
ICCBot: Fragment-Aware and Context-Sensitive ICC Resolution
for Android Applications

Jiwei Yan
Tech. Center of Software Engineering

Institute of Software, CAS, China
Univ. of Chinese Academy of

Sciences
Beijing, China

yanjw@ios.ac.cn

Shixin Zhang
School of Software Engineering

Beijing Jiaotong University
Beijing, China

lightn.rs@gmail.com

Yepang Liu
Dept. of Computer Science and Engr.
Southern University of Sci. and Tech.

Shenzhen, China
liuyp1@sustech.edu.cn

Jun Yan∗
State Key Lab. of Computer Science
Institute of Software, CAS, China
Univ. of Chinese Academy of

Sciences
Beijing, China

yanjun@ios.ac.cn

Jian Zhang∗
State Key Lab. of Computer Science
Institute of Software, CAS, China
Univ. of Chinese Academy of

Sciences
Beijing, China
zj@ios.ac.cn

ABSTRACT
For GUI programs, like Android apps, the program functionalities
are encapsulated in a set of basic components, each of which rep-
resents an independent function module. When interacting with
an app, users are actually operating a set of components. The tran-
sitions among components, which are supported by the Android
Inter-Component Communication (ICC) mechanism, can reflect
the skeleton of an app. To effectively resolve the source and des-
tination of an ICC message, both the correct entry-point identi-
fication and the precise data value tracking of ICC fields are re-
quired. However, with the wide usage of Android fragment com-
ponents, the entry-point analysis usually terminates at an inner
fragment but not its host component. Also, the simply tracked
ICC field values may become inaccurate when data is transferred
among multiple methods. In this paper, we design a practical ICC
resolution tool ICCBot, which resolves the component transitions
that are connected by fragments to help the entry-point identifica-
tion. Besides, it performs context-sensitive inter-procedural analy-
sis to precisely obtain the ICC-carried data values. Compared with
the state-of-the-art tools, ICCBot achieves both a higher success
rate and accuracy. ICCBot is open-sourced at https://github.com/
hanada31/ICCBot. A video demonstration of it is athttps://www.
youtube.com/watch?v=7zcoMBtGiLY.

∗Corresponding Authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05…$15.00
https://doi.org/10.1145/3510454.3516864

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Android App, Inter-Component Communication, ICC Resolution,
Fragment, Component Transition Graph
ACM Reference Format:
Jiwei Yan, Shixin Zhang, Yepang Liu, Jun Yan, and Jian Zhang. 2022. IC-
CBot: Fragment-Aware and Context-Sensitive ICC Resolution for Android
Applications. In 44th International Conference on Software Engineering Com-
panion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3516864

1 INTRODUCTION
Android ICC is a framework-related mechanism, which plays an
important role in building implicit control flow as well as transfer-
ring data among Android app components. The comprehensive ex-
traction of ICC links can help to understand GUI structure and de-
tect inter-component or inter-app risks. Many existing works [15,
19, 20] concentrate on the resolution of ICC links or the construc-
tion of Component Transition Graphs (CTGs). However, most of
them only consider the scenarios that one basic component, i.e.,
the instance of Activity, Service, or Broadcast Receiver, directly
launches another, but do not take the behaviors of fragment [8]
components into consideration. According to existing research [17],
nearly 91% of 217 top downloaded apps from Google Play use frag-
ments. Also, some approaches adopt the context-insensitive strat-
egy to improve efficiency, which leads to imprecise tracking of data
transfer among method calls.

