
Detecting Memory Errors in Python Native Code by

Tracking Object Lifecycle with Reference Count

Xutong Ma1,3,†, Jiwei Yan2,‡, Hao Zhang1,3,†, Jun Yan1,2,3,§,† and Jian Zhang1,3,§,†

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

Email: †{maxt, zhanghao19, yanjun, zj}@ios.ac.cn, ‡yanjiwei@otcaix.iscas.ac.cn

Abstract—Third-party Python modules are usually imple-
mented as binary extensions by using native code (C/C++) to
provide additional features and runtime acceleration. In native
code, the heap-allocated PyObjects are managed by the reference
counting mechanism provided in Python/C APIs for automatic
reclaiming. Hence, improper refcount manipulations can lead
to memory leaks and use-after-free problems, and cannot be
detected by simply pairing the occurrence of source and sink
points. To detect such problems, state-of-the-art approaches have
made groundbreaking contributions to identifying inappropriate
final refcount values before returning from native code to Python.
However, not all problems can be exposed at the end of a path.
To detect those hidden in the middle of a path in native code, it
is also crucial to track the lifecycle state of PyObjects through
the refcount and lifecycle operations in API calls.
To achieve this goal, we propose the PyObject State Transition

Model (PSTM) recording the lifecycle states and refcount values
of PyObjects to describe the effects of Python/C API calls and
pointer operations. We track state transitions of PyObjects with
symbolic execution based on the model, and report problems
when a statement triggers a transition to buggy states. The
program state is also expanded to handle pointer nullity checks
and smart pointers of PyObjects. We conduct experiments on
12 open-source projects and detect 259 real problems out of
280 reports, which is twice as many bugs as state-of-the-art
approaches. We submit 168 real bugs to those active projects,
and 106 issues are either confirmed or resolved.

Index Terms—Python Native Code, Static Analysis, Reference
Counting, Memory Error

I. INTRODUCTION

In recent years, Python has become one of the most popular

languages [1], [2]. It is widely used as the host language for

many application fields, especially for machine learning [3].

These Python scripts are usually executed on top of elaborate

third-party modules, such as NumPy [4], TensorFlow [5], and

PyTorch [6]. And to accelerate the onerous computational

tasks and expand language features, these modules are usually

implemented with native code (C/C++) as binary extensions by

using the Python/C API to interact with the Python interpreter

and corresponding user scripts [7].

In the Python interpreter, everything is a heap-allocated

object called PyObject. To guarantee PyObjects in native code

are properly recycled, the reference counting mechanism is

employed to manage the lifecycle of PyObjects. The refcount

of each PyObject is explicitly manipulated via increment and

§Corresponding authors

decrement APIs. And when the refcount is decreased to zero,

the PyObject will be recursively recycled immediately.

Similar to lifecycle management bugs of other resources,

i.e. unpaired source–sink API calls [8], forgetting to decrease

the refcount will make the PyObject get leaked, whereas

decreasing the refcount of a PyObject still being used can

lead to a use-after-free or double-free defect. We call the

memory errors caused by improper refcount operations the

Refcount Bugs. Since the reference counting mechanism delays

the destruction of a PyObject until its refcount is decreased

to zero, the missing and redundant decrements are difficult to

be observed and located. Furthermore, there has been limited

research focusing on this problem [9].

Hence, the situation is severe. Figure 1 presents the trend

of GitHub issues and pull requests about the Python reference

counting mechanism. By August 2023, there have been more

than 4 million issues and 7.9 million pull requests under this

topic, which may indicate there would be a lot of Refcount

Bugs hidden in real-world projects, and a usable checker to

detect such problems is urgently required in the industry.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

0

1

2

3

4

5

6

7

8

Year

Number of (×106)

Issues

Pull Requests

Fig. 1: Trend of issues and pull requests about the Python

reference counting mechanism on GitHub

Typically, static analysis approaches check for resource

management bugs by tracking the lifecycle of resources with

typestate analysis on a Finite State Machine (FSM) [10], [11].

