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ABSTRACT

Facing the limited resource of smartphones, asynchronous pro-
gramming significantly improves the performance of Android ap-
plications. Android provides several packaged components to ease
the development of asynchronous programming. Among them, the
AsyncTask component is widely used by developers since it is easy
to implement. However, the abuse of AsyncTask component can
decrease responsiveness and even lead to crashes. By investigat-
ing the Android Developer Documentation and technical forums,
we summarize five misuse patterns about AsyncTask. To detect
them, we propose a flow, context, object and field-sensitive inter-
procedural static analysis approach. Specifically, the static analysis
includes typestate analysis, reference analysis and loop analysis.
Based on the AsyncTask-related information obtained during static
analysis, we check the misuse according to predefined detection
rules. The proposed approach is implemented into a tool called
AsyncChecker.

We evaluate AsyncChecker on a self-designed benchmark suite
called AsyncBench and 1,759 real-world apps. AsyncChecker finds
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17,946 misused AsyncTask instances in 1,417 real-world apps (80.6%).
The precision, recall and F-measure of AsyncChecker on real-world
applications are 97.2%, 89.8% and 0.93, respectively. Compared with
existing tools, AsyncChecker can detect more asynchronous prob-
lems. We report the misuse problems to developers via GitHub.
Several developers have confirmed and fixed the problems found by
AsyncChecker. The result implies that our approach is effective and
developers do take the misuse of AsyncTask as a serious problem.
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1 INTRODUCTION

Android has long occupied the dominant position in the mobile
operating system market. As of June 2019, there are more than
2.7 million available apps in the Google Play Store [54]. In recent
years, computation power and memory size of smartphones are
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growing rapidly. However, compared with desktop computers, re-
sources of smartphones are still limited, which always decreases
the responsiveness of applications and even leads to bugs [15, 36].

Under limited resources, asynchronous programming is a signif-
icant technique to keep application responsive. In asynchronous
programming, the main thread only accounts for the UI update
while time-consuming and CPU (IO)-blocking tasks are encapsu-
lated into background threads. In order to simplify asynchronous
programming, Android provides several packaged asynchronous
components such as AsyncTask and IntentService. Among them,
AsyncTask is easy to implement and thus widely used by Android
developers [34].

In fact, AsyncTask is merely suitable for short operations [7].
The improper use of AsyncTask can lead to many problems that
can decrease the performance and even lead to the crash of ap-
plications. However, many developers still choose AsyncTask as
their first choice because of its convenience. To solve this problem,
Lin et al. [34] proposed a methodology to refactor AsyncTask into
IntentService [26] which evades the problems caused by AsyncTask,
yet IntentService cannot totally replace AsyncTask in all cases and
developers still prefer to use AsyncTask. Fan et al. [15] proposed
three rules for async programming and detected async errors based
on these rules. In fact, these common rules are not precise enough
to instruct the developers to use specific async components such as
AsyncTask. From these previous works, we can find that the misuse
of AsyncTask widely exists in real-world applications. Moreover,
misuses of AsyncTask can lead to the crash of apps. Currently, the
research community pays little attention to AsyncTask and there
is a lack of detection on the misuse of AsyncTask. Therefore, it is
necessary to carry out a thorough analysis of AsyncTask.

In this paper, we propose and detect five kinds of misuse patterns
of AsyncTask, i.e., StrongReference, NotCancel, NotTerminate, Ear-
lyCancel and RepeatStart. These patterns are summarized from the
Android documentation [11] and technical forums such as Stack-
Overflow [42]. These misuse patterns can lead to problems such as
memory leak, result loss, energy waste and wrong semantics. Some
of them can even cause the crash of applications. These patterns are
related to code segments defined in both AsyncTask and Activity,
which makes the detection more difficult. In accordance with the
feature of AsyncTask, we propose a static analysis approach to
detect the misuse of AsyncTask. Considering the characteristics of
AsyncTask, we construct the AsyncTask State Transition (ATST)
model to depict how the state of an AsyncTask object (an object
whose type is AsyncTask or subclass of AsyncTask) transits in
accordance with operations defined in AsyncTask. Based on the
ATST model, we carry out typestate analysis to detect NotCancel,
EarlyCancel and RepeatStart. Besides, we define possess operation
to perform reference analysis so that we can identify through which
fields an AsyncTask object holds strong reference to Activity. Last
but not least, we also perform loop analysis to detect NotTerminate.
In other words, we identify loop segments in doInBackground()
and determine whether developers check the status of AsyncTask
to jump out of the loop.

To summarize, the contributions of this paper are as follows.

1. Problem Description: This paper systematically depicts the
misuse problems of AsyncTask and proposes five misuse patterns;
2. Methodology: We provide a flow, context and field-sensitive
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inter-procedural static analysis methodology to detect the misuse
patterns of AsyncTask;
3. Tool: We have developed AsyncChecker, a static analysis tool
that specializes in detecting misuses of AsyncTask;
4. Evaluation: This paper designs AsyncBench, an open micro
benchmark containing 69 apps as a test suite for AsyncTask misuse
detection. We have evaluated AsyncChecker on both AsyncBench
and 1,759 real-world apps. The result shows that the misuses of
AsyncTask widely exist (up to 80.6% of the 1,759 apps).

The tool and benchmarks can be viewed at https://github.com/
pangeneral/AsyncChecker.

2 BACKGROUND

In this section, we first perform an empirical study to show how
async components are used in real-world apps. Then we present a
brief introduction to AsyncTask, a widely used async component
in Android. At last, we show the problem caused by misuse of
AsyncTask via a motivating example.

2.1 Async Components in Real-World Apps

In order to understand the usage of async components in real-world
applications, we perform an empirical study. In particular, the study
tries to answer the following empirical questions:

e EQ1: What are usage frequencies of different async compo-
nents in Android applications?

e EQ2: What are the differences in usage of async components
among different repositories?

