
Locating Framework-specific Crashing Faults with
Compact and Explainable Candidate Set

Jiwei Yan∗†, Miaomiao Wang∗†, Yepang Liu§, Jun Yan � †¶ and Long Zhang¶
∗ Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China

† University of Chinese Academy of Sciences, Beijing, China
§ Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

¶ State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
Email: {yanjiwei, wangmiaomiao20}@otcaix.iscas.ac.cn, liuyp1@sustech.edu.cn, {yanjun,zlong}@ios.ac.cn

Abstract—Nowadays, many applications do not exist inde-
pendently but rely on various frameworks or libraries. The
frequent evolution and the complex implementation of framework
APIs induce lots of unexpected post-release crashes. Starting
from the crash stack traces, existing approaches either perform
application-level call graph (CG) tracing or construct datasets
with similar crash-fixing records to locate buggy methods. How-
ever, these approaches are limited by the completeness of CG or
dependent on historical fixing records, and some of them only
focus on specific manually modeled exception types.

To achieve effective debugging on complex framework-specific
crashes, we propose a code-separation-based locating approach
that weakly relies on CG tracing and does not require any
prior knowledge. Our key insight is that one crash trace with
the description message can be mapped to a definite exception-
thrown point in the framework, the semantics analysis of which
can help to figure out the root causes of the crash-triggering
procedure. Thus, we can pre-construct reusable summaries for
all the framework-specific exceptions to support fault localization
in application code. Based on that idea, we design the exception-
thrown summary (ETS) that describes both the key variables
and key APIs related to the exception triggering. Then, we
perform static analysis to automatically compute such summaries
and make a data-tracking of key variables and APIs in the
application code to get the ranked buggy candidates. In the
scenario of locating Android framework-specific crashing faults,
our tool CrashTracker exhibited an overall MRR value of 0.91
and outperforms the state-of-the-art tool Anchor with higher
precision. It only provides a compact candidate set and gives
user-friendly reports with explainable reasons for each candidate.

Index Terms—Fault Localization, Framework-specific Excep-
tion, Crash Stack Trace, Android Application

I. INTRODUCTION

With the increasing size and rapid updating requirement
of software, it is hard to eliminate all the bugs before the
code release. To deal with these post-release bugs, developers
need to analyze massive crash reports to find out the real
buggy methods. Usually, one crash report is composed of
three key elements, the type of exception, the crash description
message, and the crash stack trace, in which the stack trace
presents parts of the executed methods before the crash is
triggered and is helpful for the developer’s code debugging
process [34]. However, for precise fault localization, only
using trace information is not enough. The real buggy method
may not be the last executed one in the stack trace, or even
not appear in the stack [25], i.e., the buggy method may not

lead to the crash-triggering directly. Instead, after the buggy
method is executed, its execution results affect the subsequent
code execution and finally lead to an exception being thrown.

To quickly fix bugs with execution results, several fault
localization approaches have been proposed. The spectrum-
based methods [28]–[31], [38], [41] rank suspicious state-
ments by computing the ratio of failed and passed test cases
that execute the statements. These techniques impose high re-
quirements on test cases, which are not suited for post-released
crashes. For these crashes, both the test cases and the runtime
coverage are usually unknown. Recent years, learning-based
approaches [25], [37], [42] are widely adopted to solve this
problem, for which higher precision relies on spending more
effort on dataset labeling. Despite working well when similar
crash-fixing records are collected, they are not good at han-
dling unfamiliar new crash reports. Considering the generaliz-
ability, users can choose the analysis-based approaches [22],
[24], [27], [35] to recover the real execution trace of the target
application by backward tracking on the CG. Some of them
[24], [35] improve the precision by manually modeling specific
exceptions, and Kong et al. [27] retrieve similar crashes from
the collected dataset before static analysis to precisely locate
the out-of-stack buggy methods.

Nowadays, many apps are developed based on spe-
cific frameworks or libraries, e.g., the Android frame-
work [1], google-map SDK [8], zxing library [16], etc. These
framework- and library-specific exceptions account for the ma-
jority of app crashes [22]. However, developers have difficulty
debugging and fixing them, especially in the understanding of
method call ordering between application code and framework
code [20]. To locate and understand the non-application crash
faults, there are three obstacles when adopting the existing
analysis-based approaches. First is the high modeling cost.
As there are thousands of or even more rapidly evolving excep-
tions in one framework, e.g., Android, it is not cost-effective to
manually model all the framework-level exceptions. Second is
the deep call depth. The buggy point may be far away from
the stack trace, but the number of candidates increases quickly
when tracing deeper along the CG, e.g., developers may need
to examine hundreds of candidates to find a newly discovered
buggy point [25]. And if the analysis starts from the exception-
triggering point in the framework or library-level code, the

candidate size will suffer more from long call traces and turn
out to be extremely large. Finally, the unlinked call edges.
Even though many candidates can be traced by CG analysis,
the statically constructed CG is incomplete for reasons like UI
callbacks, asynchronous methods, etc. So, the buggy method
may be missed even with numerous candidates.

To cope with these problems, we propose a code-separation-
based framework-specific fault localization approach that
weakly relies on the CG edges and does not require extra
prior knowledge. First, we separate the whole program code
into two parts, the application-level and the framework-level.
The application-level code contains a set of buggy methods
to be located and fixed, which may misuse the APIs provided
by the bottom-level code. The framework-level code provides
APIs and throws exceptions when APIs are misused. By
investigating the public framework-specific crash reports on
GitHub [4], we note that one crash report with crash stack,
exception type, and crash message can be mapped to a definite
exception-thrown point in the framework. Thus, we can per-
form semantics analysis to pre-construct reusable summaries
for framework-specific exceptions. To achieve that, the main
challenges are which key information should be extracted
from frameworks to understand the exception-triggering pro-
cedure, and how to use the exception-related information
to precisely locate application-level buggy methods.

In this paper, we propose a specification technique, called
exception-thrown summary (ETS), for framework-level meth-
ods, which describes the fault-inducing elements that lead to
exception-triggering from the framework users’ point of view.
We first perform static analysis to automatically compute ETSs
for all the framework methods and apply the matched ETS
on the given crash stack trace. The target ETS points out
the parameters (keyVars) that may be wrongly input to the
framework code, or the framework APIs (keyAPIs) whose in-
vocation may influence the status-checking of the correspond-
ing exception. With that information, we can perform more
targeted application-level code analysis for buggy localization
and generate a compact candidate set. Also, it helps users
quickly figure out the complete path from the buggy methods
to deep exception-thrown points for better explainability.

Android apps are typical framework-based applications,
whose frameworks are much more complex than their upper-
level apps. It has over ten million lines of code [23] and
millions of call edges. With rapid evolution, the number of
exceptions increases eight times more (1,643 to 13,717) from
API 8 to 32. The high complexity of Android frameworks
brings difficulties in bug debugging. In this paper, we take
the Android crash fault localization as a typical scenario and
implement our approach into a tool CrashTracker. In the
evaluation, we collect 580 instances (569 Android apps and
11 third-party SDKs) and ten versions of Android framework
SDKs. The results show that CrashTracker exhibited an overall
mean reciprocal rank (MRR) metric value of 0.91. It also
outperforms the state-of-the-art tool Anchor [27] with 7.4%,
11.5%, and 12.6% improvement on finding real buggy in the
top 1, 5, and 10 sorted candidates. On average, only 6.35

explainable candidates are reported for one crash.
Contributions. The contributions of this work are threefold:

• We propose a code-separation-based analysis approach and
apply it to Android framework-specific fault localization.

• We propose a novel specification, ETS, and construct it for
76,247 exceptions thrown in multiple Android frameworks.

• We implement our crash fault localization approach in
tool CrashTracker [17], which can precisely locate buggy
methods within a compact and explainable candidate set.

II. PRELIMINARY

A. Application-level and Framework-level Code

Among all the Android crashes, over 50% are framework-
specific or library-specific ones [22], which indicates that
the understanding of bottom-level code will influence code
quality on the upper level. To avoid repetitive analysis of
the large-scale and complex bottom-level code, we take the
methods that may be debugged or fixed by developers as the
application-level methods, and the methods that provide APIs
to application-level methods as the framework-level ones. If
we take all the methods in the whole program as Mwhole,
both the application- and framework-level methods are its
subsets (Mwhole = Mapp∪Mframe). There is no fixed division
between two parts, i.e., the separation line could be totally
customized by users under different scenarios. In this paper,
to debug the Android framework-specific crashes, we add all
the application and library code contained in the Android
Packages (APKs) and the third-party Android software de-
velopment kits (SDKs) into Mapp, while adding the official
Android framework methods in Mframe.