Checking refcount bugs is similar except that we cannot use an

FSM to represent all values of a reference counter. Fortunately,

groundbreaking contributions have been made in verifying the

final refcount values before the control flow returns from native

1429

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00198

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

19
8

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

code to the Python interpreter [12], [13]. However, they cannot

correctly handle the following three cases.

First, for two connected refcount bugs of a leaking and a

double-free on the same PyObject, their improper refcount

operations will be canceled by each other at the end of the

path. Second, for destructed PyObjects, existing approaches

will continue tracking their ineffective refcount for leaking

bugs, and cannot report their use-after-free bugs. And third,

these approaches cannot verify the correctness of refcount

values of PyObjects that are not returned from Python APIs.

Hence, tracking only the refcount value is inadequate to

precisely identify refcount bugs.

Focusing on this issue, our key idea is to additionally track

the lifecycle state of a PyObject while concerning its refcount

changes. And this will help us to detect refcount bugs at any

program point according to the state transition of a PyObject.

To achieve this, we need to respond to two challenges when

simultaneously tracking lifecycle and refcount.

First, designing state transition for the lifecycle of

PyObjects. Manipulating the refcount can trigger transitions

on the lifecycle state; whereas lifecycle operations can also

activate or deactivate the refcount. Hence, the basic FSM

transition cannot precisely model the state of PyObjects.

Besides, the newly designed transition model also needs to

consider non-API returned PyObjects, as well as rules to

represent misused operations on them.

Second, in addition to Python/C APIs, the effects of pointer

operations also need to be considered to avoid imprecision

when analyzing real-world projects. Since PyObjects are ac-

cessed via pointer variables under almost all circumstances,

pointer operations affecting the PyObject states also need to

be modeled, such as pointer nullity check, as well as C++

Smart Pointers for automatic refcount decrement.

Facing these challenges, we propose the PyObject State

Transition Model (PSTM), which tracks the lifecycle and

refcount of a PyObject together, to describe the effects of

Python/C APIs and pointer operations. Based on the basic

FSM transition for heap objects [10], [11], new lifecycle

states are added for PyObjects returned from different kinds

of APIs and non-API functions. And new transition rules are

also added to modify the lifecycle state according to refcount

changes and activate or deactivate the reference counter based

on lifecycle states to avoid tracking dead PyObjects. Besides,

the program state recording the PyObject state and refcount,

and pointer assignments are extended to handle pointer nullity

checks and C++ Smart Pointers of PyObjects.

We implement the approach in PyRefcon on top of the Clang

Static Analyzer [14], which contains checkers for identifying

two kinds of refcount bugs, as well as models of refcount

operations in 384 APIs semi-automatically extracted from the

documentation. With the models and the checkers, 259 real

refcount bugs out of 280 reports are found from 12 open-

source Python binary extension modules. Among the identified

bugs, 168 reports are submitted to the developers of the

projects that are still under maintenance, and 106 of them

have been confirmed or fixed by now.

The main contributions of this work lie in three aspects.

• Compared with tracking just refcount changes, we design

the PyObject State Transition Model (PSTM) to describe

the effects of Python/C APIs on the lifecycle and refcount

of PyObjects (Section III-A).

• Compared with the basic FSM transition for heap objects,

we make an extension to the program state to model

nullity check on PyObject pointers and operations of

PyObject smart pointer objects (Section III-B).

• We implemented PyRefcon based on the novel approach,

with which we have found hundreds of real bugs verified

by developers in large-scale projects (Section V-B).

II. BACKGROUND

In this section, we will briefly introduce the Python binary

extensions from two aspects: the reference counting mecha-

nism and refcount operations in APIs. Then we will propose

the patterns of refcount bugs, and present the limitations of

the state-of-the-art research with two examples extracted from

real-world Python modules.