Repository. In order to answer these questions, we built three
repositories including: 1,184 apps from F-Droid [14], an open-source
app market, 6,808 apps from Google Play Store [19] and 5,669 apps
from Wandoujia [60], a Chinese commercial app market. For F-
Droid, we collect all available apps. For Google Play Store and
Wandoujia, the number of applications is so huge that it is difficult
to download all of them. Therefore, we downloaded 500 apps under
each category of the market. Apps that cannot be decompiled are
excluded from repositories.

Methodology. We pay attention to six common async com-
ponents, ie., AsyncTask, IntentService, HandlerThread, Async-
TaskLoader, ThreadPoolExecutor and Thread. Considering the fea-
tures of async components, our empirical study is based on static
analysis, which is carried out on Soot framework and Jimple inter-
mediate representation.

On one hand, some of the six kinds of async components men-
tioned above are abstract classes, which cannot be instantiated
directly. Technically, developers can only instantiate subclasses of
an async class. It is quite reasonable to carry out static analysis so
that we can obtain the class inheritance relationships accurately.

On the other hand, through Soot and Jimple, we can analyze
apps under an exclusive intermediate representation that simplifies
the disposal to some language features such as inner class and
anonymous class. Besides, according to Li et al. [33], Soot and
Jimple are the most adopted basic support tool and format for static
analysis of Android apps respectively.

Results. Table 1 shows the information about six async compo-
nents in three repositories. The column Class denotes the number
of the corresponding async classes, the column App denotes the
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number of apps that contain the async classes and the column Perc
denotes the percentage of apps that contain the async classes.

From the empirical results, we can obtain some useful findings.
First, AsyncTask is the most popular async component in all of the
three repositories. Thread is nearly as popular as AsyncTask. Yet,
Thread is not an Android specific async component. Considering
the popularity of AsyncTask, it is necessary to conduct further
study on it.

Second, the usage of six async components in F-Droid is much
lower than GooglePlay and Wandoujia. From the results, we can
see that the difference between open-source and commercial apps
is obvious.

2.2 AsyncTask in Android

When an application is launched, Android activates a thread, which
is called main thread or Ul thread, to run the application [46]. If the
main thread executes CPU-blocking or IO-blocking tasks, then the
application will be blocked, which may lead to a problem known
as Application Not Responding (ANR). To avoid unresponsiveness,
time-consuming tasks need to be executed in background threads.
In order to ease asynchronous programming, Android provides
AsyncTask, an encapsulation of the concurrency framework. With
the help of AsyncTask, developers can perform background opera-
tions and publish results on the UI thread without direct threads
manipulation [7].

Technically, AsyncTask encapsulates the functionality of back-
ground operation and interaction with UI thread into five callback
methods, i.e., onPreExecute(), doInBackground(), onProgres-
sUpdate(), onPostExecute() and onCancelled(). Among these
methods, only doInBackground() runs in the background thread.
It encapsulates tasks that need to be executed in the background
thread. The rest run in the UI thread and take charge of communi-
cation between background thread and UI thread.

Since AsyncTask is designed as an abstract class, developers can-
not instantiate it directly. Instead, developers can only instantitate
a non-abstract subclass of AsyncTask. In this paper, we use the
terminology AsyncTask class to denote a non-abstract subclass of
AsyncTask. We use AsyncTask object to denote the object whose
type is a subclass of AsyncTask class.

Figure 1 shows the execution sequence of methods defined by
AsyncTask. To start a background thread, developers need to create
an instance of AsyncTask class and then invoke its execute() or
executeOnExecutor () method to start a background thread. After
the AsyncTask is started, Ul thread first executes onPreExecute(),
then doInBackground() is executed. While the background thread
is running, it interacts with UI thread through publishProgress()
and onProgressUpdate(). After doInBackground() finishes, on-
PostExecute() is executed to update UL Note that developers
can invoke cancel () method to cancel an AsyncTask. If cancel()
method is invoked before doInBackground() finishes, then on-
Cancelled() instead of onPostExecute() will be executed after
doInBackground() finishes. AsyncTask provides isCancelled()
method so that developers can check whether cancel () is invoked.
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Figure 1: Sequence Diagram of AsyncTask

2.3 Motivating Example

In this section we show the typical problem caused by misuse of
AsyncTask via a motivating example. Listing 1 defines two Activi-
ties: Main (line 1-10) and Dialog (line 11-25). We can switch from
Main to Dialog via switchButton (line 3-8) defined in Main Activity.
In Dialog Activity, we define a large array (line 14) and we can start
an AsyncTask (line 26-39) via clicking the button called asyncBut-
ton (line 18-23). In doInBackground() method (line 31-38), we
simulate a long-running task via thread sleeping operation.

Listing 1: Problems Caused by Misuse of AsyncTask

1 class Main extends Activity {
2 protected void onCreate(Bundle savedInstanceState) {
3 switchButton.setOnClickListener(new OnClickListener() {
4 public void onClick(View v) {
5 Intent newIntent = new Intent(...);
6 startActivity(newIntent);
7 3
8 DR
9 } ...
0}
class Dialog extends Activity {
private Tasker currentTask;
private TextView tv;
private int[] byteArray = new int[15000000];//large array
15 protected void onCreate(Bundle bundle) {
tv = (TextView) findViewById(R.id.tv);
asyncButton = (Button) findViewById(R.id.asyncButton);
asyncButton.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
currentTask = new Tasker(tv); // strong reference
currentTask.execute("");
22 }
s
24 } ...
25}
class Tasker extends AsyncTask<String, String, String> {
private TextView referenceTv;
public Tasker(TextView showTv) {
referenceTv = showTv;
30 }
protected String doInBackground(String...
Thread.sleep(10000);
return null;

Yo

params) {

35 )
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Table 1: The usage frequency of async components in three different repositories

F-Droid GooglePlay Wandoujia
Async Components
Class App Perc(%) | Class App  Perc(%) | Class App  Perc(%)

AsyncTask 2,482 421 35.6 117,295 5,660  83.1 88,010 3,779  66.7
IntentService 190 118 10.0 12,501 3,535 519 8,902 2,299 406
HandlerThread 63 60 5.1 4,096 2,420 35.5 2,906 1,487  26.2
AsyncTaskLoader 83 23 1.9 797 173 2.5 586 127 2.2
ThreadPoolExecutor | 125 111 9.3 8,526 3714  54.6 3,548 1,966  34.7
Thread 1,299 367 31.0 58,426 5,524 81.1 118,084 3,413  60.2

We can trigger an out of memory (OOM) error through following
manipulations: first, click switchButton to switch from Main to
Dialog; second, click asyncButton to start an AsyncTask; then,
press back key to switch into Main; at last, click switchButton and
the app will crash.