In this paper, we aim to resolve ICC links with consideration
of both precision and efficiency. We implement a fragment-aware
and context-sensitive ICC resolution tool, called ICCBot. For preci-
sion improvement, it first models the behaviors of fragments and
extracts the fragment-loading graph, then connects the components

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Jiwei Yan, Shixin Zhang, Yepang Liu, Jun Yan, and Jian Zhang

linked through fragments. During analysis, it constructs summaries
for each method according to the bottom-up topology order in
the call graph, as well as analyzes the relationship between the
callee’s summary and values of calling context. When encounter-
ing a method call, only specific context values will be tracked to
update the summary of the callee. If there is no summary-related
context value, the method summary of the callee will be reused di-
rectly. According to the evaluation results, ICCBot achieves a 95%
precision on two popular benchmarks and greatly outperforms the
state-of-the-art tools on a benchmark containing fragment- and
context-related ICCs. Besides, on large-scale real-world apps, it
resolved 28,584 ICC edges and 11,871 fragment-loading edges on
2,000 real-world apps, in which the fragment and context-sensitive
strategies bring over 8% and 25% ICC links.

2 BACKGROUND OF ICC RESOLUTION
In the Android system, the basic function of ICC mechanism is
achieved by constructing and sending Intent objects in apps. An
Intent is a messaging object users can use to request an action
from another app component [10]. There are three fundamental
use cases for Intent to interact with basic components, starting an
activity, starting a service and delivering a broadcast. Each Intent
object carries a group of data items that will be delivered to the An-
droid system, parts of which are used by the system to determine
the target component. Thus, the destination of an ICC transition
can be obtained by precise ICC field extraction. Normally, develop-
ers send an ICC message in the lifecycle or user-callback methods
of a basic component. Thus, the source of an ICC transition can be
obtained by analyzing the entry-point method of Intent sending.

Nowadays, the Fragment [8] component, which is hosted by an
activity or another fragment for reusable UI, is becomingmore and
more popular. It has its own lifecycle callback methods. Many de-
velopers choose to load fragments first and then send ICC mes-
sages in their callback methods. Therefore, to identify the actual
source component of an ICC, the control flows between activities
and the inner fragments should be built first, based on which we
could extract the activity-level hosts of the fragments that actually
trigger the Intent sending behavior.

Fig. 1 displays a motivating example with fragment loading and
context-related ICC data assignments. In lines 7-9, the fragment
MyFragment is created and loaded in activity component MyActivity.
For the Intent object i in line 23, without fragment modeling, the
entry-point tracking analysis will terminate at the fragment life-
cycle method onAttach() but miss the actual entry in its host ac-
tivity. In lines 15-18, when the fragment MyFragment is attached,
the method sendICC()will be invoked with a specific action value.
This context value is used to construct an Intent object, while dif-
ferent values passed to the callee will lead to different ICC targets.
In line 24, the Intent object is passed into method addCategory()
for category adding. Considering both the Intent object itself and
values of data fields can be passed amongmethods, context-sensitive
inter-procedural analysis should be performed. Finally, in line 25,
the updated Intent is sent toAndroid system byAPI startActivity().
For this example, ICCBot can detect one fragment-loading edge
and two component-transition edges, while the related tools IC3 [19],
IC3DIALDroid [16], and the ATGClient of Gator [5] report no ICC.

1 public class MyActivity extends Activity {...

2 protected void onCreate(Bundle savedInstanceState) {

3 Button btn = (Button)findViewById(R.id.button);

4 btn.setOnClickListener(new OnClickListener(){

5 //Callback Entry of Component

6 public void onClick(View v){

7 getSupportFragmentManager().beginTransaction()

8 .replace(R.id.fragment, new MyFragment())

9 .commit(); //Fragment Loading

10 }

11 });}}

12 public class MyFragment extends Fragment {...

13 public void onAttach(Activity activity) {

14 //Callback Entry of Fragment

15 if(...)

16 Utils.sendICC("action.first");

17 else

18 Utils.sendICC("action.second");

19 }}

20 public class Utils{

21 public static void sendICC(String mAction){

22 //Call Context Related ICC

23 Intent i = new Intent(mAction);

24 addCategory(i);

25 getActivity().startActivity(i);

26 }

27 public static void addCategory(Intent i){

28 i.addCategory("category");

29 }

30 }

Figure 1: Motivating Example
If the fragment is removed, these existing tools all generate non-
existing ICCs when method sendICC() is called in multiple com-
ponents, due to their context-insensitive analysis.