A. Python Binary Extensions

The Python binary extension represents the modules im-

plemented with native code (C/C++) on top of the Python/C

API [7]. In contrast with Python code executed on the Python

interpreter [15], such modules are compiled as plugins to the

interpreter and executed on a real CPU. Hence, memory errors

in native code will directly crash the interpreter.

Everything in Python is an object of class PyObject.

And nearly all PyObjects are allocated on the heap [16].

Hence, PyObject pointers are used almost everywhere in native

code [16]. To track the lifecycle of PyObjects and destruct

PyObjects properly, the interpreter employs the reference

counting mechanism.

B. Reference Counting Mechanism

In native code, developers manipulate PyObjects and com-

municate with the interpreter via more than 1,000 APIs [9].

Among them, in addition to the refcount increment and

decrement APIs, another 384 APIs, according to our statistics,

will also modify the refcount of their parameters and return

values. And the refcount operations in each API are presented

in the documentation [7].

PyObjects are shared in native code. Each PyObject has

a refcount field to track the number of its references. The

counted conceptual references represent the shared owner-

ship of a PyObject, whereas the concrete pointer variables are

used to access the PyObject. Hence, the number of references

and pointers to a PyObject are not necessarily equal, as

refcount increments and decrements in a scope are mutually

canceled and can hence be pruned for simplicity [16].

1) Directly Manipulate Reference Count: The refcount is

explicitly increased and decreased via refcount APIs. In-

creasing the refcount acquires a reference to the PyObject

and hence blocks the destruction of the PyObject until the

reference is released via decrement. When the refcount is

1430

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

decreased to zero, it means all references to the PyObject are

released. And the PyObject will be destructed recursively and

automatically.

2) Reference Count Changes in APIs: If we consider every

API as a closed box, we can omit the internal refcount

changes for the functionalities in the API. Apart from these

modifications, an API can still have influences on the refcount

of the PyObject passed to or returned from it in two ways as

illustrated in the documentation [7].

On one hand, for an API returns a PyObject, it can acquire a

reference to the PyObject being returned on the caller’s behalf,

such as PyObject constructors like PyLong_FromLong.

They are tagged as returning a reference in the documen-

tation. And the caller needs to consume the reference when

the PyObject is no longer used. We can analogize these APIs

as additional sources of references.

On the other hand, when a PyObject is passed to an

API as an argument, the API can decrease its refcount,

or take a reference from the caller. For instance, API call

PyList_SetItem(List, i, Item) equals to Python

code List[i] = Item, which stores PyObject Item to

the i-th element of list List. And the API will transfer a

reference to Item from the caller context to List instead

of acquiring one via refcount increment inside the API. These

APIs are tagged as stealing a reference for the argument,

which can be seen as extra sinks releasing references.

3) Smart Pointers of PyObjects: In addition to manually

decreasing the refcount when a reference is no longer needed,

the refcount of a PyObject can also be automatically decreased

with C++ Smart Pointers.

For C++ objects wrapping a PyObject pointer and decreas-

ing the refcount in their destructors, which have similar struc-

tures and behaviors to the C++ smart pointers, we call them

the refcount monitors. Modeling operations of refcount

monitors is essential, as it is a common idiom in C++ to wrap

a handle to a resource and release it in destructors [17].

C. Refcount Bugs

Different from the state-of-the-art work that defines bug

patterns based on refcount values [13], [18], we analogize the

counted references to heap objects and define refcount bugs

based on two kinds of lifecycle bugs of heap objects: memory

leak and use-after-free.

Similar to memory leak bugs, when a reference is not

released before all its pointer variables go out of scope,

the reference can no longer be released. It will block the

destruction of the PyObject and make it occupy the system

memory for a long period. We define such a symptom a

reference leak (RL) bug.

And analogize with use-after-free bugs, when the refer-

ences acquired in a scope are released, the PyObject will be

destructed. If the PyObject is then used again, a use-after-

release (UaR) bug will be triggered. Besides, for PyObjects

returned from APIs that do not acquire a reference for the

caller, decreasing its refcount is also considered a pending

use-after-release bug.

