
Multiple-Entry Testing of Android Applications by Constructing
Activity Launching Contexts

Jiwei Yan
Tech. Center of Softw. Eng.

Institute of Software, CAS, China
Univ. of Chinese Academy of Sciences

Beijing, China
yanjw@ios.ac.cn

Hao Liu
Dept. of Informatics

Beijing University of Tech., China
Beijing, China

Linjie Pan
State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Jun Yan ∗

State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Jian Zhang ∗

State Key Lab. of Computer Science
Institute of Software, CAS, China

Univ. of Chinese Academy of Sciences
Beijing, China

Bin Liang
School of Information

Renmin University of China
Beijing, China

ABSTRACT

Existing GUI testing approaches of Android apps usually test apps

from a single entry. In this way, the marginal activities far away

from the default entry are difficult to be covered. The marginal

activities may fail to be launched due to requiring a great number

of activity transitions or involving complex user operations, leading

to uneven coverage on activity components. Besides, since the test

space of GUI programs is infinite, it is difficult to test activities under

complete launching contexts using single-entry testing approaches.

In this paper, we address these issues by constructing activity

launching contexts and proposing a multiple-entry testing frame-

work. We perform an inter-procedural, flow-, context- and path-

sensitive analysis to build activity launching models and generate

complete launching contexts. By activity exposing and static analy-

sis, we could launch activities directly under various contexts with-

out performing long event sequence on GUI. Besides, to achieve an

in-depth exploration, we design an adaptive exploration framework

which supports the multiple-entry exploration and dynamically

assigns weights to entries in each turn.

Our approach is implemented in a tool called Fax, with an activ-

ity launching strategy Faxla and an exploration strategy Faxex . The

experiments on 20 real-world apps show that Faxla can cover 96.4%

and successfully launch 60.6% activities, based on which Faxex fur-

ther achieves a relatively 19.7% improvement on method coverage

compared with the most popular tool Monkey. Our tool also be-

haves well in revealing hidden bugs. Fax can trigger over seven

hundred unique crashes, including 180 Errors and 539 Warnings,

∗Corresponding Authors.
Email: yanjun@ios.ac.cn, zj@ios.ac.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380347

which is significantly higher than those of other tools. Among the

46 bugs reported to developers on Github, 33 have been fixed up

to now.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Android app, Static Analysis, ICC, Multiple-Entry Testing

ACM Reference Format:

Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang. 2020.

Multiple-Entry Testing of Android Applications by Constructing Activity

Launching Contexts. In 42nd International Conference on Software Engineer-

ing (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380347

1 INTRODUCTION

Mobile applications, especially Android apps, have witnessed an

explosive growth in recent years. Meanwhile, the defects in An-

droid applications aroused the attention of researchers [54]. Due

to the event-based characteristic of Android apps, the test cases

are in the form of GUI events. For GUI testing, a great number

of automatic exploration approaches have been proposed, includ-

ing random [24, 29, 60], model-based [28, 57, 58] and systematic

ones [4, 22], aiming to cover more components or transitions.

Despite using different exploration strategies, these approaches

usually start their exploration from the default entry point, i.e.,

MainActivity, of the target app. In this paper, we refer them as

Single-Entry Testing (SET) ones.

In SET approaches, some obstacles, e.g., complex gesture or

logical operations, make some activities unreachable. Besides, each

activity has an implied exploration distance from the single entry

point, which is unequal and leads to uneven coverage on activity

components. One recent work makes use of the state-of-the-art

tool Monkey [29] to test a widely used app WeChat, and has a

similar observation: Monkey allocates a lopsided distribution of

exploration time on each activity [60]. Furthermore, because of the

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

infinite test space of GUI programs, it is difficult to launch activities

under complete contexts using SET. To address these issues and

achieve in-depth GUI testing on mobile apps, we take each activity

as a separate entry and propose the Multiple-Entry Testing (MET)

approach.

Fig. 1 shows the exploration paths in SET and MET. Under SET,

the activity Account can not be launched if its domain node, e.g.,

Detail, failed to be visited. In addition, Account has different be-
haviors depending on its Activity Launching Contexts (ALCs),

which is generated by previous event operations or received from

outside (e.g., another app). Using SET, it is difficult to cover all

ALCs and measure the test adequacy involving activity launching.

If we adopt MET, Account can obtain a fair launching chance as the

default entry and can be tested completely under multiple ALCs.

Display

Detail SearchAccount

Main Setting

Multiple ContextsMain

Display Setting

Detail Search

Account

complex gesture/
logical operation

Figure 1: Single- and Multiple-Entry Testing

Usually, the user can successfully launch the default entry of

an app by simply clicking the icon on the launcher of the phone,

or sending an external command with the name of the target ac-

tivity. However, a great number of activities require specific data

items during launching and decide the execution paths according

to the type and value of these data items. That is to say, without

proper ALCs, the MET process may be incomplete and ineffective.

In Android, several context-related information may influence the

launching result, including the inter-component communication

(ICC) message, device configuration, activity stack, and global data,

among which the ICC message is the most important one. To gen-

erate ICC messages properly, we should precisely model the name,

type, data structure as well as the value constraints of each attribute.

Challenges. The first challenge lies in the modeling of the com-

plex attributes of ICC messages. Existing works [26, 45, 56, 59]

extract the attribute declarations by XML file analysis. However,

according to our research, the attribute declaration of activity is

usually inconsistent with its usage. Therefore, it is necessary to

model the ICC information by extracting the constraints of at-

tribute usage on different execution paths. According to the APIs

provided by Android Reference [20], Activity can receive two types

of data items: Basic Attribute and Extra Parameter, in which the

Extra Parameter can be further separated into Prime, Object and

Bundle Extra Parameter according to the value it contains. For a

basic attribute, we concentrate on the candidate values that can

influence the branches; for a primary extra parameter, we should

extract both the extra type and its key for input generation; an

object extra parameter requires an object data item, which means a

corresponding object must be instantiated first as test data; and for

a bundle extra parameter, which is a nestable key-value map, we

should reconstruct its original data structure. To generate proper

ALCs as much as possible, all of these characteristics should be

considered.

The second challenge is the weight assignment among entries

in MET. Different from SET approaches, which always start testing

from the default entry, the MET requires us to make decisions on

the exploration weight of each entry. On one hand, some activities

fail to be launched by the constructed ALCs due to unexpected app

crashes. Thus the exploration should make more efforts to cover

these activities for testing. On the other hand, the activities that can

lead to more activity transitions should have higher exploration

weight. For example, the default entry is usually more important

than the leaf activities which never jump out. The static Activity

Transition Graph (ATG) can be built for help, however, it may be

imprecise. During testing, the activity launching result changes

dynamically and new transitions can be detected. Thus, the weight

assignment should be adaptive during the MET process.

Our Approach. In this paper, we propose the MET approach to

replace the traditional SET approaches. We first analyze the ICC re-

ceiving process and perform an inter-procedural, flow-, context- and

path-sensitive analysis to construct the Activity Launching Models

(ALM), which describes the constraints of required attributes and

parameters in each activity. Each ALC in the ALM corresponds to a

unique intent-resolving related execution path. Then we calculate

the weights of ALCs according to both the activity launching status

and the reachability information between activities. The exploration

is designed for multiple-round testing, which first launches each

ALC and assigns the initial weight. Then it increases the number

of total events in each round and reassigns the testing weight dy-

namically. Finally, we can achieve an in-depth exploration by ALC

generation and adaptive weight assignment.

Contributions. The contributions of this work are three-fold:

• Context Construction. We perform static analysis to build

ALMs for activities and generate proper ALCs for them.

• Exploration Framework.Wedesign a general adaptive frame-

work for multiple-entry testing, which supports two strategies:

the activity launching strategy Faxla and the exploration strat-

egy Faxex .