The crash occurs because the memory of Dialog cannot be
garbage collected as AsyncTask holds strong reference to Dialog
(line 20 and line 29). When the user clicks switchButton again, al-
locating memory for a new large array (line 14) triggers the OOM
error. In other words, the misuse of AsyncTask leads to memory
leak which may crash applications.

3 MISUSE PATTERNS OF ASYNCTASK

In this section, we introduce five misuse patterns of AsyncTask.
These patterns are related to both functional and performance
problems.

3.1 StrongReference

If an instance of AsyncTask class holds strong reference to GUI
elements of Activity when the instance is started, then the memory
of Activity cannot be garbage collected while the instance is run-
ning, which leads to memory leak and may cause application crash
directly. Here, the GUI element denotes the instance of GUI classes,
i.e., the subclasses of View. Technically, AsyncTask holds the ref-
erence of Activity via its fields. In the following code segment, we
show an example of StrongReference pattern:

1 public class MainActivity extends Activity {
2 private TextView viewl;

3 private AsyncTask task;

4 protected void onCreate(Bundle bundle) {
5 super.onCreate(bundle);

6 viewl = (TextView) findViewById(R.id.viewl);

7 task = new Tasker(viewl); // holding strong reference
8 task.execute();

9

}

protected void onDestroy() {
super.onDestroy();
task.cancel();

}

class Tasker extends AsyncTask {
private TextView view2;
public Tasker(TextView viewl) {
view2 = viewl;

}
.

The instance of AsyncTask class Tasker holds strong reference
of MainActivity via a GUI element TextView (line 7 and line
18) when it is started (line 8). Note that if an AsyncTask class is
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a non-static inner class belonging to Activity, then it holds the
reference of Activity by default. According to the grammar of Java,
an anonymous inner class must be a non-static class. In other words,
developers should not define AsyncTask class as the anonymous
inner class of Activity. In order to achieve balance between memory
leak and Ul update, AsyncTask can hold weak reference of Activity,
which will not cause memory leakage. The detailed information
about weak reference can be viewed at [61].

3.2 NotCancel

The invocation of the onDestroy () method leads to the destruction
of Activity’s GUL If cancel() method is not invoked before the
destruction of Activity, then onPostExecute() will be executed. If
onPosteExecute() method contains UI update operation and the
GUI does not exist any more, the invocation of onPostExecute()
will be meaningless and even crash the applications. The following
code segment shows an example of NotCancel which could lead
to crash if dialog is dismissed (line 15) while the Activity has been
destroyed.

public class MainActivity extends Activity {
private ProgressDialog searchDialog;
private AsyncTask task;
protected void onCreate(Bundle bundle) {

task = new Tasker(searchDialog);
task.execute(); // not cancel
}
private static class Tasker extends AsyncTask {
private WeakReference<ProgressDialog> dialog;
public Tasker(ProgressDialog theDialog) {
dialog = theDialog;
}
protected void onPostExecute() {
dialog.dismiss(); // potential crash

}

To avoid the potential error caused by improper invocation of
onPostExecute(), developers should invoke cancel() method
of AsyncTask before the Activity is destroyed such that onCan-
celled() instead of onPostExecute() is invoked after doInBack-
ground() finishes. To do so, we recommend developers assign the
instance of AsyncTask classes to the field of Activity so that they
can operate AsyncTask instances in any callback method of Activity
including onDestroy (). Otherwise, we cannot operate AsyncTask
objects which are only assigned to local variables across the differ-
ent lifecycle methods of Activity.
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Figure 2: Overview of Misuse Detection for AsyncTask

3.3 NotTerminate

The invocation of cancel () method can avoid improper interaction
between background thread (AsyncTask) and main thread (GUI of
Activity), yet it cannot terminate doInBackground().In fact, it only
changes the status of AsyncTask object. Apparently, it is a waste
of energy to continue running doInBackground() after cancel()
is invoked. In order to save energy, developers should terminate
the background thread represented by AsyncTask as soon as pos-
sible if it is cancelled. More specifically, developers should check
the return value of isCancelled() periodically (within a loop) in
doInBackground() and terminate AsyncTask if isCancelled()
returns true [7].

class Tasker extends AsyncTask {

1

2 protected String doInBackground(Stringl[] arg) {

3 while ( ... ) {

4 // loop should terminate if cancel() is invoked
5 3}

6 return "message";

7 3

8 3

3.4 EarlyCancel

Developers can cancel a running AsyncTask by invoking cancel ()
method. However, if an AsyncTask instance is cancelled before it
is started, then onPostExecute () will never be executed, which is
incorrect semantically. In other words, cancel () method should
be invoked after AsyncTask is started. We show an example of
EarlyCancel in the following code segment:

1 protected void onCreate(Bundle bundle) {

2 S

3 task = new Tasker();

4 task.cancel(true); // task is cancelled before it is
started

5 task.execute();

6

7}

3.5 RepeatStart

According to Android Developer Documentation [7], an instance of
AsyncTask can only invoke execute() or executeOnExecutor()
once. If a second execution is attempted then an exception will be
thrown, which means developers should create a new instance of
AsyncTask each time they want to start a background thread.

class MainActivity extends Activity {
private Tasker task;
protected void onCreate(Bundle bundle) {
task = new Tasker();

}
protected void onStart() {
task.execute(); // task will execute twice if user
navigates back

[ RS I= N SO T

10 3
1}

The above code segment contains a potential RepeatStart error.
According to the lifecycle of Activity, onStart() will be invoked
again when users navigate back to the Activity, which means the
instance of AsyncTask pointed to by the variable task will be
executed twice.

