to manually verify
the generated tests and annotate explanations. The final result
is collected after they reach an agreement after discussion.

VII. RELATED WORK

A. Production-test Co-evolution

Production-test co-evolution refers to co-evolving the test
codes with the changes in production codes. Most of the
previous studies focus on identifying production-test co-
evolution pairs [39], [6], [7], [12]. Recently, more works adopt
learning-based techniques to automatically identify obsolete
tests [11], [12]. While these works focus on identification only,
our approach targets automatically repairing the obsolete test
cases directly to relieve the burden of developers.

Two types of obsolete test cases have attracted the attention
of developers, one is the GUI-oriented event sequence test
case, and the other is the code-oriented method test case.
Nowadays, many researchers studied the automated repair of
GUI test cases, especially on Android applications [40], [12].
However, for code-oriented method test cases, limited studies
are focusing on repairing code-oriented method test cases
automatically. One biggest difference between them is that the
search space for the GUI-oriented test event is more obvious,
which can be obtained by traversing the related GUI widget
trees, while the code-oriented method test case has a larger
search space in the whole repository.

For code-oriented method test case repairing, Hu et al. [13]
proposed the first transformer-based approach to update obso-
lete tests with two stages, identifying and updating, which is
the SOTA work in this area. However, it is based on pre-trained
models with fewer parameters and lacks contextual informa-
tion. Compared to this, our work uses larger language models
with automatically constructed contexts from the repository.

B. LLM-based Code Generation

Automated code generation with LLMs brings huge im-
provements in production efficiency. Repo-level code gen-
eration represents the task of generating codes based on a
broader context of the repository [41]. It is challenging due
to the lack of domain-specific knowledge, which results in

hallucination [42], [43]. Several studies leverage Retrieval-
Augmented Generation (RAG) to improve the performance
of LLM in specific code tasks by providing similar codes
or results into the query prompt [41], [26]. However, the
contexts are retrieved based on simple metrics such as tex-
tual similarity without code semantics. Recently, some works
have focused on improving the capability of LLM by static
analysis [44], [20]. Specifically, monitor-guided decoding
(MGD) [20] is a novel approach to bring IDE-assistance from
developers to LLMs to guide the decoding when generating
codes, in which IDE-assistance is providing intelligent features
by the language server. Compared to this work, we augment
LLMs by combining static analysis with RAG to provide more
contexts instead of guiding the decoding process.

VIII. CONCLUSIONS

We propose SYNTER, an LLM-powered approach to au-
tomatically repair obsolete test cases caused by syntactic
changes of the focal methods. The key idea of SYNTER is
to combine static analysis and neural rerankers to precisely
construct test-repair-oriented contexts from the updated repos-
itory, which augments the capability of LLM. Experimental
results show that SYNTER’s effectiveness outperforms baseline
approaches on both the textual- and intent-matching metrics.
Besides, with the augmentation of TROCtx constructed by
SYNTER, hallucinations are reduced by 57.1%. The overall re-
sults also demonstrate that adopting static analysis techniques
to improve the capability of LLM yields excellent performance
and could be extended to other code-related tasks.
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