• Tool Implementation. We implement our approach in the

tool Fax [13], which is publicly available on GitHub. The ex-

perimental results indicate that Fax has a strong bug detection

ability and reaches high code coverage.

2 BACKGROUND

This section provides a introduction of the fundamental building

blocks in Android apps.

2.1 Android Activity

Activity, which provides a graphical user interface to users, is the

most frequently used component in the Android system. The user

performs UI operations on activities and triggers activity transitions

to complete their daily tasks. If a user triggers an activity transition,

the caller activity will send an ICCmessage according to the Intent
mechanism [20]. Then the current activity will be stopped and

the new one will be launched, which is managed by the Android

system. Each ICC message contains a specific invocation target

as well as a series of data items. According to whether the target

Multiple-Entry Testing of Android Applications by Constructing

Activity Launching Contexts ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

activities can be launched by external apps, they can be separated

into internal activity (IA) and exported activity (EA). The IAs can

only be visited through a set of user operations that start from the

EAs, while the EAs can be taken as hidden entries of the app and

be launched directly. To visit one activity directly, we can modify it

as an EA to support one step invocation by declaring the attribute

android:exported=true or setting intent-filters in the manifest
file. After exported, even internal activities can be launched directly

without performing complex user event sequences.

2.2 Activity Launching Context

According to the activity launching process, four types of sub-

context may have influences on the launching result.

• ICC Message. An ICC message is an Intent object carried

with a set of data items, which depends on the caller activity.

• Device Configuration. The device configuration denotes the

user-configurable status of the mobile phone, e.g, wifi, GPS

status, which depends on the setting of the phone.

• Activity Stack. The activity stack stores the history activities

visited before reaching the current one, which depends on the

exploration trace.

• Global Data. The global data can bemodified anywhere, which

depends on the previous user operations.

To achieve effective testing of Android apps, we try to create

ALCs that can trigger as many program paths as possible using

these sub-contexts. For the ICC message, we model their usage

with the help of static analysis to achieve backward ALC genera-

tion and automatic testing. For device configuration, we scan the

corresponding APIs and give reports about the used configuration

items of an app. For stack context, an activity can be tested under

an empty stack with Faxla and under non-empty stack with Faxex .

The global data is difficult to be controlled, e.g., the number of files

on the sdcard. However, if the global data can be modified during

exploration, its value can help to trigger more program paths in the

multiple-round testing. For example, if the global setting related

activities are explored in multiple rounds, the operations on it will

create different global data contexts for other activities in that app.

2.3 ICC Message and Intent Receiving

ICC message is one of the most important sub-context, which has

a complex composition and is necessary for the activity launching.

Table 2 lists the required attributes in ICC invocation and gives

their characteristics, in which columns Locd and Locu denote the

declaration and the usage locations of these attributes, respectively.

In this table, we classify ICC attributes into two types: Basic At-

tribute and Extra Parameter. As we can see, the Basic Attribute,

including action, category, data and type, can be declared both

in the intent-filters in the manifest file as well as be used in the

Java files. However, there are mismatches between the attribute

declaration and its usage. For example, the activity MessageList
in popular app k9Mail [42], which has over 4000 stars on Github,

requests three actions in Java code, in which only one of them is

declared in the manifest. This activity also declares two values

in the intent-filter in the manifest file, but one is invalid and not

used in the Java code.

We further perform the consistency detection between the dec-

laration and usage of all the 1200 apps collected from F-Droid [12].

The results are listed in Table 1, including the statistic results of the

number of declared and used attribute values, as well as how many

of them are consistent. Note that the value of the basic attribute data

is a regular expression, so we do not give the consistency of data

attribute. As we can see, there are huge inconsistencies. The key

reason is that the intent-filters are designed for implicit invocation.

Developers can declare multiple attribute values in intent-filters to

characterize one activity but do not use them in the Java code. The
attribute they actually used may not be related to implicit invoca-

tion and do not be declared. Therefore, only collecting the declared

values of ICC-related attributes in the manifest file is not sufficient

for activity modeling.

Table 1: Consistency of Basic Attributes of 1200 Apps

Declaration Usage Consistent

Action 2670 777 445

Category 2430 0 0

Data 2772 361 –

Type 727 81 36

Besides Basic Attribute, ICC messages also accept Extra Parame-

ters. Each extra parameter is a key-value pair 〈k,v〉, which can be

separated it into three sub-types: Primary Extra Parameter, Object

Extra Parameter and Bundle Extra Parameter, according to the type

of the value v . Different from the basic attribute, the extra parame-

ters are not declared anywhere, but only used in code. The caller

activity can attach an intentwith different types of extra data items

via a series of overloaded APIs. Android system provides a number

of APIs for the receiver activity to get the transferred data accord-

ing to the given key. According to Android API document [8, 20],

the value of extra parameter can be any type of the Java primitive

data type, e.g., Int, Boolean, or other types like String, Array and
ArrayList, etc. For example, the API getIntExra(String city)
is used to get an integer value according to the key city. The value
of an extra parameter can also be object type (Serializable and
Parcelable) or bundle type (Bundle), in which the object type

denotes an object implementing a specific interface, and a bundle

type is a set of key-value pairs that stores a group of sub-items in

types of primary, object or nested bundle extra parameter.

Table 2: Composition of ICC Message

Type SubType Locd Locu Type

Basic

Action Xml Java String
Category Xml Java Set 〈String〉
Data Xml Java String
Type Xml Java String

Extra

Primary – Java

〈k , v 〉 pair, k is in String type,
v is a sub-item in type of Java
primitive data types, String,
Array, ArrayList etc. [20]

Object – Java

〈k , v 〉 pair, k is in String type,
v is a Serializable/Parcelable
object or a set of objects. [20]

Bundle – Java

set of 〈k , v 〉, each of which can

be a primary extra, an object

extra or a nest bundle extra. [8]

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

3 MOTIVATING EXAMPLE

In order to show the process of how the ICC messages are received

by activities as well as how the ICC attributes/parameters are used

in the code, we take ExampleActivity as our motivating example,

which is shown in Fig. 2.

When an activity is launched, the Android systemwill call its life-

cycle methods. In this example, we start from its lifecycle method

onCreate(). First, the activity gets an Intent object through the

API getIntent() and creates an Intent variable intent to store

the information of the received ICC message. Then, the value of

each attribute carried in the ICC message will be obtained through

several APIs, e.g., using API getAction() to get the value of basic

attribute action, using API getIntExtra(key) to get the value of

primary extra parameter with a specific key, etc. After that, the

attribute value receiving variables will be used for branch picking,

log recording or other purposes. When the received value of an

attribute is used in a branch picking condition through compar-

ison, there should be candidate values of this attribute that can

influence the program’s execution path. For example, the statement

if(mAction.equals("ACTION_VIEW")) contains an attribute re-

ceiving variable mAction, a comparing operation equals and a

candidate value "ACTION_VIEW" of the basic attribute action.
However, not all of the candidate values can be obtained di-

rectly. On one hand, the attribute receiving variable may transfer

its value to other variables and form new condition constraints.