3 ICCBOT: FRAGMENT-AWARE AND
CONTEXT-SENSITIVE ICC RESOLUTION

This section first displays the overview of ICCBot and then mainly
introduces the extraction of fragment-aware transitions and the
construction of context-sensitive summaries.

3.1 Overview of ICCBot
Fig. 2 displays the overview of our ICC resolution approach, which
takes the apk file and configuration parameters as input and out-
puts the visualized graphs and other resolution-related results. It
contains four basic modules: 1) entry-point-related control-flow
analysis, 2) ICC-field-related data-flow analysis, 3) Intent/Fragment
object modeling, and 4) summary construction module.

For the control-flow analysis, we first use FlowDroid [14] to
get the initial call graph (CG) and callback entries. Due to the lack
of asynchronous call relations, we maintain a mapping of com-
monly used asynchronous pairs and search the asynchronous callee
on-the-fly according to the inferred signature of callees. And for

DummyMain
Construct

Callback
Enhance

CG
Construct

Summaries

Method
Summary

Path
Summary

Object
Summary

C
o

n
tr

o
l-

Fl
o

w

Component
Summary

Object Models

Intent
Model

Fragment
Model

CG Edge
Enhance APK

Inter-
Procedural

Context-
Sensitive

D
at

a-
Fl

o
w

Graphs

Configurations
Resolution

Results

Figure 2: Framework of ICCBot (the CTGClient)

ICCBot: Fragment-Aware and Context-Sensitive ICC Resolution for Android Applications ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

polymorphism-related invocations, we try to identify the correct
callee by tracking the allocation sites of reference variables and ex-
tracting types of the newly created objects. Moreover, we extend
the callback entrance set by identifying the user-customized call-
back listeners. Fordata-flowanalysis, we adopt the intra-procedural
reaching definition analysis to get the target variable related du-
chains [13] in each method. Thus, we can track the assignments of
each ICC field, like the val in i.setAction(val), as well as the
key declaration and value of extra data items, e.g., the key and val
in i.putExtra(key, val). For data values that come from calling
contexts, e.g., the formal parameter or return value, we perform an
inter-procedural context-sensitive analysis to track the data val-
ues passing among methods. For the object modeling module,
both the Fragment and Intent objects are concerned. The fragment
model describes the fragment creating, adding, and replacing be-
haviors, and the Intent model describes the Intent creating, packag-
ing, and sending behaviors. We model the behaviors of the related
APIs according to their semantics and identify the objects whose
behavior successfully triggers fragment loading and Intent send-
ing. During analysis, we construct multiple-level summaries
for each method, intra-procedural path, and object instance to de-
scribe the ICC behaviors, and collect the ICC source and destina-
tion information to build the component summaries. Finally, IC-
CBot outputs component transition graph, fragment loading graph,
or other information according to users’ configuration.

3.2 Fragment-Aware Transition Extraction
There are two ways to start a fragment component in Android
apps. For the static loading, the activity component can declare
the fragment inside its layout file. Thus, by analyzing the layout
declarations and the view inflating statements, we can get corre-
sponding ⟨act, f raд⟩ pairs. Besides, the activity component can
add fragments into an existing ViewGroup. For example, we can
obtain the FragmentManager and submit a transaction to it, which
includes a set of fragment-related operations, like add, replace, etc.
The actual fragment loading operations are executed by the An-
droid framework, which is invisible in CG. To extract these edges,
we model the fragment operating APIs and then infer the frag-
ment behaviors by tracking the transaction sequences committed
into the FragmentManager. A valid fragment transaction sequence
starts from the creation of an FragmentTransaction, contains at
least one fragmentmodification operation, and endswith the trans-
action commit operation. By further analyzing the modification
targets, we can get either ⟨act, f raд⟩ or ⟨f raд, f raд⟩ pairs. And
the invalid operation sequences, e.g., not committed transactions,
will be dropped. Finally, by analyzing the transitive relation among
activities and fragments, we point out the activity-level host set of
each fragment in pair ⟨f raд, Sact ⟩. Based on the analysis, when
the callback entrance that belongs to a fragment is reached, ICCBot
could quickly identify its actual activity-level host component.