D. Motivating Example

The state-of-the-art approaches draw attention to the total

refcount changes on a program path. Without the lifecycle state

of PyObjects, they will continue tracking destructed PyObjects

and miss bugs in the middle of program paths.

• File: src/ webp.c
117 PyObject *_anim_encoder_new(...) {

· · ·
165 encp = PyObject_New(...); // Created

166 if (encp) {

· · ·
171 if (...) return encp; // Sink-1: Returned

· · ·
175 PyObject_Del(encp); // Sink-2: Destructed

176 }

177 PyErr_SetString(...);

178 return NULL; // No leaks

179 }

Fig. 2: A correct function from Pillow, where approaches

based on only refcount will generate a false leaking report

• The first example shown in Figure 2 is a snippet without

refcount bugs. The API PyObject_New creates PyObject

encp and returns a reference on line 165. Then on line 171,

when the if condition is satisfiable, encp is returned to the

caller together with the reference (Sink-1). Otherwise, it is

explicitly destructed on line 175 (Sink-2).

With lifecycle state transition, we can use two states to

distinguish a live PyObject from a destructed one, and properly

deactivate the refcount of encp after its destruction. As

dead PyObjects cannot be simply represented with refcount

changes, the approaches based on refcount changes will report

that encp leaks.

• File: numpy/core/src/multiarray/ctors.c
2849 PyObject *PyArray_Zeros(...) {

· · ·
2857 ret = PyArray_NewFromDescr_int(...); // 1. Captured

· · ·
2869 if (_zerofill(ret) < 0) {

2870 Py_DECREF(ret); // 3. Use-after-release

2871 return NULL;

2872 }

· · ·
2876 return (PyObject *) ret;

2877 }

• File: numpy/core/src/multiarray/common.c
147 int _zerofill(PyArrayObject *self) {

· · ·
154 if (...) {

155 Py_DECREF(self); // 2. Decrease, destructed

156 return -1;

157 }

· · ·
163 return 0;

164 }

Fig. 3: A confirmed use-after-released bug found in NumPy,

which is detected by PyRefcon and fixed after submitted

• The second example in Figure 3 shows a use-after-

release bug found from NumPy1. On line 2857 of the first

file, the PyObject ret is created from a function pointer call

inside non-API function PyArray_NewFromDescr_int

and passed to function _zerofill as parameter self.

1https://github.com/numpy/numpy/issues/19859

1431

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

Then on line 155 of the second file, the refcount of the

PyObject is decreased. And finally, on line 2870 of the

first file, the refcount is decreased for the second time.

After digging into the code base, we discovered that func-

tion PyArray_NewFromDescr_int returns a reference.

Hence, the second decrement on line 2870 can be recognized

as a use-after-release bug.

Unfortunately, such bugs cannot be precisely reported by

state-of-the-art approaches. Since the refcount is implicitly

increased in the function pointer call, which is difficult to be

inferred statically, available approaches will give up tracking

its refcount and hence leads to a false negative. And due

to the limitation of defining bug patterns based on refcount

values, forcing reporting such issues will lead to a lot of false

positives. Since the initial refcount is unknown, to precisely

report such issues, we need to design a specific lifecycle state

for PyObjects returned from non-API functions.

III. MODELING AND CHECKING PYOBJECTS

In this section, we first introduce the PyObject State Tran-

sition Model (PSTM) with the designation of lifecycle states

and transition rules under lifecycle and refcount operations.

Then, we present solutions for handling pointer nullity checks

and refcount monitors with enhanced program state. Figure 4

shows the workflow of modeling PyObjects and checking

refcount bugs.