Like in line 6, the attribute receiving variable action1 is not used

in branch picking conditions. As shown in the following lines, its

value is transferred to variables action2 and action3. The new
constraints are getAction().substring(1,4).equals ("act")
and getAction().charAt(2)==‘C’. On the other hand, the String-
type candidate values may not be obtained directly. It could be

manipulated by a set of String-related APIs, come from the formal

1 public class ExampleActivity extends Activity {

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 // ICC Message

5 Intent intent = getIntent(); //get intent

6 String action1 = intent.getAction(); //get action

7 String action2 = action1.substring(1,4);

8 char action3 = action1.charAt(2);

9 if(action2.equals("act")){

10 if(action3 == 'C'){

11 doSomething(); //unsat path

12 }

13 }else if(action1.startsWith(getPrefix("startWith", 3))){

14 Bundle b1 = intent.getBundleExtra("b1");

15 String s1 = intent.getStringExtra("s1");

16 Float f3 = b1.getBundle("b2").getFloat("f3");

17 if(f3!=null) {

18 doSomething();

19 }

20 }

21 }

22 private String getPrefix(String str, int i) {

23 String newStr = str.substring(0, i);

24 return newStr; //String operation

25 }

26 }

Figure 2: Motivating Example

parameter of the current method or be the return value of another

method. In line 13, for instance, the candidate value "sta" is decided

by the return value of method getPrefix(), i.e., it depends on both
the value of the formal parameters of method getPrefix() and

the semantic of API getsubstring(). In addition to string anal-

ysis, the received ICC message may have specific structures. As

shown in line 14-16, each extra parameter may belong to different

data types, andmay have specific structure (b1-bundle, s1-string,
b1.b2-bundle, b1.b2.f3-float), which should be precisely recon-
structed in order to generate dummy caller activities with correct

ICC message as test cases.

4 FRAMEWORK OVERVIEW

In Fig. 3, we give the framework overview of Fax, which takes an

apk file as input and generates a group of test cases. After test

execution, it outputs a set of corresponding reports. First, we instru-

ment the original apk to expose IA into EA, which only modifies

the manifest file and does not bring extra overhead in dynamic

testing. Then, we perform static analysis to get the Activity Launch-

ing Model (ALM) that describes the attribute usage information as

well as the Activity Transition Graph (ATG) that shows the relation-

ship of activities. We use the ALM to generate ALCs of activities

and perform test case execution on Android devices. Because the

generated test scripts only launch activities under various contexts

without GUI exploration, we call this strategy as Faxla . Besides,
we have another strategy Faxex , which first filters ALCs using the

launching results of Faxla . Then, it takes the activity relationships

in ATG and the set of activities failing to be launched, to guide the

weight assignment among ALCs. Fax supports multiple-round test-

ing. During the exploration, it collects the execution traces for the

weight calculation in the next round. Besides, the user can adopt any

exploration strategy according to their requirement. The random

strategy is adopted in the current version of our implementation.

5 CONTEXT CONSTRUCTION FOR TESTING

This section introduces the ALC construction process, which is

based on the inter-procedural, flow-, context- and path-sensitive

static analysis techniques.

5.1 String Constraint Extraction

For basic attributes, we aim to find the constraints of their candi-

dates precisely, which are combined by the manipulation of the

data receiving variable (ReceiveVar), the comparison operation

(CompareOp) and the pre-defined candidate values (CandidateVal).

And for the extra parameters (ExtraPara), we try to get the cor-

rect key and type of value. For both kinds, our method is mainly

Table 3: Information of String-related APIs

Set Z3 Ret Value Used In API

S1 T
String

/Char

ReceiveVar

CompareVar

ExtraPara

append, concat,

toString, substring, charAt

S2 F String
CandidateVal

ExtraPara

trim, equalsIgnoreCases,

toUpperCase, toLowerCase

S3 T Boolean CompareOp
==, !=, isEmpty, contains,

equals, startsWith, endsWith

Multiple-Entry Testing of Android Applications by Constructing

Activity Launching Contexts ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Activity Exposing

Activity Launching Model

Activity Transition Graph

Test
Scripts Execution

Execution
Traces

Exploration
Weight Calculation

Static
Analysis Dynam

ic U
pdate

Faxla

Faxex

Reports

Exploration
Sequence Generation

Exploration Strategy

Launch
Command
Generation

Dummy
Apps

Figure 3: Overview of the Multiple-Entry Testing framework, which is implemented in the tool Fax

based on reaching definition technique [30], which is a commonly

used data-flow analysis. It statically determines which definitions

may reach a given point in the code, and can help us to construct

use-define chains [30] to capture data propagation.

Both the candidate value of the basic attribute and the key of the

extra parameter are related to String. In Java 8, there are totally 67

String related APIs [47], including value-related APIs that return a

new string or char, compare-related APIs that return a boolean flag,

and info-related APIs, such as length(), etc. In our work, we only

concentrate on the first two types. In Table 3, we classify string-

related APIs into three classes according to their return type and

whether they are supported by string constraint solver Z3 [11, 61].

In the fourth column, we show where these APIs are used. Note

that operator "+" for String will be transferred to the invocation

of append() in the intermediate representation of Java.
Algorithm 1 demonstrates the process of intent receiving analy-

sis. It shows how the constraint set is constructed when finding an

intent-receiving statement. It accepts a method m as input, outputs

a set of extra key-value pairs and constraints of attributes. In line 2,

we calculate use-define chains udc of each statement in m, which

can be obtained by somemature analysis framework (e.g., Soot [46]).

Then we locate the input data obtaining instructions (IDOIs) accord-

ing to Android APIs, including getAction(), getCategories(),
getData(), getDataString() and getType() [20]. For each in-

struction ins in IDOIs, function дet_attr_vars returns a set of vari-
ables which store the received input data. Note that the value of

an attribute receiving variable can be transferred to other variables

through several value-related APIs, we track the tainted variables

through udc and add them into the attribute receiving variable set

vars . In line 6, we get a group of statements Sco which use the vari-

able var for comparison in a condition (see S3 in Table 3). For each

insco , the input data will be compared with another string, which is

a candidate string. In line 9, we get the variable canVar which stores

the candidate string and try to get its value. If canVar is defined as

a constant string, we can obtain the string directly in line 11. Other-

wise, we recursively analyze its value which may be modified by the

string operation (see S1 and S2 in Table 3). If the candidate string

is obtained from the return value of other methods or from the

formal parameter sent by the caller of the current method, we look

into the invoked methods with current invoking context, i.e., pa-

rameters of method invocation, or query the simulated method call

stack to build the correct candidate. In line 15, we use the collected

information to update the set constraints . The extra parameters are

extracted in line 19 by function extract_extras(), which will be

introduced in the following subsection.

Algorithm 1 intent_receiving_analysis

Input: method m

Output: attribute constraint set constraints, extra set extras

1: constraints = ∅, extras = ∅

2: udc = ge_use_def_chains(m)

3: for each ins in all IDOIs of m do

4: vars = get_attr_vars(ins, udc)

5: for var in vars do

6: Sco = get_compare_ins(var, udc)

7: for insco in Sco do

8: co = get_compare_operation(insco)
9: canVar = get_candidate_var(insco)
10: if canVar can be obtained directly then

11: canValue = get_constant_value(canVar)

12: else

13: canValue = get_value_of_var(canVar, udc)

14: end if

15: constraints = constraints ∪ {〈ins, var, co, canValue〉}

16: end for

17: end for

18: end for

19: extras = extract_extras(m, udc)

20: return constraints, extras

In the example in section 3, we can get variables vars = {(l5-
intent), (l6-action), (l7-action.substring(1,4)), (l8-action.charAt(2))},
and constraints constraints = {(l9, action.substring(1,4), equals,
“act”), (l10, action.charAt(2), ==, ‘C’), (l13, action, startsWith, “sta”)}.

5.2 Extra Parameter Analysis

The extras in Algorithm 1 contains a set of extra parameters, each

of which is a key-value pair. An activity makes use of several spe-

cific system APIs of the Intent class to retrieve the data with a

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

specific type by a user-defined key, e.g., getStringExtra("s1").
Our goal is to locate the invocations of these APIs and obtain keys

and types of data items for each activity. To locate the extra parame-

ter obtaining instructions (EPOIs), we collect an API list, including 29

APIs of Intent class, 24 APIs of Bundle and 4 APIs of Parcelable,
that can be used to get extra parameters with different types, ac-

cording to the API Reference [8, 20]. With this list, it is easy to find

out the EPOIs and determine the types of extra parameters. Note

that, these extra parameters are usually used for providing values,

thus their data are arbitrary. After extracting their type and key,

we generate a set of data according to their types.