B. From Crash Report to Buggy Method

On the bug-tracking systems (e.g., GitHub [7], StackOver-
flow [13]), the crash reports provided by users mainly contain
three elements, an exception type, a crash message, and a
stack trace snapshot that reflects the callee-caller method
chain when the exception is triggered. In the stack trace,
the application- and framework-level methods may show up
alternately. Table I displays one crash issue [3] of the Android
app cgeo, which has 1.2k stars. In this example, an IllegalSta-
teException is thrown out with a crash message “attempt to
re-open · · · ”. We label signaler, crashAPI, crashMethod, and
entry tags beside methods in the trace, and give the fixed buggy
method in the last row, which is out of the stack.

Actually, when a crash is triggered, the buggy method
must be located in the execution trace, i.e., it should be a

TABLE I: A Crash Report and Its Real Buggy Method
Type java.lang.IllegalStateException

Msg “attempt to re-open an already-closed object: SQLiteProgram: SELECT
count(id) FROM cg caches WHERE reason >= 1”

Crash
Stack
Trace

android.database.sqlite.SQLiteClosable.acquireReference, [signaler]
android.database.sqlite.SQLiteStatements.simpleQuery, [crashAPI]
cgeo.geocaching.DataStore$PreparedStmt.simpleQuery, [crashMethod]
cgeo.geocaching.DataStore.getAllCachesCount,
cgeo.geocaching.MainActivity$CountBubbleUpdateThread.run [entry]

Buggy cgeo.geocaching.DataStore$PreparedStmts.clearPreparedStmts

method that has been executed already. The execution trace of
application app can be denoted as

Texecute = ⟨f0, ..., fi, fi+1, ..., fn⟩

in which fi is a method. For Java programs that have a
single entry method entry, we have entry = f0. And the
pair (fi, fi+1) is a call edge in the CG, i.e., fi invokes fi+1.
For event-driven Android programs that have multiple callback
entries, like component lifecycle and user/system callbacks,
we have f0 ∈ Sentry. In this case, the method fi+1 may
be a callee of fi, or be a callback method fi+1 ∈ Sentry.
As Texecute is a crash-triggering execution trace, its last
method fn is the signaler method that directly throws the
exception out. The method fi in Texecute could be either an
application-level or a framework-level method. As the Android
framework-specific exceptions denote the exceptions thrown
in the Android framework [22], here we focus on the crashes
whose signaler ∈ Mframe. The target of the fault localization
is to find out the real buggyMethod to be fixed, which must
be one of the executed methods. That is to say, we can find
an integer b so that fb in Texecute and buggyMethod = fb.

During execution, methods in Texecute will be pushed into
a stack st in order and be popped out when finished. The
crash trace Tcrash records the unpopped methods in the stack
st when the crash is triggered, whose set of elements is a
subset of the complete execution trace, i.e., Set(Tcrash) ⊆
Set(Texecute). We can denote Tcrash as a sequence

Tcrash = ⟨fn, ..., fj , fj−p, ..., fe⟩, (0 < p < j, 0 ≤ e < j− p),

where each method in it also exists in Texecute. The signaler
method fn is the top element in stack st, and entry is the
bottom one. Sometimes, the app developers do not invoke
the signaler directly, instead, they invoke the crashAPI fca to
indirectly invoke the signaler, where for all j, ca ≤ j ≤ n, fj
∈ Mframe. We call the last method that directly invokes
crashAPI as the crashMethod. For a crashAPI fca, the crash-
Method fcm is its previous element in Tcrash, where fcm ∈
Mapp and fca ∈ Mframe. Trace Tcrash is a slice of Texecute.
However, it is not determined whether the buggyMethod is
in the trace Tcrash or not, which makes the fault localization
challenging. Starting from Tcrash, the main task is to find
a compact ranked candidate set that contains the most
possible buggy methods that exist in Texecute.

Fig. 1 introduces a simplified CG, in which each block
denotes a method and each node in the block is a method call
statement labeled with the callee. Here, f0 and f1 are both
entry methods. We take dummy as a dummy entry point of
the program that invokes f0 and f1. Among methods, solid and
dotted lines are used to represent the direct and indirect call
edges. Suppose there is a crash-triggering execution that starts
from the entry method f0 and ends with the signaler method
f11. When the app crashed, only four methods ⟨f1, f3, f7, f11⟩
are stored in the method stack st, while others have finished
their execution. As the buggyMethod may not be in st, existing
approaches make an expansion of stack trace based on the call
edges in CG. Their candidate size entirely depends on the call

f1

f4

f5

f6

…
f4

…
f5

f2

f2

f3

f1

f6

f7

f3

…
f11

f0

dummy f0

…
fp

f10

f8

f9

f6

f7

f10

f11

…
f8

…
f9

…
f12

…
f13

f12

f13

fp

…
fq

Signaler

Buggy
Method 3

Buggy
Method 2

Buggy
Method 1

d=0

d=2

d=1

d=∞

f buggy method

direct call

indirect call

Trace = Tcrash = {f1, f3, f7, f11}

d=0: {f1, f3, f7, f11}

Trace = {f1, f2, f3, f6, f7, f10, f11}

d=1: {f2, f6, f10}

Trace = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13}

d=2: {f4, f5, f8, f9, f12, f13}

Trace = Texecute = {f0, fp, f1, …, fq, …, f13}

d=x, x∈[3,∞): {f0, fp, fq}

Trace = Tcrash = {f1,f3,f7,f11}

d=0: {f1,f3,f7,f11}

Trace = {f1,f2,f3,f6,f7,f10,f11}

d=1: {f2,f6,f10}

Trace = {f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13}

d=2: {f4,f5,f8,f9,f12,f13}

Trace = Texecute = {f0,fp,f1,…,fq,…,f13}

d x, x∈[3,∞): {f0,fp,fq}

Fig. 1: Execution Trace and Crash Trace

depth setting. The call depth of the function fi with respect
to a given crash trace Tcrash is the least number of function
call steps from any functions in Tcrash to fi [40]. In Fig. 1,
the nodes with the same color have the same call depth. With
a given call depth threshold dt, methods that have a call depth
no larger than dt will be collected. And a larger depth means
a higher possibility to find out the buggyMethod. When d = 0,
we only have Tcrash. Then we increase the depth until finding
the buggy method. Suppose that f9 is the buggyMethod, when
d = 1, we can get seven ineffective candidates. And when d =
2, twice as many candidates will be collected, which includes
f9. According to that, there are two challenging cases.
First, the buggyMethod may be far away from the mainstream,
e.g., buggyMethod = fq . To find it out, a larger depth brings
more candidates to be reviewed and increases the difficulties in
fault analysis, especially when fn ∈ Mframe. Second, the CG
may be incomplete due to the existence of callbacks, native
methods, or asynchronous calls, and the buggy method can
be called by these unlinked methods, e.g., buggyMethod = fp.
That means, tracing along the CG requires heavy effort, but the
buggyMethod still could be lost. Thus, based on the basic CG
relationship, we also pay attention to the information hidden
in the framework-level thrown exceptions.