4 STATIC MISUSE DETECTION

Figure 2 shows an overview of our approach to statically analyze
AsyncTask-related misuse patterns. There are three steps in our
approach:

e Preprocessing. The input is an apk file. During preprocess-
ing, we first obtain its class hierarchy relation through APIs
provided by Soot [30]. Then we unify lifecycle callback meth-
ods and user-defined callback methods into a dummy main
method for each Activity just as FlowDroid [6] does.

o Static Analysis. After preprocessing, we perform flow, con-
text, object and field-sensitive inter-procedural static analy-
sis to collect typestate, reference and loop information about
AsyncTask.
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o Detection. At last, we detect whether usage of AsyncTask is
correct via predefined detection rules based on the collected
information during static analysis. Any code segments con-
taining AsyncTask misuse will be recorded in bug reports.

Partial Inter-procedural Strategy. The typestate analysis and
reference analysis take the dummy main method of Activity as
the entry method. Apparently, most of the operations in an app
are AsyncTask-irrelevant. In order to improve efficiency, we need
to eliminate irrelevant operations and concentrate on AsyncTask-
related ones. In view of this, we only perform inter-procedural
analysis for methods that contain AsyncTask-related statements,
i.e., statements that contain AsyncTask variables. Due to the fea-
ture of polymorphism, it is difficult to determine which method
is invoked at the non-static call site. In order to keep precision,
we first generate a list of possible invoked methods based on class
hierarchy relation. Then we traverse the statements of these pos-
sible invoked methods one by one. If any of the methods in the
list contains AsyncTask-related statements, then we take the call
site as AsyncTask-related one. In other words, we perform inter-
procedural analysis at any call site that may be AsyncTask-related.
For call sites that must not be AsyncTask-related, we take the in-
voked method as a library method and do not unfold it.

4.1 Typestate Analysis

A typestate denotes the state an object can occupy during execu-
tion [17]. As mentioned in section 2, the operations on an Async-
Task object such as execute() and cancel() can change its state.
Therefore, we define the AsyncTask State Transition (ATST) model
for AsyncTask objects, based on which those typestate related mis-
use patterns of AsyncTask can be easily detected.

Definition 4.1 (ATST Model). The ATST model is a 4-tuple M =
(0, 2, 8, s0), where

o Q={Initial, Running, Canceled, Wrong} is the set of states of
AsyncTask object. Among the four states, Wrong is abnormal.
If an AsyncTask object is in Wrong state, then an error occurs.

o 3={S, C}is the set of operations, where S denotes starting
an AsyncTask via invoking execute() or executeOnExecu-
tor () and Crepresents canceling an AsyncTask via invoking
cancel().

e §: QXX — Q is the state-transition function, which is
shown in figure 3.

e 5o = Initial € Q is the initial state of AsyncTask object.

During typestate analysis, we keep the state of each AsyncTask
object. Whenever a start operation or cancel operation is detected,
we first determine which AsyncTask object is under manipulation.
The object sensitivity is achieved through a store-based heap model.
Specifically, we maintain a map from reference variables to Async-
Task allocation sites when an AsyncTask object is instantiated via
NewExpr. Then, we transfer the typestate of the AsyncTask object
according to the ATST model. Through typestate analysis, we can
directly check some state-related misuse patterns. Besides, it is also
the foundation for reference analysis.

957

Linjie Pan, Baoquan Cui, Hao Liu, Jiwei Yan, Siqi Wang, Jun Yan, and Jian Zhang

=
&S

Figure 3: AsyncTask State Transition Function

4.2 Reference Analysis

In order to check whether an AsyncTask object holds strong refer-
ences to the GUI elements of Activity, we perform reference analysis
to record the mapping relation from the fields of AsyncTask to the
GUI objects they refer. The map is denoted by refer_map(ao) where
ao is an AsyncTask object. For each instantiated AsyncTask object,
we maintain such a map independently. In fact, the map is built
through Possess operation:

Definition 4.2 (Possess). An AssignStmt s = (op;, op;) is a Pos-
sess operation if:
o the left operand op; is a field of AsyncTask object; and
o the right operand op; is or points to an object whose type is
the subclass of View or Activity.

View is the basic building block for user interface components [59]
and we take the objects whose type is the subclass of View as the
GUI elements of Activity. During reference analysis, we traverse
along the CFG of the dummy main method and update the mapping
relations when a Possess operation is detected. When an Async-
Task object is started, we check its reference map to judge whether
StrongReference occurs. Listing 2 shows an example about refer-
ence analysis.

Listing 2: An example of Reference Analysis

class MainActivity extends Activity {

1

2 protected void onCreate(Bundle bundle) {

3 TextView viewl = (TextView) findViewById(R.id.viewl);
4 TextView view2 = (TextView) findViewById(R.id.view2);
5 String mark = "tasker";

6 Tasker task = new Tasker(viewl, mark);

7 task.setView2(tv2);

8 task.execute("begin"); // AsyncTask is started

9 3

10 3}

11 class Tasker extends AsyncTask<String,String,String> {
12 private TextView v1;
private WeakReference<TextView> v2;
private String si;
public Tasker(TextView tv1, String mark) {
this.vl = tvl; // strong reference to GUI object
17 this.s1 = mark; // strong reference to non-GUI object

public void setView2(TextView tv2) {
this.v2 = new WeakReference<TextView>(tv2); // weak
reference to GUI object
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We define an AsyncTask class called Task which has three fields
whose types are TextView, WeakReference and String respectively.
In the onCreate() method of Activity, we create an AsyncTask object
(line 6) and start it to begin a background thread (line 8). Apparently,
there exists a StrongReference misuse since the AsyncTask object
holds strong reference to GUI elements of Activity via its field v1.
Note that the fields v2 and s1 do not lead to StrongReference misuse
since they do not satisfy the condition of StrongReference. v2 holds
weak reference to GUI object (view2) and s1 holds strong reference
to non-GUI object (mark). Therefore, the reference map for the
AsyncTask object is ref_map(task) = {vi=view1}.

4.3 Loop Analysis

In order to check NotTerminate misuse, we need to identify loop

structure and the invocation of isCancelled() indoInBackground().