Algorithm 2 gives the process of how to extract extra parameters.

For example, in Java file, wemay have a statement getStringExtra
("s1"). In the intermediate representation format Jimple/Shimple
transformed by Soot, the key "s1" will be stored in an additional vari-

able, e.g., we may have x = "s1", getStringExtra(x). In line 3,

the function get_used_var() will return the variable that stores the

key value, i.e, get variable x. To get the key of extra parameters, we

then invoke the function get_value_of_var() in line 4 to get the value

of the given variable, i.e, get value "s1". Function get_type() in line 5

returns the type of an extra data item, which can be a basic Java

type (like String type for getStringExtra()) or an encapsulated

Android-specific type (like Bundle for getBundleExtra()). The
algorithm of function get_type() is shown in Algorithm 3. For basic

types, they can be extracted from the name of APIs. The special

situation is the getBundleExtra()-like instructions, which obtain

Algorithm 2 extract_extras

Input: method m, use define chain udc

Output: extra set extras

1: extras = ∅

2: for each ins in all EPOIs of m do

3: var = get_used_var(ins)

4: key = get_value_of_var(var, udc)

5: type = get_type(ins, var, udc)

6: extras.add(〈key, type〉)

7: end for

8: return extras

Algorithm 3 get_type

Input: EPOI ins, variable var, chain udc

Output: type extraType

1: if ins is in Basic Type then

2: extraType = get_basic_type(ins)

3: else if ins is in Bundle Type then

4: ps = get_propagation_set(var, udc)

5: for each bIns in ps do

6: biVar = get_used_var(bIns)

7: biKey = get_value_of_var(biVar, udc)

8: biType = get_type(bIns, biVar, udc)

9: extraType.add(〈biKey, biType〉)

10: end for

11: end if

12: return extraType

a data item with Bundle type that may consist of multiple extra pa-

rameters, i.e., key and type pairs. Thus it needs to recurse to extract

these nested key and type pairs. For this case, the method get_type()

first calculates the set of instructions ps that var is propagated to.

With this set, we recursively get the key-type pairs attached to the

Bundle type and return a bundle object as the type. At last, the

tuple 〈key, type〉 will be collected and returned.

5.3 Activity Launching Model Construction

The Activity Launching Model (ALM) can be formally defined

as a 5-tupleM = 〈entry,Nb ,Ne , E,R〉, where

• entry is the root node of the ALM, which represents the execu-

tion entry of the activity.

• Nb is a set of basic attribute related nodes. Each node n ∈ Nb

is a triple (id,attr , constraint), where id is the identifier of

the node, attr is an ICC-related basic attribute, and constraint
describes the constraints about attr .

• Ne is a set of extra parameter related nodes. Each noden ∈ Ne is

a tuple (id,para), where id is the identifier of the node, set para
contains a group of extra parameters in the form of (key, type).

• E is a set of edges that link nodes on the same execution paths.

• R is a tuple (path, res), where path contains a list of ids of

nodes, n.id ∈ path,n ∈ Nb ∪ Ne , and res gives the solving

results of the constraints. After generating test data for each

attribute/parameter for one feasible path in R, we can get an

Activity Launching Context (ALC) as a test case.

Fig. 4 uses a tree to display the ALM of the motivating example,

in which each path corresponds to a list of attributes or parameters

in an ICC message and the leaf nodes display the constraint solving

results. In this case, we get three feasible paths. One path is dropped

out because the path condition is unsatisfiable.

Entry

action.substrin
g(1,4)=“act”

action.substring
(1,4)!=“act”

action.
charAt(2)=‘c’

action.
charAt(8))!=‘c’

action.startsWi
th("sta")

!action.startsW
ith("sta")

Extras: S1, b1,
b1.b2, b1.b2.l2p1: unsat p2: action:"sact"

p3: action:"stau"
Extras: S1, b1,
b1.b2, b1.b2.l2

p4: action:"j"

Figure 4: ALM of the Motivating Example

In an ALM, each path can be transformed into a set of ALCs by

giving assignments of attributes/parameters in the path. For the

basic attributes, we generate assignments that satisfy the collected

constraints in section 5.1. Considering that each received value from

ICC should be checked by null-checkers before used, we mutate

the default paths by adding null value as candidate value for each

attribute/parameter without using an explicit null-checker. For

the extra parameter, we design a set of abnormal values for extra

parameters, e.g., null value, the boundary of corresponding extra

type, extremely long string, etc.

Multiple-Entry Testing of Android Applications by Constructing

Activity Launching Contexts ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

5.4 Test Script Generation

The ALCs will be transformed into executable test cases. The adb-

form command is widely adopted owing to its simplicity and effi-

ciency. Unfortunately, it has several limitations. First, the adb-form

invocation does not support permission requirement, i.e., the callee

activity restricts its callers by requiring specific permission. Besides,

the type of parameters that an adb command can carry is limited. If

a test case contains any Java object, such as Bundle or ArrayList
object, it can not be sent through adb.

To deal with this problem, we design a dummy app to transit the

launching command. First, Fax detects the required permissions of

the app under test. Then, an empty Android project will be created

with the required permissions. For each ALC, Fax creates an ex-

ported dummy activity who can be directly launched using adb com-

mand. For example, "adb shell am start -n com.fax.test/.dummy_id".

In the onCreate() method of each dummy activity, we generate

launching related code that sends an ICC message with correspond-

ing ALC. For each parameter in an ICC message, we create objects

according to its type. For bundle type, we reconstruct the proper

data structure. Clicking on the UI of the activity in the dummy

app can also launch the activity to be tested. So that we can easily

perform the test by starting the activity-form test cases in dummy

apps instead of the activities in the app under test.

6 MULTIPLE-ENTRY EXPLORATION

Besides launching activities with proper ALCs, we also want to

detect hidden bugs that can be triggered during the in-depth explo-

ration through multiple entries. Therefore, we need to measure the

importance of each entry and assign weights among them during

testing. However, part of activities can not be successfully launched

as exploration entries and the contribution of activities vary in

the whole testing approach, e.g., a leaf activity which never jumps

out is likely to need fewer testing events. Furthermore, both the

launching result and the transition contribution are difficult to be

precisely obtained by pure static analysis. In the strategy Faxex ,

we combine the static model and the dynamic execution results to

perform an adaptive exploration.