III. MOTIVATING EXAMPLE

We use the real crash report displayed in Table I as
our motivating example. All the code snippets corresponding
to this crash are shown in Fig. 2. First, the application-
level method getAllCachesCount() invokes the crash-
Method simpleQuery(). This crashMethod then invokes
a framework-level crashAPI in line 8, which invokes the
signaler method in line 24 and triggers an exception in lines
33-34. For this crash, the really buggy points (lines 11-12) are
in clearPreparedStmts(), which is not shown in the
stack trace Tcrash. The buggy reason is that the instance of
PreparedStmt is closed without a clear operation so that
it will not be reinitialized but reused directly the next time,
which finally leads to a crash. As the entry method run()

1 // In Android Application
2 public class DataStore {
3 public static int getAllCachesCount(){ // caller of the crashMethod
4 return (int)PreparedStmt.COUNT ALL.simpleQuery();
5 }
6 private static class PreparedStmt{
7 public long simpleQuery(){ // the crashMethod
8 return getStatement () .simpleQuery();}
9 }

10 private static void clearPreparedStmts (){ //buggyMethod
11 − for (final SQLiteStatement statement : statements) {
12 − statement . close () ; } // Invoke KeyAPI 2
13 + for (final PreparedStmt preparedStmt: statements){
14 + preparedStmt . statement . close () ;
15 + preparedStmt . statement = null ; }
16 statements . clear () ;
17 }
18 }

21 // In Android Framework
22 public final class SQLiteStatement extends SQLiteProgram{
23 public long simpleQuery() { // crashAPI
24 acquireReference () ;
25 }
26 }
27 public abstract class SQLiteClosable implements Closeable{
28 private int mRefCount = 1;
29 public void acquireReference () { // signaler method, case1
30 // public void acquireReference (int id , int count) { // case 2
31 // mRefCount += count
32 if (mRefCount <= 0){
33 throw new IllegalStateException (”attempt to
34 re−open an already−closed object : ” + this) ;
35 }
36 }
37 public void releaseReference (){ // keyAPI
38 boolean refCountIsZero = false ;
39 refCountIsZero = −−mRefCount == 0;
40 }
41 public void close (){ // keyAPI
42 releaseReference () ;
43 }
44 }

Fig. 2: Motivating Example of Framework-specific Exception

in Tcrash is asynchronous, its caller is not stored in the stack,
i.e., the real callback that invokes the buggyMethod is missed.
Thus, the methods that are called by the real entry are also lost.
However, even if the real entry method is included in the stack,
the buggyMethod is still hard to be retrieved, as it is far away
from the crash trace and is hidden in the large candidate set.
Therefore, before making actual fault localization, we should
first figure out how and why exceptions are thrown in Mframe

and get their characteristics.

IV. FRAMEWORK-SPECIFIC FAULT LOCALIZATION

In this paper, we propose an exception-oriented summary
specification that points out the fault-including elements from
the view of framework users. It can be the parameters (key-
Vars) that are wrongly input to the framework code, or the
framework APIs (keyAPIs), whose invocation can influence the
status-checking results of the exception-related key conditions
(keyConds). Based on this specification, we perform a one-time
static analysis to automatically compute summaries for frame-
work code. For a crash report to be debugged, we match and
apply the computed summary to the crash trace, which helps
to retrieve the complete call trace between the application
code and framework code. In the application-level analysis,
according to the type of the fault-inducing elements, we can

focus on the fault-inducing variable in the crashAPI invocation
statement and make data tracking on it. Also, we can target
the fault-inducing APIs that be invoked in the application code
and track its callers. Using this approach, the methods that
can be traced on the expanded CG but are not data-related
will be excluded, while the methods that are data-related
but cannot be traced by CG are included. Fig. 3 introduces
the overview of our approach CrashTracker, which takes an
APK file and a crash report as input and generates ordered
candidate methods with inferred fault-inducing reasons. It
has two modules. The exception semantics analysis module
works on the framework-level code, which takes multiple
Android framework files as input and outputs the summaries
for exceptions in Mframe. The summaries will be passed to
the fault localization module, which then uses the received
information to locate buggy methods in Mapp.

Framework
Code

API 32
Android 12

API 30
Android 11

API 29
Android 10

API 9
Android 2.3

……

Exception
Summaries

Sink Point
Extraction

Message Extraction

Key Condition Analysis

Key Variables

Key APIs

Crash Trace
&Message

Android APK

match

Target Exception
Summary

Candidate PickingStatic Analysis

Candidate Filtering

Candidate Sorting

Exception Semantics Analysis Module

Fault Localization Module

static analysis

Fault Localization
Reports with

Inferred Reasons

Fig. 3: Overview of CrashTracker

V. EXCEPTION SEMANTICS ANALYSIS ON Mframe

On Mframe, the Exception-thrown summary (ETS) is de-
signed for each exception-thrown point to present its fault-
inducing elements. It can be formally defined as a 5-tuple
ET S(e) = ⟨id, Scond, ScondV ar, SkeyV ar, SkeyAPI⟩, where
• id is the identifier of exception e, which is a four-tuple
⟨sink, signaler, type,msg⟩, in which sink is a statement
that throws the exception e; signaler is the method that
contains sink; type is the type of the exception e; and
msg is the description message when e is triggered, which
is composed of constant and dynamically-assigned values.
To match the context-related messages in all the forms, we
represent msg by regular expressions;

• Scond is a set of key conditions (keyCond ∈ Scond) located
in signaler, whose results can decide whether e is triggered.
If e is triggered only when keyCond is satisfied, keyCond
is a basic check. If the throw(e) statement can not be
executed as the satisfaction of keyCond leads to method
return, keyCond is a not-return check;

• ScondV ar is a set of condition variables (condV ar ∈
ScondV ar) whose values are directly checked in Scond;

• SkeyV ar denotes a set of key variables, which can in-
fluence the value of condV ar and can be modified by
framework users. Each keyV ar ∈ SkeyV ar is a triple

⟨mtd, loc, condV ar⟩, in which mtd is a framework-level
public method; loc is a parameter location in method mtd;
the locth parameter in mtd can influence the value of
condV ar ∈ ScondV ar by inter-procedural parameter pass-
ing, i.e., its value can influence the checking results of the
key conditions. For simplicity, we will use keyVar to denote
the parameter variable in keyV ar.mtd with location loc.

• SkeyAPI denotes a set of key APIs, which can influ-
ence the value of condV ar and can be invoked by
framework users. Each keyAPI ∈ SkeyAPI is a 4-tuple
⟨mtd, field, condV ar, dpt⟩, in which mtd is a framework-
level public method; field is a class-filed variable that
is modified by mtd or its callees, whose value is data-
related with the condition variable condV ar in ScondV ar;
dpt records the least number of function call steps from
mtd to the method that directly modifies field, which is
used in candidate sorting. We will use keyAPI to denote the
method keyAPI.mtd in the following.
Here, we use the running example in Fig. 2 to exemplify the

defined elements in ETS. For the exception thrown in lines 33-
34, its keyCond is mRefCount≤0 and mRefCount is a condVar.
Also, mRefCount is a filed variable of class SQLiteClosable
that can be modified out of the signaler method. As public
methods releaseReference() and close() both modify its value,
⟨releaseReference(), mRefCount, mRefCount, 1⟩ and ⟨close(),
mRefCount, mRefCount, 2⟩ are added into SkeyAPI . In this
example, as no parameter variable is related to the condVar,
SkeyV ar=∅. But if line 29 is replaced by lines 30-31 (case 2),
we will get a parameter-related variable count, which can
be modified outside and influence the value of condVar. As
signaler is public, we will first add ⟨acquireReference(), 2,
mRefCount⟩ into SkeyV ar and then trace the caller of method
acquireReference() to find more keyVars.

Sink Point Extraction. The ETS construction process is
shown in Algorithm 1. The first step is to identify the sink
points (line 1). First, all the throw(e) [14] invocation
points are sink points. Besides, developers may also customize
exception-thrown information and use the logged information
to debug. To recognize them, we detect all the Throwable
instances and trace their data flows. For the exceptions that
are not thrown directly, we take the methods that receive
these instances as exception-handling methods and take the
invocation statements of them as sink points. Throw(e)
statement is the most frequently used sink point type with
many instances. Besides it, we get another 33 types of sink
points, of which 12 store exception trace into logs or files.

Message Representation. Starting from the sink points, one
challenge is how to extract the description message of the
target exception (line 4). For the same exception, the runtime
crash message may be different, as the values of some vari-
ables are dynamically assigned. To make a precise matching,
we transform the exception message into a regular expres-
sion [11] pattern, so that it can match multiple runtime crash
messages. The method regexStringAnalysis() in line 4 tracks
the definition statement of the target exception, which may be
a newly created one, e.g., e = new RuntimeException(), or the

alias of another exception, e.g., e = getFileException(· · ·). For
the former, we perform backward value tracing of the message-
related parameter in the exception’s constructor method. For
the latter one, we make inter-procedure tracing to get the
real instantiate point and analyze it as the former. During the
value tracing, we model a set of String-related APIs to stitch
multiple parts together, in which we use [\s\S]* to represent
a symbolic value and use \Qstr\E to represent the constant
value of str. In lines 33-34 of Fig. 2, the target exception
message is “\Qattempt to re-open an already-closed object:
\E[\s\S]*”, which can matche the crash message in Table I.