The original doInBackground() defined in AsyncTask is an ab-
stract method. What we need to analyze are redefined doInBack-
ground() methods in AsyncTask classes. Based on the class hier-
archy relation of the input apk, we can easily find all AsyncTask
classes and doInBackground() methods. Then we implement al-
gorithms introduced in [63] to identify loop structures in approx-
imately linear time. For each identified loop, we detect whether
isCancelled() is invoked to jump out of the loop. If there exists
any loop that does not invoke isCancelled(), then the NotTermi-
nate error occurs. For each doInBackground() method, we use a
set to save loops that do not contain terminate operation. When
an AsyncTask object is started, we check the set to judge whether
NotTerminate occurs.

Different from typestate analysis and reference analysis, we
perform loop analysis in bottom-up manner via topological sort.
We calculate the loop sets for callees and merge them to callers
until we reach doInBackground(), the top level caller. To do so,
we first build acyclic call graph in which the root node represents
the doInBackground() method.

List 3 shows an example of loop analysis. There are two loops
within the doInBackground() method. In the first loop, there is
a terminate operation (line 4), which is correct. The second loop
lacks termination operation (line 10-12) and thus leads to NotTer-
minate misuse. We first calculate the loop set for theLoop() which
is loop_set(theLoop): {secondLoop}. Then we merge it to doInBack-
ground(). The loop set for the entry method is loop_set(entry):
{secondLoop}. In practice, a loop is denoted by the combination of
header statement and all statements in the loop.

Listing 3: An Example of Loop Analysis

class Task extends AsyncTask<String,String,String> {
protected String doInBackground(String[] args) {
for (int i = @; i < 100; i++) { // First loop
if (isCancelled()) break; // Terminate operation

3
theLoop();
3
private void thelLoop() {
for (int j = @; j < 100; j++) { // Second loop
11 ... // Lack Terminate operation
12 }
13 }
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4.4 Detection Rules

Table 2 shows the detection rules for misuse patterns of Async-
Task. In the table, ao is the AsyncTask object under analysis. s
denotes current state of ao. The operation defined in ATST model
is represented by o. refer_map(ao) denotes the mapping relation
from AsyncTask fields to ao, which is constructed during reference
analysis. loop_set(ao) denotes the set of invalid loops for doInBack-
ground() defined in the AsyncTask class which is the type of ao.
Similar to refer_map, loop_set is constructed during loop analysis.

Table 2: Detection Rules of Misuse Patterns

Misuse Pattern Detection Rule
StrongReference | s=Initial A o=Start A refer_map(ao) # 0
NotTerminate s=Initial A o=Start A loop_set(ao) # O
EarlyCancel s=Intitial A o = Cancel
RepeatStart s € {Canceled, Running} A o = Start
NotCancel s=Running A o= 0

The AsyncTask object ao is in the Initial state when it is in-
stantiated. The state of AsyncTask object under analysis transits in
accordance with the operation defined in the ATST model. If current
state is Initial and the operation is Start, then a background thread
is started. We need to check whether StrongReference and NotTermi-
nate occur. First, if refer_map(ao) is not empty, then StrongReference
occurs. Second, if loop_set(ao) is not empty, then NotTerminate is
detected. Third, if ao is in Initial state and o is Cancel, then Early-
Cancel is recorded. Fourth, RepeatStart occurs if ao is in Running or
Cancenled state and o is Start. Finally, if s is in Running state after
Activity is destroyed, then NotCancel occurs.

5 IMPLEMENTATION

We have implemented the approach of misuse detection on Async-
Task into a tool named AsyncChecker. It is written in Java based on
Androlic [44], a flow, context, object, field-sensitive static analysis
framework. As figure 2 shows, AsyncChecker generates the class
hierarchy relation and dummy main method for subsequent analy-
sis. We can analyze the semantics of statements via the core engine
of Androlic. In accordance with the misuse detection of AsyncTask,
we implement some APIs of Androlic.

At first, we implement partial inter-procedural strategy via the
interface IMethodInterProceduralJudge to check whether a call
site is AsyncTask-related. Then, we define AsyncTaskRefObject
and AsyncTypeState to represent AsyncTask object and its types-
tate respectively. The class AsyncTaskRefObject is a subclass of
NewRefHeapObject, which denotes the object instantiated via ex-
plicit allocation site in Androlic. Through self-defined AsyncTask
object, we can easily perform reference analysis to maintain the
ref_map. In order to perform typestate analysis, we need to identify
operations defined in the ATST model. We implement the interface
ILibraryInvocationProcessor to process the library method in-
vocation of AsyncTask, i.e., identify AsyncTask-related operations.
Besides, we implement ISymbolicEngineInstrumenter to check
NotCancel when a path ends. During loop analysis, we define a
summary to save the loop_set for methods invoked in doInBack-
ground(). At last, we apply the detection rules on collected Async-
Task information and record any misuse in the detection reports.
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6 EVALUATION

In this section, we firstly apply AsyncChecker on both self-designed
benchmark suites and real-world applications. Then we compare
AsyncChecker with existing tools. The evaluation tries to answer
the following four questions:

e RQ1: How effective is AsyncChecker on self-designed bench-
mark?

e RQ2: Can AsyncChecker find the misuse of AsyncTask in
real-world applications?

e ROQ3: How effective is AsyncChecker against existing tools?

e RQ4: Do developers take the misuse of AsyncTask as a seri-
ous problem?

6.1 RQ1: AsyncChecker on Benchmark

AsyncBench. There are many benchmark suites for Android static
analysis such as DroidBench [12] and ICC-Bench [25]. However,
there is no benchmark suite for AsyncTask-related misuse. For a
better study of this problem, we have designed AsyncBench, an
AsyncTask-specific benchmark suite. Currently, AsyncBench con-
tains 69 manually written Android apps. These apps are divided
into six groups in which five groups represent the five types of
misuse patterns of AsyncTask and one corresponds to the combi-
nation of different types of misuse patterns. We have taken various
situations of misuse of AsyncTask into consideration and developed
corresponding apps. For instance, the AsyncTask operations across
different lifecycle callback methods of Activity and user-defined
callback methods such as onClick() can greatly affect the detection
results. We designed several cases to cover these callback methods.
For loop analysis, we consider different loop structures in Java and
design corresponding test suites. Note that we do not drop out of
occasions that currently cannot be processed by AsyncChecker in
order to obtain an objective result and make a future extension
on AsyncChecker. We hope AsyncBench can facilitate researchers
who are interested in misuse detection of async components.