Algorithm 4 gives the process of the adaptive exploration, which

starts with a coarse-grained ATG and adjusts the weights of ALCs

dynamically. At first, the ATG information is constructed statically

and the execution information is empty. We use function LA(lc)
to get the actually launched activity by executing ALC lc. In each

round, we obtain the subview of each ALC. For crash-triggering

ALCs, their weights are zero. For a crash-irrelevant ALC, we record

the subview svlc as the sub-graph of the current ATG, which con-

tains all the reachable activities starting from activity LA(lc). Set
SFlc is the set of activities that failed to be launched in svlc . For

each ALC in the launching context set LCs, its weight will be re-

calculated in multiple rounds. The weight of lc in the ith round

exploration can be calculated by formula (1):

Weiдht(lc, i) =
∑ θ

Dis(LA(lc),aj)
+
∑

Nm (ak) + γ (1)

where i > 0, lc ∈ LCs , 0 < j ≤ |SFlc |, 0 < k ≤ |SVlc |. The function
Dis(LA(lc),aj) evaluates the distance between the launching target

activity LA(lc) and each element in SFlc . The ALC that can reach

Algorithm 4 adaptive_exploration

Input: application app, activity launching context set lcs

1: i = 1

2: execution_info = ∅

3: atg1 = getSATG(app)

4: while not timeout do

5: atgi = get_ATG(app, execution_info)

6: for each lc in lcs do

7: la = LA(lc)

8: svlc = subview of la in atgi
9: SFlc = activities in svlc that are failed to be launched

10: weightlc = get_weight(la, svlc , SFlc)

11: end for

12: for each lc in lcs do

13: calculate the priority and event number of lc

14: end for

15: perform testing in the ith round

16: update the activity launching results into execution_info

17: update the execution traces into execution_info

18: i = i + 1

19: end while

more unvisited activities or reach unvisited activities with fewer

transitions will have a higher weight. We use function Nm to count

the number of methods contained in the activities in the subview

svlc , which indicates the subview size of each launching target

activity. The ALC whose subview reaches more methods will have

a higher weight. In the ith (i > 0) round exploration, set SFlc and

subview svlc are updated by the dynamic transition information in

the previous (i − 1)th rounds. We use parameter θ to balance the

distance to unvisited activities as well as the contribution of the

launching target. Parameter γ is a basic constant weight, which is

designed for non-leaf activities whose transitions are lost in the ini-

tial ATG. It guarantees the weights of all ALCs to be positive. After

weight calculation, we use the weight ratio among all launching

contexts in the set LCs to get the exploration priority by formula

(2), where 1 ≤ m ≤ |LCs |.

Priority(lc, i) =
Weiдht(lc, i)∑
Weiдht(lcm, i)

(2)

According to the exploration event number in each turn, we can

get the exploration event owned by each activity using formula (3).

We use function En (i) to denote the number of events in the ith

round. And in our tool, the number of total events will increase

with the refinement of exploration model in multiple rounds.

Event(lc, i) = Priority(lc, i) × En (i) (3)

For example, consider the example in Fig. 1. If we have three

lcs (see Fig. 5) that can successfully launch activities: Main, Detail
and Setting, and the other activities failed to be launched. Sup-

pose θ = 6,γ = 1, i = 1 and each activity has one method, we

can calculate their exploration weight as: Weight(lc1)=11+6+1=18,

Weight(lc2)=15+4+1=20, Weight(lc3)=6+2+1=9. Priority(lc1) =18/47,

Priority(lc2)=20/47, Priority(lc3)=9/47. If we have 470 exploration

events in the first round, we have Event(lc1)=180, Event(lc2)=200,

Event(lc3)=90, rather than the assignment Event(lc1)=470 in SET.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

Display

Detail

Search

Account

Lc2, alc2 = Detail

Setting

Search

Lc3, alc3 = SettingMain

Display Setting

Detail Search

Account

Lc1, alc1=Main

Figure 5: Subviews from Different Entries

7 EVALUATION

explorer We implement our approach in tool Fax [13] (FairAndroid

eXplorer). As shown in Fig. 3, Fax contains two strategies: the activ-

ity launching strategy Faxla and the adaptive exploration strategy

Faxex . In the preprocessing part, we adopt the decompilation tool

ApkTool [6] and the instrumentation tool InsDal [23] for activity

exposing and coverage measurement. The static analysis part is

built on top of the data-flow framework Soot [46] and Androlic [43]

to construct ALM and ATG. We use Android ADB [1] to install apks

and make use of the build tool Ant [5] to build app-form test cases.

We collected 20 popular open-source apps from Github to eval-

uate the effectiveness of our tool. All of our analysis processes

are performed on an Intel Core i7-3770 CPU @3.40 GHz machine,

with 16 GB memory and Windows 7 operating system, as well as

a mobile phone (Samsung S7) in the version of Android 8.0. On

our benchmark, the static analysis and the test case generation

modules take 6540 seconds in total. The generated 20 dummy apps

contain 2185 launching commands. Each launching command is

an exported activity that can be invoked directly by ADB. Our

evaluation aims to address the following four research questions:

• RQ1 (Context Construction): What is the effectiveness of

the activity launching context construction?

• RQ2 (Activity Launching): What is the effectiveness of the

activity launching ability of Fax?

• RQ3 (App Exploration): Can the event reassignment mecha-

nism of Fax help to improve code coverage?

• RQ4 (Crash Detection): Can Fax find more real bugs by sup-

porting multiple-entry testing?

7.1 Effectiveness of Context Construction

We design a benchmark IntentBench [19] to evaluate the effective-

ness of the context construction. It contains 43 activities and in-

volves various features, e.g., branch, loop, override, inter-procedure,

and intent-receiving characteristics. We show the self-checking

result in Table 4, in which the first two columns give the category

name and the number of activities (#A). The following columns give

the results of ICC attribute identification and ALC generation. For

attribute identification, we collect the number of attribute values

used in each category (#Attr), the correctly extracted attributes by

Fax (#TP), the misreported ones (#FP), e.g., giving the wrong candi-

date of action, and the lost ones (#FN), e.g., losing one candidate of

action. For ALC generation, we check the correctness of ALCs by

comparing them with all the ICC-related program paths.

Table 4: Effectiveness Checking on IntentBench

ICC Attribute Launching Context
Category #A

#TP #FP #FN #TP #FP #FN

Basic Attrbute 3 12 0 0 27 0 0

Extra Parameter 8 37 0 0 9 0 0

Basic and Extra 3 10 0 0 9 0 0

String 7 29 0 2 34 0 2

Null Checker 2 6 0 0 4 0 0

Override 5 5 0 0 7 0 0

Lifecycle 2 10 0 0 5 0 0

Sensitivity 13 35 3 1 32 3 1

Complete 1 9 1 0 6 0 0

Total 44 153 4 3 127 3 3

The loss of precision in the sensitivity category is due to several

reasons: 1) there may be FPs when an attribute variable is com-

pared with a field/static value, whose assignment may be wrongly

obtained; 2) when the string value is operated by loop operations

or obtained from unknown library functions, there will be FNs.

Besides, the path-sensitive analysis for ALC generation may suffer

from path-explosion, there will be FNs when the actual number

of paths is beyond the threshold. In our experiments, we limit the

number of paths to 100,000.

7.2 Effectiveness of Activity Launching

According to the previous works [10, 60], Monkey is one of the

most popular and effective testing tools due to its effectiveness

and simplicity. Although Monkey behaves well in GUI testing, we

noticed that there is a model-based testing tool Ape [15] which

aims to replace Monkey. And intentFuzzer [51], which sends intents

with null value as well as serializable data, aims to trigger activity-

launching related bugs specifically. Therefore, we compare with the

baseline Monkey and the state-of-the-art GUI exploration tool Ape,

as well as the fuzzing tool intentFuzzer, whose characteristics are

listed in Table 5. In the following experiments, we set one hour as the

testing upper limit time for all tools on each instance. Before testing,

we log in apps manually according to their functional requirements.

Table 5: Characteristics of Tools

Name Target Entry Strategy

Monkey GUI Exploration Single Random

Ape GUI Exploration Single Model-based

IntentFuzzer Intent Fuzzing Multiple None

Fax Both Multiple Random

Fig. 6 gives the number of activities of each app in our benchmark

as well as the coverage reached by all tools. There are 391 activities

in our benchmark. After one hour of testing, Monkey covers 147 of

them and Ape covers 208. As we can see, Monkey reaches high ac-

tivity coverage when the number of activities in an app is small but

becomes ineffective when an app has a large number of activities.