Key Condition and Condition Variable. Each exception is
influenced by a set of conditions (keyConds), whose checking
results decide whether the exception can be triggered. In
line 6, we invoke method getKeyCondsAndVars() to trace all
the predecessor statements of the sink point in the control
flow graph, record the involved condition checks into Scond,

Algorithm 1 Exception-thrown Summary Extraction
Input: method signaler in Mframe

Output: the exception summary set Sets on method signaler
1: for sink in signaler.getSinkPoints() do
2: ets = createETS(signaler, sink)
3: ets.type = exceptionTypeAnalysis()
4: ets.message = regexStringAnalysis()
5: cfg = signaler.getCFG()
6: getKeyCondsAndVars(ets, cfg, sink)
7: if ets.keyConds.size()=0 then
8: for return stmt retStmt predsOf sink in cfg do
9: getKeyCondsAndVars(ets, cfg, retStmt)

10: end for
11: end if
12: worklist = ets.keyCondVars.copy()
13: while worklist.size()>0 do
14: if worklist.get(0) is parameter or field related then
15: add worklist.getAndPop(0) as outsideVars
16: else
17: defStmt = getDefStmt(worklist.getAndPop(0))
18: worklist.add(defStmt.getRightOp().getVars())
19: end if
20: end while
21: for varp in ets.parameterOutsideVars do
22: add varp to ets.keyVars if signaler is public
23: track varp in signaler’s caller to update ets.keyVars
24: end for
25: for varf in ets.fieldOutsideVars do
26: add public methods that modify varf into ets.keyAPIs
27: update public caller of keyAPIs into ets.keyAPIs
28: end for
29: Sets.add(ets)
30: end for
31: return Sets

Algorithm 2 getKeyCondsAndVars
Input: ETS ets, control flow graph cfg, statement s
Output: updated ETS ets

1: for condition check stmt condStmt predsOf s in cfg do
2: ets.keyConds.add(condStmt.getCond())
3: ets.keyCondVars.add(condStmt.getCond().getVars())
4: end for

and collect all the condition-related variables into ScondV ar,
as displayed in Algorithm 2. After that, we can collect all
the basic checks. For example, s==t is a basic check for
{if(s==t){throw(e)}}. In another case, developers may
take the method-return operation as expected behavior and
throw exceptions if the method didn’t jump out in time.
The conditions related to these return statements are also
key conditions. For example, s==t is a not-return check
for {if(s==t){return} throw(e)}. In lines 7-11, if
there is no basic check, we extract the not-return checks by
analyzing the basic checks of all the return statements prior
to the sink point in the control flow graph. Besides, as the
conditions far away from the exception-thrown point may have
a weak relationship with the exception, we count the average
condition length as a threshold size of Scond.

Key Variable and Key API. To find out keyVars and
keyAPIs, we first use a worklist algorithm to locate the method
parameters and class-field variables that influence the value of
condVars by performing backward data tracing along the use-
def-chains [15] (lines 12-20). Note that, in line 17, method get-
DefStm() returns the Jimple [9] IR level definition statements,
which reflect the variables that can influence that target one.
As these variables can be modified outside signaler, they are
called outside variables outsideVars. In lines 21-24, for each
parameter-related outsideVar varp, we record its method, the
location in the parameter list, and the influenced condVar. If
the signaler is a public method, varp itself is a keyVar (line
22), e.g., we have ⟨acquireReference(), 2, mRefCount⟩ for case
2 in Fig. 2. Similarly, we perform backward inter-procedural
parameter call-chain analysis (line 23) to trace more key
variables passed through other framework APIs, which invoke
the signaler. That is, for a formal parameter, we find the
actual parameter variable in its caller and judge whether the
passed variable is influenced by the caller’s parameter-related
outsideVars. If it is, these newly detected outsideVars in the
public callers will be added into SkeyV ar, e.g., for method
f(int count){acquireReference(1,count)}, we
further have ⟨f(), 1,mRefCount⟩. In lines 25-28, for each
field-related outsideVars varf , its value can be changed by
other framework APIs that influence the checking results of
keyConds. In line 26, we record the methods that change the
value of varf , the field varf , the influenced condVar, and the
call depth from method to signaler. For Fig. 2, we first get the
keyAPI ⟨releaseReference(), mRefCount, mRefCount, 1⟩. Then
in line 27, we trace callers of the collected keyAPIs and get
⟨close(), mRefCount, mRefCount, 2⟩. Finally, in line 29, we
add ETS for each exception into the ETS set Sets.

VI. CRASH FAULT LOCALIZATION ON Mapp

Based on the exception semantics analysis module, we
further match the given crash report to its corresponding
ETS and use the extracted keyVars and keyAPIs to guide the
application-level buggy method analysis.

ETS Mapping. Algorithm 3 displays the process of crash
fault localization on Mapp. In line 1, we match the given
crash message with the regular expression format message of

each ETS. When the version of the framework is given, the
target ETS is unique and can be used directly. If the version is
undetermined, multiple ETSs may be matched as the exception
with the same type and the description message can exist in
many versions. In the latter case, the target ETS should be
picked by a proper version-choosing strategy. Here, we first
classify the matched ETSs by their characteristics into five
ETS-related types, which are listed in Table II. Then we get a
list of matched versions for the most classified type. To keep
the randomness, the ETS in the middle of the list is picked.

TABLE II: ETS-related Types & Fault Localization Strategies
ETS-related Types Fault Localization Strategy
T1: No CondVar S1: Override analysis in subclasses
T2: No OutsideVar S2: Data tracing from variables in crashAPIinv

T3: Only have keyVar S3: Data tracing of variables keyVars
T4: Only have keyAPI S4: Call tracing of methods invoking keyAPIs

T5: Have keyVar, keyAPI S3: Data tracing of variables keyVars +
S4: Call tracing of methods invoking keyAPIs

Candidate Picking. In lines 2-14, according to the informa-
tion provided by the target ETS, we use different candidate-
picking strategies. Table II also displays the four strategies that
can be used for each ETS-related type. For the ETS who has
no condition variable, i.e., no condVar and keyCond, we use
strategy S1. In this case, the signaler method should not be
invoked directly, framework users should override that method
and invoke the newly implemented method by the polymorphic
mechanism. For this type, the number of candidates is limited
by the number of subclasses of the declared class of signaler.
For target ETS who has condVar but has no outside variable,
we use strategy S2. The exceptions caught from try-catch
blocks and the exceptions whose condition variables are
related to methods with unknown implementations (e.g., native
method) are both in this type. Without extra information about
how the fault could be induced, we just make data tracing
starting from the invocation statement of crashAPI in the

Algorithm 3 Crash Fault Localization
Input: Android app app, crash stack trace st and message msg,

framework version ver, exception summary set Sets on Mframe

Output: fault localization reports reports
1: ets = getBestMatchETS(st, msg, Sets, ver)
2: condType = getConditionTypeOfETS(ets)
3: strategies = getStrategiesByType(condType)
4: for strategy in strategies do
5: if strategy = S1 then
6: locate methods that should override ets.signaler
7: else if strategy = S2 then
8: locate methods that are data-related with the crashAPI-

invoking statement
9: else if strategy = S3 then

10: locate methods that are data-related with keyV ars
11: else if strategy = S4 then
12: locate methods that are callers of keyAPIs
13: end if
14: end for
15: candis = filterAndSortCandidates()
16: getCodeandNonCodeFaultReasonReports(candis, reports)
17: return reports

crashMethod. The strategy S3 is for ETSs that only have
keyVars. The difference with strategy S2 is that, first, we can
confirm this crash is caused by the wrong parameter value.
And we may get the location of the fault-inducing parameters,
even if the crashAPI is not the signaler method. So that, we
can focus on where these target parameters are created or
assigned. In this way, we can locate the methods that can
influence the value of the keyVars but cannot be traced by CG
extension. Similarly, the strategy S4 targets ETSs that only
have keyAPIs. These crashes have no relation to the passed
parameter but are influenced by the previously invoked APIs,
which change the value of field variables in the framework
code and further influence the exception’s condition-checking
results. To cope with them, we focus on the methods that
invoke the keyAPIs and further track their callers. In the moti-
vating example, even if method clearPreparedStmts()
cannot be traced along the CG, we still can find it as it
invokes the keyAPI close(). Finally, one ETS can have
both keyVars and keyAPIs. In this case, we collect all the
methods tracked by either strategies S3 or S4 as possible
candidates.