We conducted experiments on AsyncBench in windows 7 with
8GB RAM. Table 3 shows the experimental result. As we can see,
there are several false negatives on AsyncBench. The false negative
is caused by two reasons, i.e., strong reference via containers such
as Map and List, and AsyncTask operation across different callback
methods. Since the benchmark is constructed manually, the exper-
imental result only provides basic information for the detection
of AsyncTask misuse. The experimental result on AsyncBench is
taken as a baseline. We take various scenarios about the usage
of AsyncTask into consideration. As an open source benchmark,
AsyncBench can facilitate researchers who are interested in misuse
detection of async components.

Table 3: Experimental Results on AsyncBench

Benchmark Group | TP TN FP FEN
StrongReference 2 3 0 2
NotCancel 8 4 0 0
NotTerminate 8 7 0 0
EarlyCancel 6 6 0 1
RepeatStart 8 0 0 2
Combination 13 3 0 4
Sum 45 23 0 9
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6.2 RQ2: AsyncChecker on Real-World Apps

In order to evaluate AsyncChecker in wild, we collected real-world
apps from F-Droid, Google Play Store and Wandoujia App Store. As
mentioned in Section 3, it is difficult for a local AsyncTask variable
to avoid NotCancel as it cannot be manipulated across lifecycle
callback methods in Activity. That is to say, an AsyncTask variable
should be defined as a field rather than a local variable. Therefore,
we only kept apps that have at least one AsyncTask field defined
in Activity. After filtering, we obtained 1,759 apps, among which
71 from F-Droid, 1,109 from Google Play and 579 from Wandoujia.
The experiments on 1,759 real-world apps have been performed
in Docker Ubuntu 16.04.3 with 26 Intel Xeon E5-2680 processors
(2.40GHz) and 50 GB RAM.

Results. The result about misuse of AsyncTask on three real-
world repositories are recorded in Table 4 and 5. Table 4 shows the
number of misused AsyncTask instances and the number of apps
that contains misused AsyncTask instances. The column Correct
and Misused under the column Inst denote how many analyzed
AsyncTask classes are correctly used and misused respectively.
Similarly, the last two columns show the number of apps that use
AsyncTask correctly or incorrectly. As we can see, 6,190 AsyncTask
instances are correctly used and 17,946 are misused. For the apps
under analysis, up to 1,417 (80.6%) apps contain misused AsyncTask
instance. In a word, the misuse of AsyncTask is a widely existing
problem among real-world applications.

Table 4: Number of Misuse in AsyncTask Instance and
Real-world Applications

. Inst App
Respository - -
Correct | Misused | Correct | Misused
F-Droid 50 416 13 58
GooglePlay 4,033 13,098 178 931
‘Wandoujia 2,107 4,432 151 428
Sum [ 6190 [17946 [ 342 [ 1417

Table 5 shows the distribution of different kinds of misuse pat-
terns of AsyncTask. The column Inst denotes the number of Async-
Task instances which have certain kinds of misuse pattern. The
column App denotes the number of applications that contain certain
kinds of misuse pattern. From the result we can conclude that Stron-
gReference, NotCancel and NotTerminate are much more common
than the rest two misuse patterns. The reason is straightforward.
On one hand, different from other misuse patterns, RepeatStart can
definitely trigger the crash of applications. Developers can easily
find the problem during testing and fix it before publishing applica-
tions. On the other hand, the wide existence of NotCancel proves
that many developers do not know the AsyncTask can be cancelled,
let alone EarlyCancel. Besides, EarlyCancel does not confront the
normal semantics of AsyncTask. The experimental results show
that most developers avoid making such mistake.

Validation. In order to evaluate the false positive and false
negative rate of AsyncChecker, we need to manually check the
source code of app under analysis. Since it is difficult to obtain
the source code of commercial applications, we selected 22 apps
from F-Droid which have been modified at least once since June
2019. We downloaded the source code of newest versions from
github and successfully packaged them into apk files. Then we
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Table 5: Distribution of Misuse Patterns of AsyncTask on
Real-world Applications

. F-Droid GooglePlay Wandoujia Sum
Misuse Pattern
Inst App | Inst App | Inst App Inst App

StrongReference | 261 50 4,901 742 1,613 300 6,775 1,092
NotCancel 354 55 9,108 842 3,540 394 13,302 1,291
NotTerminate 304 58 10,916 881 3,496 391 14,716 1,330
EarlyCancel 2 2 23 16 11 8 36 26
RepeatStart 3 3 24 6 2 2 36 11

analyzed these apk files with AsyncChecker. At last, we manually
read the source code containing AsyncTask and bug reports of
AsyncChecker to determine whether false positive or false negative
occurs. The manual package and inspection took three postgraduate
students about two weeks.

AsyncChecker reported asynchronous problems in 17 apps. Ta-
ble 6 shows the results of manual inspection. As we can see, the
overall precision, recall and F-measure of AsyncChecker on real-
world applications are 97.2%, 89.8% and 0.93 respectively. The result
proves that AsyncChecker can detect the misuse problem of Async-
Task precisely.