3.3 Context-Sensitive Summary Analysis
According to literature [16], the reliability and the usability of tools
are important concerns when researchers analyze complex apps.
To improve efficiency, we consider building a set of lightweight
context-sensitive summaries that reduce unnecessary computation.

Method Summary. To perform inter-procedural analysis, we
first build acyclic CGs in which entry methods are the root nodes.
For each callback entrance m, we traverse the edges e in the origi-
nal CGor iдinal whose source is m. If there is no path from e.target
to m in the new CGacyclic , then add e to CGacyclic and traverse
the e.target recursively. The following analysis is in a bottom-up
topology order according to the acyclic CG, whichmeans the callee
is always analyzed earlier than its caller.The summary of a method
can be formally defined as a triple MS = ⟨mtd, Sos , Sms ⟩, where
• mtd is the unique signature of current method.
• Sos is a set of object summaries. Each os ∈ Sos is an object sum-

mary whose object os .obj is created or received inmtd .
• Sms is a set of method summaries. Each ms ∈ Sms denotes a

callee method that is invoked by mtd . The inner object sum-
maries inms .Sos are all context-irrelevant with their caller, i.e.,
they will not be influenced by any context information inmtd .
Each method summary contains a set of object summaries and

a set of callee method summaries. The object summary set Sos de-
scribes the created and received Intent or Fragment objects in the
current method. For the callees whose object summaries have re-
lationships with the invocation context, we efficiently build new
object summaries into Sos according to callee’s method summary
and their relationships. And for other callees whose object sum-
maries are context-irrelevant with methodmtd , their method sum-
marieswill be directly added into Sms to avoid re-analysis. For each
method, the summaries are path-sensitively built on the Intent or
Fragment-related code slices, and the maximum number of paths
under analysis is limited by a threshold to avoid path exploration.

Object Summary. The object summary models the behaviors
of an Intent or Fragment object by analyzing the operating state-
ments of an object in one path. Both the Intent and Fragment-
related statements are grouped into three categories, i.e., create,
update and send. For a valid object summary, each category must
contain at least one statement. We manipulate the object instance
according to the semantic of each statement. For example, the state-
ment i = new Intent() creates Intent object i and the statement
i.addAction(s) updates the action field of i. The valid summary
of an Intent or Fragment object can be formally defined as a 4-tuple
OS = ⟨obj,mtd, Lstmt ,Mctx ⟩, where
• obj is an object instance to be modeled, which contains a set of

fields according to its concrete type.
• mtd is the signature of method where obj is created or received.
• Lstmt is a list of Intent/Fragment related statements, whereLstmt

= Lc ∪ Lu ∪ Ls . Lc is a list of object creating or receiving state-
ments that creates object obj, |Lc | = 1; Lu is a list of object up-
dating statements that updates the fields of object obj, |Lu | ≥ 1;
Ls is a list of object sending statements, which delivers object
obj to Android framework, |Ls | = 1. When a new statement s
is observed and added into Lstmt , object obj will be modified
according to the extracted target field and the filed value in s .

• Mctx records the map from object fields to context locations,
e.g., for the Intent summary created in method sendICC(), pair
⟨action, sendICC1⟩ means the value of the action field is influ-
enced by the first formal parameter of sendICC(). This pair will
be transitively updated when its caller is analyzed and the first
actual parameter of sendICC() is also context-related.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Jiwei Yan, Shixin Zhang, Yepang Liu, Jun Yan, and Jian Zhang

Component Summary. Based on object summaries, we can
obtain the Fragment loading edges to enhance CG and extract the
source/destination information to resolve ICC links. Then we ana-
lyze all the Fragment and Intent object summaries to further build
component summaries, which can be formally defined as a tuple
CS = ⟨src, Sdes ⟩, where
• src is the source component that sends out the ICC message.
• Sdes is a set of destination components to be loaded or launched.