Candidate Filtering and Sorting. The candidates are
mainly collected by data tracing from a set of variables or
call tracing from specific APIs. In line 15, for the candidate
fi collected by the data-tracing of variables, we measure
its distance to the crashMethod by the formula dis(fi) =
min(callDepth(fi, fj) + callDepth(fj , fcm)), where fj is
a method located in Tcrash and fcm is the crashMethod. For
each candidate, we have an initial score init. The longer dis-
tance, the larger the score penalty. Their scores are computed
by score(fi) = init - dis(fi). And for the candidates collected
by the call-tracing from specific APIs, if method fk invokes
the keyAPI api, its score can be computed by score(fk) = init
- api.dpt, in which dpt is the least distance from keyAPI to
the field manipulating method. If ft is a caller of fk, its score
can be computed by score(ft) = init - callDepth(ft, fk) -
api.dpt. For all the candidates, we perform universal filtering
and adjustment. First, we extract the package and class char-
acteristics of candidates. At the package level, we filter the
candidates that have different package prefixes (e.g., first two
elements) with all the methods in Tcrash. We suppose these
methods are too far away from the crashMethod to be the
right buggy method, even if they may invoke the keyAPIs. As
library methods can also be traced through control- and data-
flow tracing, we make a penalty on the methods that are not in
the app-declared package. This penalty helps to decrease their
priority. Users can customize it if the specific packages should
be considered with high priority in the fault localization.
Specifically, we observed that many methods work as utility
functions and have many callers. One heuristic strategy is
to filter the methods whose number of callers exceeds the
user-defined upper limit. In our implementation, when tracing
the application-level callers of keyAPIs, we filter the ones
with more than ten callers according to our programming
experiments. Finally, as a supplement, the methods in Tcrash

are added with a conservative score.

Candidate Reasoning. To make the localization results
explainable, the reports should contain both the summary
information of the corresponding exception, and the code-
/non-code-level relationship between each buggy candidate
and the triggered exception. By previous ETS matching, we
can get the corresponding ETS summary of each crash and
provide that to users. In line 16, based on the analysis results of
the Mframe and Mapp code, we report candidates with code-
related buggy reasons, which discover the relationship between
each candidate and the triggered exception. If one candidate is
traced by multiple strategies, only the highest score is reserved,
but all the possible reasons are recorded. More detailed fault
localization reports and instructions can be found in our online
tool documentation [17]. Overall, our approach gives six
types of code-related reasons, including 1) KeyAPI Related,
invokes method keyAPI with trace t; 2) KeyVar Related 1,
influences the value of keyVar by modifying the value of
the passed parameter p; 3) KeyVar Related 2, influences the
value of keyVar by modifying the value of related field f ; 4)
Executed 1, doesn’t influence the keyVar but is in the crash
trace; 5) Executed 2, not in the crash stack but has been
executed; 6) Not Override, forgets to override the signaler.

For the motivating example in Fig. 2, the simplified report
is like this: Candidate: clearPreparedStmts(); Rank: 1; Type:
KeyAPI Related; Trace: {clearPreparedStmts() → call keyAPI
close() → call releaseReference() → modify the outsideVar
mRefCount → call acquireReference() with the condVar mRe-
fCount → trigger exception.}.

In some cases, the crash-triggering not only relates to the
misuse of APIs but also relates to the non-code reasons, e.g.,
Kong et al. [27] points out five non-code tags, including
Manifest, Asset, Hardware, OS Version and Resource. To get
this extra information, we scan the statements that are data-
related with the condition variables to judge whether non-
code-related keywords in Table III are hit or not. For instance,
for tag Manifest, the usage of field mActivityInfo and all the
permission strings are detected. For tag OS Version, we trace
whether the filed targetSdkVersion is read. If these tags are
matched, they will be displayed as non-code buggy reasons.

TABLE III: Non-Code Tags and Keywords

Tag Keywords in Code Slices
Manifest ActivityInfo mActivityInfo, android.permission
OS Version ApplicationInfo: int targetSdkVersion
Hardware MediaPlayer, BluetoothAdapter, Camera, etc.
Asset android.content.res.AssetManager
Resource android.content.res.Resources

VII. EVALUATION

We implemented the framework-specific fault localization
approach as a prototype CrashTracker [17], which consists
of 11,554 lines of Java code. It is extensively based on the
static analysis framework Soot [12] and uses Flowdroid [6] to
construct call graphs. The evaluation of CrashTracker aims to
answer the following research questions.

• RQ1 (ETS Construction): How many ETSs can we extract
from multiple-version Android frameworks?

• RQ2 (Fault Localization): How beneficial are our strategies
in fault localization? Can CrashTracker help to locate buggy
methods effectively compared to the existing tool?

• RQ3 (Precision Analysis): What are the key reasons that
lead to false positives and false negatives?

A. Experimental Setup

To answer RQ1, we collect multiple version framework
files. As the android.jar files in the Android SDK only
contain stub methods but not real code implementation, we
load the published Android images and pull the complete
jar files from the system. Overall, we collect ten versions of
framework files, which correspond to Android 2.3 to 12.0 [2],
in which Android 3 is excluded as it is unavailable.

To answer RQ2-RQ3, the Android framework-specific crash
dataset is required. There are two off-the-shelf benchmarks
that relate to Android crash datasets. For example, Fan et
al. [21] extract 194 crashes from GitHub [7] to form a crash
dataset. And in the recent benchmark ReCBench [26], more
than 1,000 crashed apps are collected, in which nearly half of
the crashes are framework-related. To focus on the framework-
specific crashes only, Kong et al. [27] filters these two datasets
with the following criteria. First, the stack trace must contain
the application-level method. Second, the signaler must locate
in Mframe. After filtering, it extracts 500 crashes (D500) on
ReCBench [26] and 69 crashes (D69) in existing work [21],
which are divided into three buckets according to the location
of the buggyMethod. Category A: buggyMethod in Tcrash;
Category B: buggyMethod in Texecute but not in Tcrash;
Category C: crash arises from non-code reasons. We reuse and
update these 569 crashes as our evaluation dataset by adding
oracle information about both the condVars and outsideVars.
For type C, the buggyMethods are labeled with non-code char-
acteristics only in the original dataset, e.g., lack of resources.
These labels indicate the external cause of the crash triggering,
while in fact, these non-code characteristics also have their
corresponding code snippet, e.g., resource loading statements.
As our approach can both provide code-level and non-code-
level localization, we point out the code-level buggyMethods
for crashes in category C and record their original labels as
extra non-code characteristics. As CrashTracker is a general
technique, it can also be applied to other scenarios. Besides the
collected Android APKs, we also take the Android third-party
SDKs as the application-level code. We search the SDK library
projects on GitHub that have large star numbers, active commit
behavior, and normalized issue submission specification. By
manually reviewing, we pick two popular projects, facebook-
android-sdk [5] and google-map [8]. Then, we filter issues
with the keyword is:issue is:closed “AndroidRuntime” OR
“Crash”. For the 84 + 53 issues matched, we manually check
whether the crash is Android framework-specific and whether
a fixing commit is given. Overall, 11 framework-specific crash
reports with fixing revision (D11) are collected. They form a
large dataset with 580 crash reports (D580).

For effectiveness evaluation, as the analysis-based Java
fault localization tool CrashLocator [40] is not available, we

implement a similar strategy (b1-ExtendCG) in our tool and
perform self-comparison. Besides, Anchor [27] is a novel
Android framework-specific fault localization tool, which first
applies machine learning algorithms to categorize each new
crash into a specific category (A/B/C), and then combines
the application-level static analysis and similar crash query
to achieve the final buggy ranking. We also compare with it
the 569 test cases provided by them. All of our analyses are
performed on a Linux server that has two Intel® Xeon® E5-
2680 v4 CPUs and 256 GB of memory. Our approach has
two phases, in which the framework-exception extraction is
one-time work. We analyze ten versions of frameworks with
67 min, i.e., around 6.7 minutes for one version. In the app
code analysis, we use around 95 minutes for 580 apps with 8
threads, i.e., 10 seconds per app.

B. RQ1: ETS Construction

The Android framework updates rapidly, so the exceptions
may also change with time. Fig. 4 shows the number of ETS
in different versions of the Android framework, in which each
ETS denotes one unique exception. With the evolution of
the framework, the number of exceptions, exception types,
and exception-thrown methods all increase. For example, in
Android 10.0, 10,385 exception-thrown methods throw 7,415
exceptions with 176 types. Among them, 6,917 ETSs have not-
empty messages description, of which 29.0% of them contain
non-constant values in the generated regular expression.