Table 6: Manual Inspection on Real-world Applications

StrongReference NotCancel NotTerminate
App Name

TP FP FN TP FP FN | TP FP EN
AFWall [1] 20 0 2 0 0|2 0 0
AnkiDroid [2] 0 0 0 3 0 0] 3 0 o0
A Photo Manager [3] 2 0 0 0 0 2 2 0 0
Easy xked [13] 0 0 0 1 0 1 1 0 0
Kiss [28] 0 0 0 1 0 1] 2 o o
Minetest [38] 1 0 0 0o o0 0] 1 o0 o
Mythmote [39] 10 0 1 1 0] 1 o o
NextCloud [40] 2 0 0 2 0 0] 2 o0 o
OpenBikeSharing [41] 1 0 0 1 0 0 1 0 0
Password Store [55] 2 0 0 2 0 0 2 0 0
rootless-logcat [49] 1 0 0 0 0 0 0 0 0
SatStat [50] 0 0 0 0o o0 0] 1 o0 o
Seafile [51] 12 0 2 10 2 5 13 0 0
Simple Gallery [53] 0 0 0 0 0 1 1 0 0
syncthing-android [57] 1 0 0 2 0 0 2 0 0
Web Opac App [4] 3 0 0 2 0 0 2 0 0
Wikimedia Commons [9] 3 0 0 7 0 0 5 0 0
Sum [31 o 2 [34 3 10[4a 0o o

Efficiency. Figure 4 shows the analysis time of AsyncChecker
on three repositories. The average running time of AsyncDetector
on three repositories are 82 (F-Droid), 198 (GooglePlay) and 228
(Wandoujia) seconds respectively. Obviously, AsyncChecker can
detect the misuse of asynchronous components within a relatively
short period.

6.3 RQ3: Comparison with Existing Tools

In this section, we try to compare AsyncChecker with existing tools
APEChecker [15] and DiagDroid [27]. APEChecker is not open
source and the website of DiagDroid cannot be accessed. In order
to acquire available tools, we contacted the authors of APEChecker
and DiagDroid respectively. Finally, we received reply from the
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author of DiagDroid and they offered us the newest version of
DiagDroid.

APEChecker combines static analysis and dynamic Ul explo-
ration. The author of APEChecker proposed three rules to detect
asynchronous problems. On one hand, the first two rules denoted
that there should not be any GUI update/creation operations in
background thread, which is correct. Crash will occur if these two
rules are violated. On the other hand, the last rule (Async thread
should avoid accessing GUIs or performing transactions inside
async callbacks) is not precise. [15] mentioned that when onPos-
tExcute() is invoked, we don’t know the state of GUIs. However,
via canceling AsyncTask before GUI is destroyed we can make sure
the GUI has not been destroyed when onPostExecute() is invoked.
Otherwise, onCancelled() instead of onPostExecute() will be in-
voked. Therefore, for AsyncTask, we can operate GUIs in async
callbacks (only in onPostExecute()). Apparently, those UI action
patterns defined in [15] are related to functional issues which can
directly lead to crash. StrongReference is related to potential mem-
ory leak, which is both performance and function related. Besides,
they only applied APEChecker on 40 applications. Compared with
APEChecker, AsyncChecker is based on more precise rules and it
has been applied on thousands of real-world applications.

DiagDroid is based on instrumentation and random testing. To
compare the effectiveness of AsyncChecker and DiagDroid on real-
world applications, we applied DiagDroid on the 22 apps packaged
by ourselves. The experiments are performed on a mobile phone
(Nexus 5X) in the version of Android 6.0. We ran each app for 2.5
hours.

Figure 5 compared AsyncChecker and DiagDroid on the 22 apps
packaged by ourselves. As we can see, DiagDroid reported 11 issues
in 8 applications. We cannot assure the category of seven cases
(Unkown in the figure) because the report of these cases are in-
complete and we can’t find categories that match those cases. The
rest four cases were all categorized into Not Canceling Obsolete
Tasks [27]. DiagDroid focuses on performance problems of appli-
cations and the experimental result shows that it can only find
limited problems. Besides, we cannot directly judge the issue cate-
gory from the report of DiagDroid and we need to read the source
code, which decreases the applicability of DiagDroid. Compared
with DiagDroid, AsyncChecker can detect the potential problems
of applications without running the app under analysis and we
can directly check the issue type from the bug report of Async-
Checker. Based on the results shown in table 6 and figure 5, we
can conclude that AsyncChecker can find more misuse problems
of asynchronous components. The detailed information about the
validation results of AsyncChecker and DiagDroid can be found at
https://github.com/pangeneral/AsyncChecker.
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6.4 RQ4: Feedback from Developers

As we can see, the misuse of AsyncTask exists in many real-world
applications. Do developers take these warnings as serious prob-
lems? In order to answer such questions, we reported issues of the
17 apps shown in table 6 to developers of F-Droid applications via
GitHub. Finally, we got feedback from 10 apps. All of these applica-
tions are popular apps which have at least 50 stars on GitHub and
10,000 downloads in app store.

The detailed information is shown in Table 7. The developers
of Kiss and Password Store have fixed the misuse problems of
AsyncTask in the newest version before we came up with an is-
sue. We listed the ID for the fixing commit. The developers of
AnkiDroid, Easy xkcd, Minetest, rootless-logcat, Web Opac
App and Wikimedia Commons confirmed that our reports are correct
and there exists AsyncTask misuse in their applications. We listed
the ID of submitted issues. The developer of A Photo Manager
and syncthing-android confirmed and fixed the reported misuse
problems. We listed the ID of issue and fixing commit respectively.

Table 7: Feedback from Developers of Real-world
Applications on GitHub

App Name Stars | Issue ID | Commit ID Result

AnkiDroid 2,023 5404 / confirmed

A Photo Manager 111 145 7fb4c03 fixed
Easy xkecd 101 164 / confirmed

Kiss 1,281 / fa5ab40 fixed
Minetest 4,365 8787 / confirmed

Password Store 1,271 / 56e53d3 fixed
rootless-logcat 59 15 / confirmed

syncthing-android 1,157 1142 b93da52 fixed
Web Opac App 108 566 / confirmed
Wikimedia Commons 519 2791 / confirmed

Most of the misuse problems that have been fixed by developers
are caused by StrongReference which can lead to memory leakage.
Some developers neglect other problems such as NotCancel, which
may also cause the crash of applications. Based on the feedback
of developers, we can conclude that the misuse of AsyncTask is
a significant problem. Many developers have realized that such
problems should be fixed to evade potential bugs.