Ape has a similar tendency as Monkey, but it usually reaches higher

coverage than Monkey does. The tool IntentFuzzer only covers

158 activities. The performance of IntentFuzzer is not stable when

testing all activities continuously. And Fax with strategy Faxex
covers 377 (96.4%), which works well regardless of the size of the

app. Note that, some activities crashed when launched, e.g., which

Multiple-Entry Testing of Android Applications by Constructing

Activity Launching Contexts ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

0

10

20

30

40

50

60

N
U

M
BE

R
O

F
AC

TI
VI

TY

Number of Activity
Covered by Monkey
Covered by Ape
Covered by Intent Fuzzer
Covered by Fax

Figure 6: Activity Launching Comparison

means they are ineffective in strategy Faxex . Thus, we count the

number of successfully launched ones by detecting whether the

activity on display is the same as the launch target. We find that,

there are 237 activities that can be successfully launched by Fax,

which reaches 60.6%.

7.3 Effectiveness of Exploration

We use method coverage to show the exploration effectiveness of

each application. In Table 6, the second column gives the total num-

ber of methods. The method coverage of Monkey, Ape, IntentFuzzer

(IF for short) and Fax are shown in the following four columns. As

we can see, Fax outperforms Monkey on 18 of 20 apps and achieves

the highest coverage in 12 apps, which shows it can explore apps

effectively. Compared with Monkey, it achieves a relatively 19.7%

high coverage. For some apps, such as EverCam and iNaturalist,

Fax can visit order of magnitude greater number of methods than

using one-hour Monkey testing. Overall, Ape achieves the highest

coverage and Fax reaches slightly lower coverage. The root cause

is the differences in their exploration strategy. We can further try

to adopt the model-based strategy to improve the code coverage of

Fax. Fax achieves lower coverage on AntennaPod and PassAndroid

Table 6: Method Coverage Comparison

App #Method Monkey Ape IF Fax

1Sheeld 3948 22.11 30.17 6.46 25.94

AFWall+ 1578 0.82 3.17 0.25 3.23

AnkiDroid 2133 50.16 61.13 23.91 54.95

AntennaPod 3599 4.67 5.20 0.03 4.56

Calendula 3277 2.32 2.41 0.40 3.02

Conversations 5088 1.57 1.04 1.43 2.20

CSipSimple 3540 28.39 26.92 13.14 31.47

EteSync 2013 0.45 0.70 1.09 1.14

Evercam 1709 0.53 1.40 0.06 2.93

iNaturalist 3306 1.94 6.00 0.18 5.99

K9Mail 6733 39.91 45.79 4.11 46.35

Lincal 325 34.77 37.54 14.46 38.46

OpenGPSTracker 899 42.94 43.83 34.37 52.73

OpenKeychain 7146 1.40 1.41 0.11 2.40

Padland 448 7.59 6.92 4.91 8.03

PassAndroid 881 47.79 50.28 14.30 38.80

Simple-Solitaire 1396 5.52 5.23 3.03 5.59

SteamGifts 1451 20.95 54.03 3.79 53.96

SuntimesWidget 3401 58.37 68.42 1.36 64.04

Syncthing 1074 3.82 4.75 1.40 4.38

Average 656.75 18.80 22.81 6.44 22.51

than Monkey and Ape. The reason we inferred is that the switching

of entry takes extra costs, and some ALCs bring fewer benefits than

the default entry does while having a high weight.

7.4 Bug Detection Ability

During the app launching and exploration, we record the runtime

log information and collect the triggered unique crashes. Totally,

Fax detected 719 unique crashes, among which 655 are launching

related bugs by triggering 1303 launching commands, and 64 are

detected during the GUI exploration of apps. As a comparison, Mon-

key finds 8 crashes during exploration, Ape finds 12. IntentFuzzer

finds 18 crashes by testing the original EAs in apps, and it finds 81

ones by testing all activities after exposing IAs into exported ones.

We categorize the crashes detected by Fax intoErrors andWarn-

ing according to their triggering entries, error for EA and warning

for IA. The details of these crashes are listed in Table 7. All the 180

crashes triggered by EA launching and triggered by an exploration

starting from EAs can be taken as real errors. In these cases, anyone

can make the target app crash by sending malformed commands to

EA. Besides, we find 539 crashes that can be categorized as warnings.

These crashes are triggered on exported IAs and may not harm the

usage of the app actually. A warning means the correctness of the

crash point in the callee depends on the quality of the caller activity.

However, developers suffer from the misexposure of activities [55],

which means they may misexpose activities unanticipatedly and

make these warnings become attackable. For example, a bug fixing

by the developer of EteSync is to turn the EA AccountActivity
into an IA, which means there is a misexposed activity. So, we

take these crashes triggered on IAs as potential bugs and warn

developers earlier.

Table 7: Category of Crashes Detected by Fax.

FaxlaCrashes Entry
Normal Object

Faxex Sum

Error 101 EAs 49 109 22 180

Warning 290 IAs 107 390 42 539

Sum 391 Acts 156 499 64 719

The distribution of exception types is shown in Fig. 7. The

ClassNotFoundException is the most common one, which means

the target class could not be loaded. The BadParcelableException
happens when an activity receives an unexpected object value. If

1 2 4 8 16 32 64 128 256

NumberFormatException

IllegalStateException

RuntimeException

IllegalArgumentException

Other

NullPointerException

BadParcelableException

ClassNotFoundException

Error Warning

Figure 7: Detected Unique Crash Distribution

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

Table 8: Feedbacks of Issues about Activity Launching Crashes.

Project #Star Size #Bug Issue ID Status Fixing Revision Reason

AnkiDroid 2025 8M 2 5401 [32] Fixed 2c890c1 Inadequate Check

AntennaPod 2429 7M 2 3304 [33] Fixed f5956bc Misexpose

Conversations 3291 10M 1 3512 [34] Fixed 011bdd8 Inadequate Check

EteSync 96 4M 1 84 [35] Fixed d1d0865 Inadequate Check

iNaturalist 54 21M 1 684 [36] Fixed cc4a44e Inadequate Check

K9Mail 4512 4M 3 4160 [37] Fixed 4886f2f, 4815a2f, 16535af Inadequate Check

Padland 33 2M 3 54 [38] Fixed d9709eb Inadequate Check

PassAndroid 481 3M 4 228 [39] Fixed b81f79d Inadequate Check

SuntimesWidget 68 6M 14 353 [40] Fixed 4a6d761, 2efe94a Inadequate Check

Synthing 1158 26M 2 1382 [41] Fixed c762c18 Inadequate Check

the carried object can not be resolved by the callee, the target activ-

ity will crash. Another top exception is NullPointerException,
which means the absence of input checking occurs frequently.

By analyzing the composition of the 1303 crash-triggering com-

mands by activity launching, we count the number of ICCs without

any attribute or parameter (Null) and with only basic attribute

(Basic). As we can see in Table 9, 10.1% crashes are triggered with

empty ICC, while 8.2% need specific basic attribute and up to 81.7%

contain extra parameters. For ICCs that contain extra parameters,

we count the number of ICCs with primary parameter only (Pri-

mary), with Bundle item (Bundle) as well as with Serializable or
Parcelable object item (Object). About 67.4% commands contain

objects, which means object-carrying commands can easily crash

an app. In our experiment, the longest crash triggering test case

requires six non-null attributes, including one basic attribute and

five extra parameters.

Table 9: Type of ICC Message that Trigger Crash

Type Null Basic Primary Bundle Object

Number 132 107 137 97 878

Ratio 10.1% 8.2% 10.5% 7.4% 67.4%

We pick 46 crashes that can be triggered by launching EA and

commit issues about them on Github. The committed bugs are

picked for three reasons: 1) we only select the crashes that are

triggered by launching EA; 2) we only submit the normal-type

crashes, which can be triggered by test cases that do not carry

complex objects, to make the bug confirming easier; 3) we exclude

the apps that did not update within one year. Among the 46 reported

crashes, 33 have been confirmed and fixed. The results are shown

in Table 8, in which the issues without the developer’s reply are

dropped out. For apps AnkiDroid and PassAndroid, we open pull

requests for bug fixing according to developers’ requirements, and

the developers have confirmed these fixing. Other bugs are fixed

by developers, in which two bugs in app AntennaPod were fixed

in a recently released version before our report. The developer

of project SuntimesWidget replied that the "intent resolving" was

pretty much untested before and they decided to add test cases to

avoid this problem.