1643

3622
4875

5566

7179
8203

9425
10385

11632

13717

1153
2536

3480 3810
5106

5782
6626

7415
8523

9651

67 91 105 113 124 144 174 176 192 199

VER 2.3 VER 4.4 VER 5.0 VER 6.0 VER 7.0 VER 8.0 VER 9.0 VER 10.0 VER 11.0 VER 12.0

ETS (exception)

exception-thrown method

exception type

Fig. 4: ETS in Multiple Android Frameworks
For each exception, we trace its keyConds, condVars and the

outsideVars. When tracing all the key conditions related to an
exception, the average condition length is 2.78. So we set the
threshold in keyCond collection as 3. Among all the condi-
tions, most are basic ones. The not-return conditions account
for 0.7%, which influences the precision of 462 framework
exception triggering. Table V shows the distribution of the
ETSs with different condition types. We give the statistical
results on the oldest version (Android 2.3), the latest version
(Android 12.0), and the average value for all ten versions.
According to the results, most ETSs only have keyVars (42%)
or keyAPIs (22%). Around 18% ETSs have both keyVars and
keyAPIs and 4% ETSs do not have keyCond. About 15% ETSs
could not link with any outsideVar, most of which are from the
caught and re-thrown exceptions or the inter-procedural-call-
related conditions. On average, we can get 7,625 ETSs from
the Android framework code. Among them, there are 1,859
ETSs that contain 10,227 keyVar records, and 2,877 ETSs with
308,852 keyAPIs. For the keyAPIs, 81,872 are declared in the
same class of signaler, and 226,980 are located in different
classes.

TABLE IV: Effectiveness of CrashTracker with Multiple Strategies

Strategy Statistic All (580) CategoryB (56) Relationship
#Find RankSum CandiAvg #R@1 #R@5 #R@10 MRR #R@1 #R@5 #R@10 MRR of Strategies

CrashTracker 568 954 6.35 500 562 567 0.91 14 38 43 0.44 b1Frameworks

ETS
Construction

b2

Fault-inducing
Elements

b3

Key Variables Key APIs

Target ETS
Matching

b7

Fault
Localization

b6
b5
b4

b1-ExtendCG -8 +564 +20.63 -5 -11 -13 -0.02 -8 -7 -11 -0.16
b2-AllConditon -0 -0 +0.42 -0 -0 -0 -0.00 -0 -0 -0 0.00
b3-NoCondType -15 +409 -0.21 -4 -12 -15 -0.02 -8 -11 -14 -0.19
b4-NoKeyVar -3 +66 -0.15 -0 -3 -2 -0.01 -0 -3 -2 -0.06
b5-NoKeyAPI -11 +182 -1.18 -4 -8 -11 -0.01 -4 -7 -10 0.10
b6-NoCallFilter -0 -0 +0.84 -0 -0 -0 -0.00 -0 -0 -0 -0.00
b7-Version2.3 -7 +219 -2.57 -3 -5 -8 -0.01 -3 -5 -8 -0.10
b7-Version8.0 -0 +4 -0.01 -2 -0 -0 -0.001 -0 -0 -0 -0.00

TABLE V: Statistic of Each ETS Type

Version #ETS key-
Var

key-
API

keyVar
&keyAPI

No
condVar

No out-
sideVar

Ver 2.3 1,643 668 299 217 37 122
Ver 12.0 13,717 5,129 2,527 1,022 326 619
Agv 2-12 7,625 2,946 1,245 705 170 356

Moreover, we analyze the relationship between the ETS-
related types and the crash categories in D580. As shown in
Fig. 5, most crashes in category A only have keyVars, which
is consistent with the in-stack behavior of crashes in category
A. And for category B, whose buggy methods are out-of-
stack, there are more crashes that have keyAPIs than in other
categories. This reflects the keyVar and keyAPI analysis
work well on both the in-stack and out-of-stack crashes.

304

8

2

294

58

5

14

39

59

11

16

32

6

0

4

2

153

22

20

111

0% 20% 40% 60% 80% 100%

All

Cate C

Cate B

Cate A

Only keyVar Only keyAPI keyVar+keyAPI No CondVar No OutsideVar

Fig. 5: ETS-related Types on Each Category

To check the correctness of the analyzed ETS-related type,
we review the exception-triggering code snippets related to the
collected 580 crash reports. Two experienced Java developers
read the crash trace information and retrieve the corresponding
exception in the source code of the Android framework. By
manual analysis, they record the key conditions, the condition
variables and the outside variables for all the exceptions
triggered in D580. By comparison, we find that CrashTracker
can correctly identify the ETS-related types (refer to Table II)
for 95.5% crashes. There are 26 ones that are misidentified,
of which 12 are exceptions in the Android support libraries,
which are not collected as framework code; three crash reports
provide empty message information, which makes the message
matching fail. Three involve inter-procedural tracing. The
others are condition related, including one lack of conditions
due to the length limit, three getting unrelated not-return
conditions, two re-throwing a catch condition with unknown
outsideVar, and two wrongly taking synchronized variable or
the final constant field as outsideVars, which actually will not
influence the exception-triggering.

C. RQ2: Effectiveness of Fault localization

To evaluate the effectiveness of CrashTracker, we first
made a group of self-comparisons. The results are displayed

in Table IV. The second column displays how many bug-
gyMethod can be located by the tool in its candidate list. The
following RankSum gives the cumulative sum of the ranking
of buggyMethod in the candidate list. If the buggyMethod
is not found, we use max(candiSize + 1, n) as its ranking
value, in which we suppose users have to look up at least n
candidates to find the target method (n = 20 by default). The
column CandiAvg gives the number of provided candidates
on average. The following eight columns give the precision
evaluation results on D580, especially on the crashes with
category B. Two metrics Recall and Mean Reciprocal Rank
(MRR) [10] are used, in which #R@N counts the number of
reports that rank buggyMethod in its first N candidates and
MRR denotes the mean of the multiplicative inverse of the
rank of the first correct location. It can be calculated by the
formula MRR = 1

E

∑E
n=1

1
Ranki

.

The first line gives the default results of CrashTracker,
which can find correct buggyMethod for 568/580 crashes. For
CrashTracker, its RankSum is 954. CrashTracker can provide
a compact list with only 6.35 candidates. For all the 580
crashes, CrashTracker has high precision at R@1, R@5, and
R@10. For crashes in category B, it can still find out most
of the buggyMethod with a few candidates, e.g., 68% for 5
candidates and 77% for 10 candidates. Besides the code-level
localization, we also label the non-code reasons as buggy tags
for 45 crashes located in category C. Comparing the given
labels, our non-code reason analyzer can correctly infer 27/45
already labeled tags, and we can observe another 40 tags that
are not labeled in the original dataset.

Then, we compare CrashTracker with a set of variants.
In strategy b1, we implement a CG-expansion-based ap-
proach [40] to trace invoked methods along the call edges with
a call depth of 5. However, this approach generates too many
candidates, which increases by 20.6 candidates for a crash on
average. And it only can locate 57% buggyMethod in category
B with 10 candidates. The strategy b2 is used to evaluate
whether tracking conditions with length three influence the
results. In this strategy, all the conditions will be collected.
However, it did not bring higher precision but reported a bit
more candidates. In b3, we suppose the ETS information is not
available, i.e., only strategy S2 is adopted, which decreases the
overall precision, especially for cases in category B. Moreover,
in Table VI, we present the precision of CrashTracker on
these ETS-related types, including the number of cases under
test (count), the ratio of reports that rank buggyMethod in

the first N candidates (R@N(%) = #R@N
count), as well as the

MRR. From the results, the crashes only relating to keyVars
are easier to be located, as most of them exist in the stack.
For type No CondVar, we can quickly locate the method which
needs to be overridden. And the keyAPI-related crashes and
those with unknown outsideVar are difficult to be located
with one chance. Overall, the precision improves much on
R@1(%) to R@5(%) which indicates the effectiveness of
CrashTracker with a compact candidate set. Strategies b4 and
b5 are designed to validate the effectiveness of keyVar and
keyAPI identification, respectively. All of them decrease the
overall precision and increase the sum of the ranking value. In
b6, we do not filter the candidate methods that have too many
callers. The results show that the filtering will not influence the
precision of fault localization. Finally, b7 does not match target
ETS from multiple versions and only considers a fixed version.
For example, when using the fixed versions 2.3 and 8.0, parts
of crashes cannot match their target exception. According to
the results, both the ETS construction and the multiple
strategies contribute a lot to the precise fault localization.