Fig. 4: Workflow of checking refcount bug with PSTM

According to the workflow, the inputs of the analysis

include source files, models for refcount operations in Python

APIs, and the definition of refcount monitors. The Statement

Evaluator will model the semantics of the code and store

the results in the program state. The encountered lifecycle,

refcount, and pointer operations will be passed to the PyObject

Manager to apply the models. And the modified program state

on each program point is checked finally with Bug Checkers.

A. PyObject State Transition Model

For a PyObject, we track its lifecycle state transition and

refcount changes with a triple 〈id, st, rc〉, where

• id is the unique identifier of each PyObject;

• st ∈ Σ represents its lifecycle state;

• rc ∈ N ∪ {N/A} measures its refcount value.

The set of lifecycle state Σ is defined as Σ = {Created,

Borrowed, Captured, Released, Escaped, Leaked, Reused}.

And among the states in set Σ, refcount is activated only for

state Created and Escaped. For others, we use N/A indicating

that the refcount is not tracked.

We define the lifecycle state transition by expanding the

existing FSM transition for heap objects [10], [11], as pre-

sented in Figure 5. Different from the available model designed

for a Created–Released switch state under paired source–sink

APIs [8], designing the lifecycle state for PyObjects needs to

consider the refcount and the API effects together.

Fig. 5: Basic FSM transition model for heap objects

When designing the transition rules, we need to consider

the mutual influences between lifecycle states and refcount.

Lifecycle operations modify the lifecycle states, as well as

activate or deactivate the refcount. Whereas refcount opera-

tions can manipulate the refcount and trigger lifecycle state

transitions simultaneously. Figure 6 presents the transition

rules of lifecycle states. And we will introduce the states by

following the transitions from left to right.

Fig. 6: Lifecycle state transition of a PyObject, where refer-

ence counted states are tagged with a star mark. INCREASE

and DECREASE denote the refcount increment and decrement;

DESTRUCT represents the destruction triggered automatically

after refcount decreased to zero or explicitly by calling life-

cycle APIs; DETACH indicates the PyObject is returned or

assigned to non-stack pointers; USE represents all dereference

operations to a PyObject pointer; and PRUNE means that all

pointers to the PyObject go out of scope, and the correspond-

ing PyObject symbol is being removed from the program state.

1) PyObject Construction: In the basic FSM transition of

heap objects, there is one initial state since only one source

function can create heap objects. Whereas in our PSTM, we

categorize functions returning a PyObject into three types as

discussed below. Each of them will return a PyObject with

a unique id when invoked, indicating that we assume the

returned pointers are not aliased. We will discuss the reasons

for this assumption in Section VI.

1432

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

• APIs returning a reference. Most of these functions

are PyObject constructors creating a new PyObject, such as

function PyObject_New in Figure 2. Since the returned

PyObject is usually newly created with a refcount of one, users

should consider that it is neither referenced by nor an alias

of another PyObject. To emphasize the difference with other

kinds of PyObjects, their initial states are set to 〈id, Created,

1〉, which is similar to the initial state of heap objects.

• APIs not returning a reference. In native code, such APIs

are usually the getter methods, such as PyTuple_GetItem

accessing the content of a tuple object. By calling them,

the caller context only receives a pointer to the returned

PyObject for temporary use. This means destructing the re-

turned PyObject or releasing its references will introduce

a use-after-release problem for the sources providing the

returned PyObject. To distinguish them from newly created

ones, we use state 〈id, Borrowed, N/A〉 to represent such

PyObjects until the caller acquires a reference to it.

• Non-API functions returning a PyObject from an unknown

source, such as function PyArray_NewFromDescr_int

in Figure 3 that returns a PyObject from a function pointer.

Since we cannot know the behavior of the callee, the returned

PyObject can be either of the above cases. Hence, we use

state 〈id, Captured, N/A〉 representing the superposition state

of Created and Borrowed. And it will collapse to either of

them through future operations.

2) PyObject Detachment: For a PyObject in the Created

state, when it is (a) returned from the entry function of the

analysis, or (b) assigned to a pointer variable accessible from

outside of the analysis context, operation DETACH will change

its lifecycle state to Escaped without modifying its refcount.