4 USAGE
Multiple Clients. ICCBot provides a group of clients as follows.
Users can customize their own clients based on these default clients
or just use them directly.
• CallGraphClient. Output the enhanced CG of an app and the

topology order of methods, including the asynchronous and
polymorphic methods related edges.

• ManifestClient. Extract the AndroidManifest.xml file in app
and parse the manifest information.

• IROutputClient. Invoke Soot [12] to write the Jimple IR files.
• FragmentClient. Extract the fragment-loading relationships,

including visualized graphs and the detailed summary files.
• CTGClient. The default client. Analyze the component tran-

sition relationships, including visualized graphs and the sum-
mary files of each Intent-sending and fragment-loading edge.

• ICCSpecClient. Output the inferred ICC specifications for com-
ponents by extracting the component declaration information
and analyzing the send and receive-related ICC messages.

Customized Configuration. ICCBot provides various configu-
ration items to customize the analysis process. For the default CT-
GClient, the normal configuration items such as maxPathNumber
(for intra-procedural path-sensitive analysis) andmaxAnalyzeTime
could be adjusted for the scalability. Meanwhile, the analysis can
be performed while including or excluding specific Android char-
acteristics, like fragment loading, context-sensitive analyzing, CG
enhancing, String API analysis, etc.

Friendly Output.The outputs for both the CTGClient and Frag-
mentClient are visualized with dot graphs. Fig. 3 and Fig. 4 give
parts of the CTG and Fragment loading outputs of app CSipSim-
ple [1], inwhich both the component transitions and the fragments-
loading edges are displayed. And Fig. 5 gives a snippet of report
generated by the ICCSpecClient, which is in JSON format and dis-
played with the help of a JSON viewer [11]. For each component,
we give the action, category, data, type and extra data specifica-
tions, in which the intent-filter information declared in manifest,
the received ICC-field information from another component, and
the ICC values sent out from current component are all given.

5 EVALUATION
By searching the tools that are publicly available for ICC resolu-
tion, we select three state-of-the-art tools IC3 [2], IC3-DIALDroid [6]
and Gator (ATGClient) [5], and then compare their ICC resolution
ability with ICCBot [9]. We evaluate these tools on two types of
benchmarks. One is formed by a set of hand-made apps, and the
other contains large-scale real-world apps.

First, we collect twowell-known benchmarks, theDroidBench [3]
(ICC-related part) and the ICC-Bench [4], which contain 38 ICC

_Exported_Main

SipHome

_Reciever_Provider_Service_Fragment_Activity

MainPrefs

PrefsFast

BasePrefsWizard

CallLogDetailsActivityMessageActivity

OutgoingCallChooser

AccountsEditList

Downloader

SipService

CallLogListFragment

MessageFragment

ConversationsListFragment

DialerFragment

FavListFragment Help WarningFragment

DialerAutocompleteDetailsFragment

CallLogDetailsFragment

AudioTester PrefsLoaderFragment

EditFilter

WizardChooser AccountFilters

PickupSipUri

CallHandler

AccountFiltersListFragment

InCallMediaControl

OutgoingCallListFragment

InCallActivity

DtmfDialogFragmentAccountsEditListFragment

AccountEdit

OutgoingCall

FaqLegal

Figure 3: The Output of CTGClient
_Exported_Main

SipHome

_Reciever_Provider_Service_Fragment_Activity

MessageActivity

MessageFragment

DialerFragment

DialerAutocompleteDetailsFragment

CallLogListFragmentConversationsListFragment FavListFragment Help WarningFragment

CallLogDetailsFragment

CallLogDetailsActivity

Faq Legal

Figure 4: The Output of FragmentClient

Figure 5: The Output of ICCSpecClient

links in total. In addition, we design a compact self-made bench-
mark ICCBotBench [9], which contains two fragment-related ICCs
that cover the basic static and dynamic fragment loading usages,
seven context-related ICCs that try to pass the target objects or re-
lated values among methods, and two ICCs that involve both the
fragment and context characteristics.