TABLE VI: Precision on Different ETS-related Types

Source Type Count R@1(%) R@5(%) R@10(%) MRR
No CondVar 6 0.83 1.00 1.00 0.92
No OutsideVar 153 0.77 0.92 0.94 0.83
Only have keyVar 304 0.97 1.00 1.00 0.98
Only have keyAPI 58 0.74 0.91 0.96 0.82
Have keyVar, keyAPI 59 0.68 0.98 0.98 0.80

After the self-comparison, we compare the effectiveness of
CrashTracker with the state-of-the-art tool Anchor. Table VII
gives the R@N(%) and MRR results of Anchor and Crash-
Tracker on the datasets D500 and D69. Overall, CrashTracker
achieves a big improvement in precision on both datasets,
i.e., achieves 7.4%, 11.5%, and 12.6% improvement than An-
chor on R@1, R@5, and R@10 metrics, and improves MRR
from 0.84 to 0.91. One special case is the result of R@1 in
category B, which also influences the MRR. For these out-of-
traces crashes, CrashTracker fails to find out the buggyMethod
in the first place compared to Anchor. But if we review
the first five candidates, our tool can actually locate more
buggyMethods. The reason is that the crashes in category B
are usually triggered due to the invocations of keyAPIs relate
to the signaler method. The most common usages are pairwise
API operations, e.g., register() and unregister(). It
is difficult to know whether the register() is redundant
or the unregister() is missed without understanding the
developers’ intention. Though it brings parts of FPs when only

TABLE VII: Comparison with Existing Fault localization Tool
Anchor CrashTracker

Dataset R@1
(%)

R@5
(%)

R@10
(%) MRR R@1

(%)
R@5
(%)

R@10
(%) MRR

D500-A 0.90 0.91 0.91 0.90 0.96 1.00 1.00 0.97
D500-B 0.37 0.59 0.61 0.46 0.22 0.67 0.78 0.42
D500-C 0.72 0.75 0.75 0.73 0.95 1.00 1.00 0.98
D69-A 0.72 0.93 0.93 0.81 0.78 1.00 1.00 0.87
D69-B 0.43 0.43 0.43 0.43 0.43 0.71 0.71 0.55
D69-C 0.25 1.00 1.00 0.40 0.75 1.00 1.00 0.83
D569 0.81 0.87 0.87 0.84 0.87 0.97 0.98 0.91

the top one candidate is checked, we provide the complete call
paths from each candidate to the signaler in the bug report to
help make quick confirmation among multiple candidates.

Finally, we evaluate whether our explainable reports are
understandable to testers. As the most difficult part of fault-
localization is to identify the out-of-trace buggy method, we
manually inspected all the buggy reports in D580 with cate-
gory B. Two experienced Java developers read both the reports
and the apps’ code. The feedback is that among the 56 cases
in category B, 12 failed in fault-localization, and the other
44 were reported with reasons. The manual evaluation shows
that the reasons for 41 candidates are well understandable for
debugging and 3 contain invalid information. Among the 44
reports, reasons with type KeyAPI Related, KeyVar Related 2
and Not Override are the most common, which match 29, 16,
and 9 crashes, respectively. There are 18 candidates having
multiple types of reasons, which give many-sided explanations
about the crash. More details can be found in our artifact [17].

D. RQ3: Precision Analysis

False positive (FP) candidates denote the non-
buggyMethods that are reported in the candidate list.
For the 580 crashes, we totally get 3,684 candidates, i.e.,
3,104 are FPs. There are two key reasons that can lead to
FPs. First, our approach uses static analysis to compute the
keyConds, based on which we further get the keyVars and
keyAPIs. The imprecision in the static analysis, e.g., the FPs
in CG construction, will lead to misidentified information
in ETS and finally influence the fault localization results.
Besides, even though conditions are collected, we did not
combine the constraint-solving techniques to reduce the
ineffective results, which will be explored in further work.
Second, considering there may be misidentified ETS or
ETS whose triggering information is unknown, we add the
application-level methods in the crash stack as the default
candidates conservatively, which also brings some FPs.

False Negative (FN) denotes the buggyMethods that are
not in the candidate list. One reason is also the imprecision in
the static analysis. Meanwhile, the exceptions with incomplete
ETS information, e.g., caught from try-catch blocks or from
native methods, may bring FNs. Also, we collect at most
three conditions for an exception and filter the candidates
whose callee has too many callers. These settings make a
balance between efficiency and effectiveness but may cause
unexpected FNs. For the 580 cases in D580, we can find
568 buggyMethods and miss 12 ones. Among them, 8 are
related to native signaler methods, one suffers from unknown
crash message information, and two are missed for lacking
implicit data flow relationship, e.g., when the signaler an-
droid.widget.Spinner.setAdapter is invoked, another method
must be overridden as its default value will lead to a crash.

VIII. THREATS TO VALIDITY

The threats to external validity related to the generalizability
of the experimental results. Although we reuse the two datasets
proposed in recent works [21], [27] and add extra crashes

relate to the third-party-SDKs, the data scale is limited and
the crashes are not evenly distributed. That is because the
keyVar-related misuses are more common, but the keyAPI-
related issues are not many, which may be more difficult to
find and fix. As our approach is analysis-based, it does not rely
on the size of the dataset and achieves a high precision when
locating these far-away buggyMethods. We will continuously
explore the scalability of CrashTracker on more crash reports
when more datasets are publicly available. Threats to internal
validity are about the control over extraneous variables. In
our collected datasets, the crash-triggering environment is
unknown. To keep the randomness, we use the middle version
of the matched frameworks, which may bring bias compared
with other random strategies. There are several heuristically
designed values in candidate ranking that are set according
to our experience. Users can adjust them according to their
requirements, which does not influence the effectiveness of the
tool. Besides, to construct a practical and compact candidate
set, we set threshold values during condition collection and
caller filtering, which have a weak effect on the results, as
evaluated in Table IV (b2 and b6).

IX. RELATED WORK

Crash Trace Based Fault Localization. The crash stack
trace is the key element in the crash report, based on which,
Chen et al. [19] perform reverse symbolic execution and
generate unit test cases. More works [25], [27], [36], [39], [40],
[43] use crash stack information to narrow down or locate the
buggyMethod. The key challenge is that the stack only contains
partially executed methods and may not include the buggy one.
So Gu et al. [25] provide an automatic approach to predict
whether a crashing-fault resides in a stack trace or not, which
denotes the existence of the out-of-stack buggyMethods. To
locate them, CrashLocator [40] tries to recover the complete
execution trace by CG extension on Java projects. However,
without code separation and summary construction, CrashLo-
cator may suffer from a large candidate set or low precision
when handling framework-specific crashes. Compared with
it, CrashTracker weakly relies on the CG but relies more
on the extraction of keyVars and keyAPIs. To perform stack-
trace-based fault-localization on Java programs, both Sinha
et al. [35] and Ginelli et al. [24] focus on the semantic of
exceptions. However, they do not analyze the real exception-
thrown points in the frameworks and require manual modeling
of specific exceptions, which limits the scalability. For this
work, we first perform an automatic semantic analysis for
all kinds of framework-level exceptions without any manual
modeling. The extracted summaries can help the application-
level analysis be more targeted.

To address the problem of Android framework-specific fault
localization, researchers combine the learning-based approach
with the stack-based analysis. By learning from similar faults,
ExLocator [22] first classifies a crash trace within given excep-
tion types, and then generates the root causes by static analysis
on target applications. This tool is not publicly available and
only focuses on the given 5 exception types. To support more

types, Anchor [27] collects a general dataset with 500 crashing
reports for model training and testing. For a crash trace, it first
predicts whether the buggyMethod exists on the crash stack,
then sorts candidates according to the previous classification
result. However, it relies on the labeling of a large-scale
dataset, which can not completely cover the numerous and
quickly evolving Android framework exceptions. Compared
to it, our tool does not need any prior knowledge of crash
fixing and works well for newly detected exceptions.