8 THREATS TO VALIDITY

Internal validity: There are two internal threats in our approach:

false positive of IA-related bugs and weight assignment.

The first threat relates to the false positive of the bug detection

on IAs. If the exported activities are taken as the testing entries, all

detected activities are real bugs that can be exploited by attackers,

i.e., all identified Errors are true positives. In our approach, to de-

tect more hidden bugs, we allow Fax to take internal activities as

testing objects. The testing of internal activities is more likely to be

unit testing. Without analyzing ICC flows and tracking all the con-

straints of the input data, Fax supposes that any input received by

internal activities is reasonable, which may contain invalid values.

ForWarnings, we will conduct further analysis to automatically get

the number of true positives, e.g., make a forward tracking of each

received value to figure out the data sources and constraints.

Another threat relates to the accuracy of the weight assignment.

For activity launching testing, more entries can exploit more pos-

sible bugs, but in exploration, the low-quality entry will decrease

the total coverage. In tool Fax, we evaluate the importance of each

entry based on the dynamically constructed ATG and use heuristic

strategies to filter out the entries with lower importance. The explo-

ration weight calculation depends on the accuracy of ATG and the

dynamic execution traces. Generally, it is difficult to identify all the

transitions statically and judge whether the transition is available

or not by pure static analysis. We complement the static ATG by

dynamic exploration, however, we still can not guarantee the fair-

ness of testing. But we make efforts to recalculate the exploration

weight among ALCs by multiple rounds and try to optimize the

weight assigning process adaptively.

External validity: Threats to external validity relate to the gen-

eralizability of our experimental results. Our study is limited to the

evaluated Android apps and our results may not generalize beyond

the evaluated apps.

9 RELATEDWORKS

In this section, we will briefly introduce representative works that

are related to the GUI exploration, ICC analysis and intent fuzzing

techniques in recent years.

GUI Exploration There are many kinds of GUI testing ap-

proaches for Android apps, including random, model-based, and

systematic testing techniques. Wang et al. propose a description

framework to demonstrate the key issues in automatic test-input

generation [53]. In random testing, the test events will be generated

randomly with less care of the current state of the app under test.

Monkey is one of the most widely used black-box random testing

tools. It is a simple and fully automatic tool that can generate a

lot of test events within a short time. There are works based on

Multiple-Entry Testing of Android Applications by Constructing

Activity Launching Contexts ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Monkey for detecting GUI bugs [17] and security bugs [25]. Sev-

eral researches construct the models to guide their exploration

process [2, 3, 9, 15, 16, 28, 57]. S. Yang et al. [57] provided a model

called Window Transition Graph, with an accurate static callback

analysis. Su et al. [48] proposed a model-based approach recently,

which uses both dynamic and static analysis with a weighted UI

exploration strategy. And they randomly inject system-level events,

like sending null intent, to trigger more bugs. However, they ex-

tract events according to the declaration of tag intent-filter in the

manifest. Systematic testing techniques [7, 22, 27] are applied in

more complicated circumstances, e.g., automatically finding event

sequences that reach a given target line in the application code. Our

work focuses on GUI exploration, but we do not limit to one explo-

ration strategy. We concentrate on starting the exploration from

multiple entries and with various ALCs. During the exploration,

any event picking strategy can be integrated.

Intent Fuzzing. Some researchers adopt fuzzing technique [49]

to find out the poorly designed exported components, which also

need to simulate the proper ALC. For example, tool Null Intent

Fuzzer [18] sends intents with the only input data null. And tool

DroidFuzzer [59] focuses on activities that process MIME data (e.g.,
"video/*") passed via an URI. Besides, Maji et al. [26] presents

the first empirical evaluation of the robustness of ICC in Android

through fuzz testing methodology. However, when fuzzing explicit

intents, they use straightforward strategies, such as "Semi-valid

Action and Data", "Blank Action or Data", "Random Action or Data"

as well as "Random Extras", which may generate a large number of

redundant test cases. In its experiment, around 9000 intents will be

sent to test an activity, while we use less than ten test cases in our

approach. To avoid the aimless exploration with invalid parameters,

these works [26, 45, 56, 59] adopt the configuration-directed testing

approach. They aim at the original exported components that have

an XML-formed declaration in manifest, which is provided by the

Android system for app configuration. However, there are severe

mismatches between the attribute declaration and their actual us-

age according to our study. Some of the ICC parameters can only

be obtained in code but not the manifest file. Another tool intent-

Fuzzer [45] is developed using some static analysis techniques with

the goal of triggering bugs, which is similar to our activity modeling.

However, they directly leverage FlowDroid, a static analysis tool

designed for privacy leak detection, to extract the key-type pairs of

extra parameters. So, they can not handle large-scale Android apps.

Besides, their approach has the inherent weakness from fuzzing

that the number of test cases is very large, while we avoid this

problem by path sensitive attribute usage analysis.

ICC Extraction. Someworks aim at extracting ICC information,

for example, the research [31] proposed COAL language to model

the ICC messages and apply the COAL solver to infer Android

ICC values. In this work, they implemented a practical tool called

IC3. Recently, some researchers [50] conduct researches based on

it. However, IC3 does not provide the attribute usage information

of ICC and it is unable to generate ALCs. Besides, it obtains basic

attributes from manifest files, which is not accurate enough. In

our approach, we adopt a light-weight intent analysis method in

this paper to obtain the information needed.

String Analysis. As a widely used type in Android apps, the

string is also widely studied by recent works. Rasthofer et al. [44]

presents a framework for automatically generating an Android

execution context to trigger malicious behaviors, in which string

information should be inferred correctly. To accomplish this, they

give several string value providers. The constant value provider

they used gathers all the string constants as candidates for runtime

values which compare against constants, which will increase the

burden of testing, while the dynamically-computed values are not

taken into account. In our work, to find out candidate values for

ICC-related attributes precisely, we capture the data propagation

to obtain the actually used constant candidates, and model the ICC

related string APIs to calculate the dynamic operated ones.

Symbolic Execution Symbolic execution is a useful program

analysis technique that can simultaneously explore multiple pro-

gram paths with various execution contexts. However, the analysis

suffers from path divergence without simulating the behavior of

Android libraries. To verify Android apps precisely, Merwe et. al. ex-

tend JPF [21] to JPF-Android [52]. They model core libraries in the

Android framework semi-manually and symbolically execute apps

on Java Virtual Machine. Gao et al. [14] then proposed a dynamic

symbolic execution engine for Android apps, which automatically

synthesizes libraries without manual modeling. Our approach also

adopts a symbolic-execution-like analysis and collects path con-

straints about ICC attribute variables. Concentrating on the ICC

attributes modeling, we do not perform analysis on complete paths

but drop the ICC attributes/parameters-irrelevant information.