The corresponding evaluation results are given in Table 1. It
presents the behaviors of tools on different benchmarks, in which
the second column is the number of ground truth ICC links in each
benchmark. The following columns are the number of true posi-
tive (#TP) and false positive (#FP) ICCs of each tool. The number
of false negative (FN) ICCs can be computed by #GT − #TP . Ac-
cording to the results, the off-the-shelf tools suffer from both the
FN and FP, where ICCBot can correctly resolve ICC in almost all
cases. By further investigation, we find that the dismissing of char-
acteristics like fragment and incomplete callback handling are the
key reasons leading to FN. The context-insensitive analysis is the

Table 1: Evaluation on Hand-made Benchmarks

Benchmark #GT #TP (#FP)
IC3 IC3dial Gator ICCBot

DroidBench 12 8 (0) 8 (0) 7 (1) 10 (0)
ICC-Bench 26 10 (0) 23 (0) 4 (0) 26 (0)

ICCBotBench 11 7 (3) 10 (24) 7 (3) 11 (0)
Sum 49 25 (3) 41 (24) 18 (4) 47 (0)

ICCBot: Fragment-Aware and Context-Sensitive ICC Resolution for Android Applications ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

GT

Gat
or

IC
3

IC
3D

ia
l

IC
CBot

0

20

40

60

80

100

N
u

m
b

er
o

f
F

N
s

implicitMatch

callbackEntry

callContext

fragment

dynamicBC

isLibrary

stringOp

Figure 6: Number of FNs related to each Characteristic

main reason for FPs in three tools, especially for IC3-DIALDroid
that context-related FPs are caused by the side effects of entry anal-
ysis optimization. Though no FP is reported by ICCBot, FPs are
still possible for ICCBot takes the top method that it could track
as the entry-point when the complex callback registrations are fi-
nally missed, whichmay bring errors.Thenwe summarize the ICC-
related key characteristics used in the three benchmarks, including
4 fragments, 9 call contexts, 26 callback entrances, and 38 other
characteristics related ICCs, and count the number of ICCs related
to them. In Fig. 6, the first bar gives the number of ground truth
(GT) ICCs about each characteristic. And the others give the FN
ICCs related to each summarized characteristic, which reflects the
differences of tools on various code characteristics.

To further validate the effectiveness of tools on real-world apps,
we perform evaluations on 2,000 apps from F-droid [7]. For all the
tools, we set 30 minutes as the analysis time threshold for each app.
Table 2 shows the number of apps that succeeded and failed (crash
or timeout) to be analyzed, the average analysis time for all the suc-
cessfully analyzed apps, the number of the detected ICC links, and
the number of fragment-loading edges. According to the results,
ICCBot achieves a higher success rate than other tools with ac-
ceptable efficiency. Considering the existence of FP and FN in the
state-of-the-art tools, the number of ICC links is only provided for
reference. As ICCBot is configurable, we compare its default config-
uration with the ones that exclude fragment and context-sensitive
data analysis. Our context-insensitive strategy omits to track the
data transfer among methods instead of merging data from all the
contexts, so that will not bring FPs. According to the results, the
fragment analysis added 11,871 edges in the CTG for fragment dis-
playing. And the two strategies contribute 2,284 (8.68%), and 5,769
(25.29%) ICCs, respectively, which greatly improves the complete-
ness of the original CTG.