Analysis upon Pre-computed Summaries. Considering the
large size of the framework code, a set of works focuses
on how to make an analysis based on the pre-computed
summaries. Some works [18], [32] noticed that the large-
scale framework hinders the inner call relations and hinders
the program understanding and debugging. Among them, Cao
et al. [18] detect the implicit control flow transitions through
the Android framework. Besides, Perez et al. [32] generate
predicate callback summaries for the Android framework
and sequence the callbacks. And recently, Samhi et al. [33]
try to find out all the atypical methods around ICC in the
Android framework. To achieve this goal, they retrieve the
framework code with a lightweight static analysis. Though
these works are framework-summary-related, none of them
focus on exceptions of the Android framework and their
summary could not be used as an effective specification to
represent the exception-triggering information.

X. CONCLUSION

The post-release crashes are inevitable for application de-
velopers, which require a heavy effort of debugging and
fixing. In this paper, we adopt a code-separation-based anal-
ysis approach to solve the Android framework-specific fault
localization problem. We design a novel specification, ETS,
for framework exceptions, and propose an effective crash-
localization approach. By applying ETS on real crash stack
traces, CrashTracker outperforms the state-of-the-art tool with
higher precision and fewer candidates. Moreover, our approach
is explainable in that it gives reasons for each recommended
candidate method.

ACKNOWLEDGMENTS

We are grateful to Jian Zhang and Yajun Zhu for their
comments on earlier drafts of this paper, and to Pingfan Kong
for providing apps used in [27]. Also, thanks to the anonymous
reviewers for their helpful comments and suggestions. This
work is supported by the National Natural Science Foundation
of China (Grant No. 62102405 and Grant No. 62132020) and
the Guangdong Basic and Applied Basic Research Fund (Grant
No. 2021A1515011562).

REFERENCES

[1] Android aosp. https://github.com/aosp-mirror/platform frameworks
base, 2022.

[2] Android framework implementation. https://anonymous.4open.science/
r/AndroidFrameworkImpl-DC8F/, 2022.

[3] cgeo. https://github.com/cgeo/cgeo/issues/4450, 2022.
[4] crash dataset. https://github.com/anchor-locator/anchor, 2022.

[5] facebook-android-sdk. https://github.com/facebook/
facebook-android-sdk, 2022.

[6] Flowdroid. https://github.com/secure-software-engineering/FlowDroid,
2022.

[7] Github. https://github.com/, 2022.
[8] google-map. https://github.com/googlemaps/android-maps-utils, 2022.
[9] jimple. https://www.sable.mcgill.ca/soot/doc/soot/jimple/Jimple.html,

2022.
[10] Mean reciprocal rank. https://en.wikipedia.org/wiki/Mean reciprocal

rank, 2022.
[11] regular expression. https://en.wikipedia.org/wiki/Regular expression,

2022.
[12] Soot. https://github.com/soot-oss/soot, 2022.
[13] Stackoverflow. ttps://stackoverflow.com/, 2022.
[14] throw unit. https://docs.oracle.com/javase/tutorial/essential/exceptions/

throwing.html, 2022.
[15] Use-define chain. https://en.wikipedia.org/wiki/Use-define chain, 2022.
[16] zxing. https://github.com/zxing/zxing, 2022.
[17] Crashtracker. https://github.com/hanada31/CrashTracker, 2023.
[18] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,

and Y. Chen. Edgeminer: Automatically detecting implicit control flow
transitions through the Android framework. In 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society, 2015.

[19] N. Chen and S. Kim. STAR: stack trace based automatic crash
reproduction via symbolic execution. IEEE Trans. Software Eng.,
41(2):198–220, 2015.

[20] Z. Coker, D. G. Widder, C. L. Goues, C. Bogart, and J. Sunshine. A
qualitative study on framework debugging. In 2019 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4, 2019, pages 568–579.
IEEE, 2019.

[21] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu. Efficiently
manifesting asynchronous programming errors in android apps. In
M. Huchard, C. Kästner, and G. Fraser, editors, Proceedings of the
33rd ACM/IEEE International Conference on Automated Software En-
gineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages
486–497. ACM, 2018.

[22] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su.
Large-scale analysis of framework-specific exceptions in android apps.
In M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, editors, Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 408–
419. ACM, 2018.

[23] S. Garg and N. Baliyan. Android security assessment: A review,
taxonomy and research gap study. Comput. Secur., 100:102087, 2021.

[24] D. Ginelli, O. Riganelli, D. Micucci, and L. Mariani. Exception-
driven fault localization for automated program repair. In 21st IEEE
International Conference on Software Quality, Reliability and Security,
QRS 2021, Hainan, China, December 6-10, 2021, pages 598–607. IEEE,
2021.

[25] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie, and T. Qian. Does
the fault reside in a stack trace? assisting crash localization by predicting
crashing fault residence. J. Syst. Softw., 148:88–104, 2019.

[26] P. Kong, L. Li, J. Gao, T. F. Bissyandé, and J. Klein. Mining android
crash fixes in the absence of issue- and change-tracking systems. In
D. Zhang and A. Møller, editors, Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019, pages 78–89. ACM, 2019.

[27] P. Kong, L. Li, J. Gao, T. Riom, Y. Zhao, T. F. Bissyandé, and J. Klein.
ANCHOR: locating Android framework-specific crashing faults. Autom.
Softw. Eng., 28(2):10, 2021.

[28] X. Li, W. Li, Y. Zhang, and L. Zhang. Deepfl: integrating multiple
fault diagnosis dimensions for deep fault localization. In D. Zhang and
A. Møller, editors, Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, pages 169–180. ACM, 2019.

[29] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In V. Sarkar and M. W. Hall, editors, Proceed-
ings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 12-15, 2005, pages
15–26. ACM, 2005.

[30] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER: statistical
model-based bug localization. In M. Wermelinger and H. C. Gall,

editors, Proceedings of the 10th European Software Engineering Confer-
ence held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal, Septem-
ber 5-9, 2005, pages 286–295. ACM, 2005.

[31] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang. Boosting coverage-based fault localization via graph-based
representation learning. In D. Spinellis, G. Gousios, M. Chechik, and
M. D. Penta, editors, ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, pages 664–676. ACM,
2021.

[32] D. D. Perez and W. Le. Generating predicate callback summaries for
the android framework. In 4th IEEE/ACM International Conference on
Mobile Software Engineering and Systems, MOBILESoft@ICSE 2017,
Buenos Aires, Argentina, May 22-23, 2017, pages 68–78. IEEE, 2017.

[33] J. Samhi, A. Bartel, T. F. Bissyandé, and J. Klein. RAICC: revealing
atypical inter-component communication in android apps. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1398–1409. IEEE, 2021.

[34] A. Schröter, N. Bettenburg, and R. Premraj. Do stack traces help
developers fix bugs? In Proceedings of the 7th International Working
Conference on Mining Software Repositories, MSR 2010 (Co-located
with ICSE), Cape Town, South Africa, May 2-3, 2010, Proceedings,
pages 118–121. IEEE Computer Society, 2010.

[35] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold. Fault
localization and repair for java runtime exceptions. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, pages 153–164. ACM,
2009.

[36] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury. Repairing crashes
in android apps. In Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pages 187–198. ACM, 2018.

[37] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu. Bug
localization via supervised topic modeling. In IEEE International
Conference on Data Mining, ICDM 2018, Singapore, November 17-20,
2018, pages 607–616. IEEE Computer Society, 2018.

[38] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han, and S. Cheung.
Historical spectrum based fault localization. IEEE Trans. Software Eng.,
47(11):2348–2368, 2021.

[39] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei.
Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis. In 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 -
October 3, 2014, pages 181–190. IEEE Computer Society, 2014.

[40] R. Wu, H. Zhang, S. Cheung, and S. Kim. Crashlocator: locating
crashing faults based on crash stacks. In International Symposium on
Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21
- 26, 2014, pages 204–214. ACM, 2014.

[41] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. A theoretical analysis of the risk
evaluation formulas for spectrum-based fault localization. ACM Trans.
Softw. Eng. Methodol., 22(4):31:1–31:40, 2013.

[42] Z. Xu, K. Zhao, M. Yan, P. Yuan, L. Xu, Y. Lei, and X. Zhang.
Imbalanced metric learning for crashing fault residence prediction. J.
Syst. Softw., 170:110763, 2020.

[43] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports. In 34th International Conference on Software Engineering, ICSE
2012, June 2-9, 2012, Zurich, Switzerland, pages 14–24. IEEE Computer
Society, 2012.