6.5 Discussion

Threat to Validity. AsyncChecker is built on top of Androlic and
Soot. Both of them still have some limitations in practice which
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may affect the experimental results of AsyncChecker. Currently, if
AsyncTask holds strong reference to Activity via containers such
as ArrayList and HashMap, there will be false negative of Stron-
gReference. As we know, Java provides generic as syntactic sugar.
In Jimple intermediate, generic is discarded and it is difficult to de-
termine the type of objects added into collections precisely. Besides,
Androlic may fail to identify some user-defined callback meth-
ods during dummy main method construction, which can lead to
false negative and false positive if these callback methods contain
AsyncTask-related operations. In the dummy main method, the
execution order of different user-defined callback methods is fixed,
which may also affect the experimental results.

Generalizability. Except NotTerminate, the detection of other
misuse patterns are all based on typestate analysis, which is the
cornerstone of our approach. Apparently, it is a common idea to
monitor the state of an object so that we can detect its error when
the state is abnormal. Typestate analysis can also be leveraged
to detect the potential error of other async components such as
IntentService. In other words, We can implement similar approach
to detect new types of bugs and new async component after we
summarize state-based bug patterns.

7 RELATED WORK

We introduce related work in two aspects. First, problems caused
by asynchronous programming in Android and how researchers
solve them. Second, the static analysis approach used in Android.

7.1 Android Asynchronous Programming

Currently, asynchronous programming is widely used in many
areas. Android is a typical operating system based on event-driven
model and single-threaded model.

The asynchronism of Android may lead to many problems such
as data race. Technically, given two operations, if at least one of
them is write operation and they do not happen-before [31] each
other, then they may lead to data race. Maiya et al. [37] and Hsiao et
al. [21] tried to find possible data race in apps based on a happens-
before graph. Based on the previous two papers, Bielik et al. im-
proved the efficiency of happens-before construction algorithm and
developed EventRacer [8]. In order to reduce false positive in race
detection, Hu et al. developed ERVA [22] to identify and reproduce
true data race.

Due to the existence of data race, asynchronous programming
may lead to unexpected bugs. Fan et al. [15] developed APEChecker
to detect asynchronous programming errors (APE). Besides, Async-
Droid [43] and RacerDroid [58] are typical dynamic analysis tools
which can reproduce bugs caused by data race. Liu et al. [36] con-
cluded performance bugs in Android which includes lengthy oper-
ations in main threads, wasted computation for invisible GUI and
frequently invoked heavy-weight callbacks.

Those works focused on the problems caused by asynchronous
programming. Little attention has been paid to how to use async
components correctly. In fact, Android provides several asynchro-
nous components for developers. Among these components, Async-
Task is easy to use and thus very popular. Lin et al. [35] proposed a
method to extract long-running operations and refactor them into
AsyncTask. In [34], they presented a method to further refactor
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AsyncTask into IntentService, a more reliable asynchronous compo-
nent provided by Android. However, they do not solve the problem
of how to use AsyncTask correctly. In this paper, we pay attention
to how to use AsyncTask correctly and try to detect the misuse in
applications.

7.2 Android Static Analysis

Static analysis is widely used in the research area of Android apps.
Some static analysis frameworks such as Soot [30] and WALA [16]
are widely adopted by the academia. Based on these frameworks,
researchers developed some static analysis tools such as Flow-
Droid [6], StubDroid [5], IccTA [32] and AsDroid [24]. Technically,
static analysis tools can be leveraged to perform taint analysis,
symbolic execution, code instrumentation and other related tasks.

In recent years, researchers are concerned about Android speci-
ficities such as Android lifecycle, ICC (inter-component commu-
nication) and IAC (inter-app communication) during static anal-
ysis. Wu et al. [64] conducted a survey about defects in Android
applications. According to [33], DidFail [29], DroidSafe [20] and
FUSE [48] are the most versatile tools which take six aspects of
Android specificities into consideration. Besides, Garcia et al. [18]
developed LetterBomb which relied on a combined path-sensitive
symbolic execution-based static analysis to generate exploits of
vulnerabilities for Android apps. Huang et al. [23] came up with
callback compatibility issues in Android apps and proposed a static
analysis tool called Cider to detect the problem. Shan et al. [52]
proposed a suite of static analysis to detect self-hiding behaviors
in Android apps. Yan et al. [65] researched EAs (exported activity)
and identified misexposed activities in Android apps.

As there are so many static analysis tools in the research com-
munity, some researchers paid attention to the efficiency and ef-
fectiveness of those tools. Qiu et al. [47] compared three popular
tools FlowDroid, AmanDroid [62], and DroidSafe. Pauck et al. [45]
proposed ReproDroid to compare Android static taint analysis tools
including Amandroid, DIALDroid [10], DidFail, DroidSafe, Flow-
Droid and IccTA.

In this paper, we propose a static analysis approach which takes
the characteristics of AsyncTask into consideration. More specifi-
cally, the state of AsyncTask changes in accordance with operations,
which can be processed with typestate analysis [56]. Based on An-
drolic [44], the analysis approach can be easily extended for similar
problems.

8 CONCLUSION

In this paper, we summarize five kinds of misuse patterns of Async-
Task, the most widely used asynchronous components in Android.
In order to find these problems hidden in apps, we propose static
analysis approach to collect the AsyncTask-related information
and detect the misuse via predefined rules. Based on the analysis
approach, we have implemented a tool called AsyncChecker. In
order to evaluate AsyncChecker, we design and develop AsyncTask-
specific benchmark suite AsyncBench. Besides, we analyze 1,759
real-world apps from Google Play, Wandoujia and F-Droid. Async-
Checker successfully detects AsyncTask misuse from 1,417 apps.
We compare AsyncChecker with an existing tool DiagDroid and
the result proves that AsyncChecker can find more asynchronous
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problems. We also send the misuse report to developers via GitHub.
Ten developers have confirmed and fixed the problems.

Currently, AsyncChecker concentrates on AsyncTask, one of
the most popular async components. In fact, there might be similar
problems in other async components. In the future, we plan to
conduct further studies on async components and try to detect
more async-related problems.
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