Table 2: Evaluation on Real-world Benchmarks

Tool #Success #Fail Timesucc #ICC #Fragment
IC3 1,719 281 57s 10,860 -

IC3dial 1,851 149 115s 8,601 -
Gator 1,882 118 20s 27,297 -
ICCBot 2,000 0 54s 28,584 40,455

6 RELATED WORK
For the task of ICC resolution, Epicc [20] and IC3 [19] model the
Intent-related APIs and resolve the ICC field values by data-flow
analysis. Nowadays, many works choose to invoke or extend the
functionalities of IC3, e.g., tool StoryDroid [18] enhanced IC3 to
construct storyboard of app, and IC3-DIALDroid [16] implemented

incremental callback analysis on IC3 that aims to improve the ef-
ficiency and effectiveness. Besides, Gator [5] provides an analy-
sis client ATGClient to generate the activity transition graph of
an app. However, these works ignore the components connected
by fragments or adopt context-insensitive analysis, which will de-
crease the precision of generated CTG. FragDroid [17] presents
the activity-fragment transition graph. However, it is not publicly
available. Also, its transition analysis only tracks several object-
creating APIs while not modeling the ICC behaviors completely.

7 CONCLUSION
Android ICC resolution is widely used in various scenarios. For
precise resolution, it faces challenges of fragment analysis and data
extraction. In this paper, we present a fragment-aware and context-
sensitive ICC resolution tool ICCBot, which can efficiently con-
struct CTGs with a higher accuracy and generate friendly outputs.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
helpful comments and suggestions. This work is supported by the
National Natural Science Foundation of China (GrantNo. 62102405),
the Key Research Program of Frontier Sciences, Chinese Academy
of Sciences (Grant No. QYZDJ-SSW-JSC036), and Guandong Basic
andApplied Basic Research Foundation (Grant no. 2021A1515011562).

REFERENCES
[1] 2015. CSipSimple. https://github.com/r3gis3r/CSipSimple.
[2] 2015. IC3. https://github.com/siis/ic3.
[3] 2017. DroidBench. https://github.com/secure-software-engineering/

DroidBench.
[4] 2017. ICC-Bench. https://github.com/fgwei/ICC-Bench.
[5] 2019. GATOR. http://web.cse.ohio-state.edu/presto/software/gator/.
[6] 2020. IC3-DIALDroid. https://github.com/dialdroid-android/ic3-dialdroid.
[7] 2022. F-Droid. https://f-droid.org/.
[8] 2022. Fragment. https://developer.android.com/guide/fragments.
[9] 2022. ICCBot, ICCBotBench. https://github.com/hanada31/ICCBot.

[10] 2022. Intent. https://developer.android.com/guide/components/intents-filters.
[11] 2022. json-handle. https://chrome.google.com/webstore/detail/json-handle/

iahnhfdhidomcpggpaimmmahffihkfnj?hl=en.
[12] 2022. Soot. https://github.com/soot-oss/soot.
[13] 2022. Use-define chain. https://en.wikipedia.org/wiki/Use-define_chain.
[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In PLDI 2014. 29.

[15] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In OOPSLA 2013. 641–660.

[16] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. 2017. Col-
lusive Data Leak and More: Large-scale Threat Analysis of Inter-app Communi-
cations. In AsiaCCS. 71–85.

[17] Jia Chen, Ge Han, Shanqing Guo, andWenrui Diao. 2018. FragDroid: Automated
User Interface Interaction with Activity and Fragment Analysis in Android Ap-
plications. In DSN 2018. 398–409.

[18] SenChen, Lingling Fan, ChunyangChen, Ting Su,Wenhe Li, Yang Liu, and Lihua
Xu. 2019. StoryDroid: automated generation of storyboard for Android apps. In
Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 596–607.

[19] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. 2015. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In ICSE 2015. 77–88.

[20] Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-
den, Jacques Klein, and Yves Le Traon. 2013. Effective Inter-Component Com-
munication Mapping in Android: An Essential Step Towards Holistic Security
Analysis. In USENIX Security Symposium, 2013. 543–558.