10 CONCLUSION

In this paper, we aim to break the uneven activity coverage in the

exploration of Android apps and try to test each activity in various

launching contexts. We first investigate the launching process of ac-

tivity component, then perform an inter-procedural, flow-, context-

and path-sensitive analysis to build activity launching models and

generate complete launching contexts. Besides, we proposed an

adaptive exploration framework that reassigns events to multiple

entries to enhance the exploration ability. The key challenges lie

in how to handle various ICC attribute characteristics to construct

proper contexts as well as how to calculate the exploration weight

of each entry in each round. We implemented our approach in a

tool called Fax, with an activity launching strategy Faxla and an

exploration strategy Faxex . The experiments on real-world apps

show that Fax behaves well both in the in-depth exploration and

the context-aware activity launching testing. In the future, we will

try to identify the trigger paths of IA-related crashes automatically

to make the bug confirmation easier.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

helpful comments and suggestions. This work is supported by the

Key Research Program of Frontier Sciences, Chinese Academy of

Sciences (Grant No. QYZDJ-SSW-JSC036), and the National Natural

Science Foundation of China (Grant No. 61672505).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang

REFERENCES
[1] ADB shell - Android ADB Commands Manual. 2019. http://adbshell.com/. (2019).
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing of
Android applications. In ASE 2012. 258–261.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53–59.

[4] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Au-
tomated concolic testing of smartphone apps. In SIGSOFT/FSE 2012. 1–11.

[5] Ant. 2019. https://ant.apache.org/. (2019).
[6] Apktool - A tool for reverse engineering. 2019. http://ibotpeaches.github.io/

Apktool/. (2019).
[7] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration

for systematic testing of Android apps. In OOPSLA 2013, part of SPLASH 2013.
641–660.

[8] Bundle | Android Developers. 2019. https://developer.android.com/reference/
android/os/Bundle.html. (2019).

[9] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI testing of
Android apps with minimal restart and approximate learning. In OOPSLA 2013,
part of SPLASH 2013. 623–640.

[10] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet?. In ASE 2015.
429–440.

[11] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In ETAPS 2008. 337–340.

[12] F-Droid. 2019. https://f-droid.org/. (2019).
[13] Fax. 2019. https://github.com/hanada31/Fax. (2019).
[14] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android

testing via synthetic symbolic execution. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018. 419–429.

[15] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In ICSE 2019. 269–280.

[16] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In MobiSys 2014. 204–217.

[17] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In AST 2011. 77–83.

[18] Intent Fuzzer. 2019. https://www.nccgroup.trust/us/our-research/intent-fuzzer/.
(2019).

[19] IntentBench. 2019. https://github.com/hanada31/Fax/tree/master/IntentBench.
(2019).

[20] Intents and Intent Filters | Android Developers. 2016. https://developer.android.
com/guide/components/intents-filters.html. (2016).

[21] Java Path Finder. 2019. http://javapathfinder.sourceforge.net/. (2019).
[22] Casper Svenning Jensen, Mukul R. Prasad, and Anders Møller. 2013. Automated

testing with targeted event sequence generation. In ISSTA 2013. 67–77.
[23] Jierui Liu, Tianyong Wu, Jun Yan, and Jian Zhang. 2017. InsDal: A safe and exten-

sible instrumentation tool on Dalvik byte-code for Android applications. In IEEE
24th International Conference on Software Analysis, Evolution and Reengineering,
SANER 2017. 502–506.

[24] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In ESEC/FSE 2013. 224–234.

[25] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,
and Angelos Stavrou. 2012. A whitebox approach for automated security testing
of Android applications on the cloud. In AST 2012. 22–28.

[26] Amiya Kumar Maji, Fahad A. Arshad, Saurabh Bagchi, and Jan S. Rellermeyer.
2012. An empirical study of the robustness of Inter-component Communication
in Android. In DSN 2012. 1–12.

[27] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA, 2016. 94–105.

[28] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing combinatorics in GUI testing of android applications. In ICSE
2016. 559–570.

[29] Monkey. 2019. https://developer.android.com/studio/test/monkey. (2019).
[30] Nielson, Flemming, Hanne R. Nielson, and Chris Hankin. 2015. Principles of

program analysis. Springer.
[31] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick

McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis. In ICSE 2015. 77–88.

[32] Issuse of AnkiDroid. 2019. https://github.com/ankidroid/Anki-Android/issues/
5401. (2019).

[33] Issuse of AntennaPod. 2019. https://github.com/AntennaPod/AntennaPod/issues/
3304. (2019).

[34] Issuse of Conversations. 2019. https://github.com/siacs/Conversations/issues/
3512. (2019).

[35] Issuse of EteSync. 2019. https://github.com/etesync/android/issues/84. (2019).
[36] Issuse of iNaturalist. 2019. https://github.com/inaturalist/iNaturalistAndroid/

issues/684. (2019).
[37] Issuse of K9Mail. 2019. https://github.com/k9mail/k-9/issues/4160. (2019).
[38] Issuse of Padland. 2019. https://github.com/mikifus/padland/issues/54. (2019).
[39] Issuse of PassAndroid. 2019. https://github.com/ligi/PassAndroid/issues/228.

(2019).
[40] Issuse of SuntimesWidget. 2019. https://github.com/forrestguice/

SuntimesWidget/issues/353. (2019).
[41] Issuse of Synthing. 2019. https://github.com/syncthing/syncthing-android/issues/

1382. (2019).
[42] K9Mail on Github. 2019. https://github.com/k9mail/k-9/tree/GH-701_fix_special_

use_folders_with_prefix. (2019).
[43] Linjie Pan, Baoquan Cui, Jiwei Yan, XutongMa, Jun Yan, and Jian Zhang. 2019. An-

drolic: an extensible flow, context, object, field, and path-sensitive static analysis
framework for Android. In ISSTA 2019. 394–397.

[44] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making
malory behave maliciously: targeted fuzzing of android execution environments.
In ICSE 2017. 300–311.

[45] Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents of
death. InWODA+PERTEA 2014. 1–5.

[46] Soot. 2019. http://www.bodden.de/2008/09/22/soot-intra. (2019).
[47] Java String. 2019. https://docs.oracle.com/javase/8/docs/api/java/lang/String.

html. (2019).
[48] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE, 2017. 245–256.

[49] Sutton, Michael, Adam Greene, and Pedram Amini. 2007. Fuzzing: brute force
vulnerability discovery. Pearson Education.

[50] Cong Tian, Congli Xia, and Zhenhua Duan. 2018. Android inter-component
communication analysis with intent revision. In ICSE 2018. 254–255.

[51] IntentFuzzer Tool. 2019. https://github.com/MindMac/IntentFuzzer. (2019).
[52] Heila van der Merwe, Brink van der Merwe, and Willem Visser. 2012. Verifying

android applications using Java PathFinder. ACM SIGSOFT Software Engineering
Notes 37, 6 (2012), 1–5.

[53] Jue Wang, Yanyan Jiang, Chang Xu, Xiaoxing Ma, and Jian Lu. 2019. Automatic
test-input generation for Android applications (in Chinese). SCIENCE CHINA
Informationis 49, 10 (2019), 1234–1266. https://doi.org/10.1360/N112019-00003

[54] Tianyong Wu, Xi Deng, Jun Yan, and Jian Zhang. 2019. Analyses for specific
defects in android applications: a survey. Frontiers Comput. Sci. 13, 6 (2019),
1210–1227.

[55] Jiwei Yan, Xi Deng, Ping Wang, Tianyong Wu, Jun Yan, and Jian Zhang. 2018.
Characterizing and identifying misexposed activities in Android applications. In
ASE 2018. 691–701.

[56] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Hai-Xin Duan. 2014.
IntentFuzzer: detecting capability leaks of android applications. In ASIA CCS
2014. 531–536.

[57] Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and
Atanas Rountev. 2015. Static Window Transition Graphs for Android. In ASE
2015. 658–668.

[58] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications. In ETAPS 2013. 250–265.

[59] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing
the Android Apps with Intent-Filter Tag. In MoMM 2013. 68–74.

[60] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated test input generation for Android: are we
really there yet in an industrial case?. In FSE 2016. 987–992.

[61] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a z3-based string
solver for web application analysis. In ESEC/FSE 2013. 114–124.