[DETACH]
s = 〈id ,Created , rc〉

DETACH(s): s = 〈id ,Escaped , rc〉

As we do not know whether external pointers need to hold a

reference, this state represents that we cannot precisely know

what value its refcount should exactly be. And we only report

use-after-release bugs for an Escaped PyObject when it is

explicitly destructed, or its refcount is decreased to less than

zero, which is similar to a Borrowed PyObject.

3) Refcount Operations: The refcount of a PyObject is

manipulated by only one unit with operation INCREASE and

DECREASE. In the PSTM, the refcount is measured with the

number of references in the current analysis context, rather

than simply accumulating increments and decrements. Hence,

for a PyObject passed to a reference-stealing API, we also

decrease its refcount by one with operation DECREASE.

[INCREASE]
s = 〈id , st , rc〉 ∧ rc ∈ N

INCREASE(s): s = 〈id , st , rc + 1〉

[DECREASE]
s = 〈id , st , rc〉 ∧ rc > 1

DECREASE(s): s = 〈id , st , rc − 1〉

As mentioned in Section II-B2, the stolen reference is no

longer managed by the current context, it can hence be released

at any time. This may lead to use-after-release bugs for further

dereferences. By modeling the behavior of reference-stealing

APIs with decrement, we can now additionally detect such

use-after-release threats rather than consider them as safe, just

like what the state-of-the-art approaches do.

When decreasing the refcount from one to zero (rc =
1) through either refcount decrement or reference-stealing

APIs, for Created PyObjects, the decrement will automatically

trigger its destruction as required by the reference counting

mechanism mentioned in Section II-B1;

[DECREASE]
s = 〈id ,Created , 1〉

DECREASE(s): DESTRUCT(s)

whereas for an Escaped PyObject, we will not destruct the

PyObject but continue tracking its refcount changes by de-

creasing it to zero to check further use-after-release bugs as

illustrated in Section III-A2.

[DECREASE]
s = 〈id ,Escaped , 1〉

DECREASE(s): s = 〈id ,Escaped , 0〉

Since state Captured represents the superposition state of

Created and Borrowed (Section III-A1), we define the follow-

ing two transition rules based on assumption and inference.

First, when decreasing the refcount of a Captured PyObject,

if the function returning it does not return a reference (i.e.

this Captured PyObject is actually a Borrowed PyObject),

the decrement will trigger a use-after-released bug. Therefore,

to avoid generating false alarms, we handle such Captured

PyObjects as Created ones.

[DECREASE]
s = 〈id ,Captured ,N/A〉

DECREASE(s): DESTRUCT(s)

Second, if a refcount increment appears in the code, there

are great chances that the current context is not holding

a reference to the PyObject. Hence, when increasing the

refcount of a Captured PyObject, we will first collapse the

superposition state to Borrowed before the refcount increment.

While for a Borrowed PyObject (both returned and collapsed),

a refcount increment will make the current context hold one

reference to it. Therefore, we change state Borrowed to 〈id,

Created, 1〉, which is the same as a PyObject returned from

an API returning a reference, and begin tracking its refcount

changes since then.

[INCREASE]
s = 〈id , st ,N/A〉 ∧ st ∈ {Borrowed ,Captured}

s = 〈id ,Created , 1〉

4) PyObject Destruction: Similar to deallocated heap ob-

jects, we also need a state to represent a destructed PyObject

whose occupied memory is reclaimed. We use this state to

distinguish live PyObjects from dead ones to check use-after-

release bugs.

PyObject destruction will be triggered automatically with

refcount decrement, or directly invoked when lifecycle APIs

are called explicitly (e.g. calling PyObject_Del on line 175

in Figure 2). Operation DESTRUCT will change the lifecycle

state to Released and deactivate the refcount. As illustrated

when introducing refcount decrements, only PyObjects in state

Created and Captured can be destructed, i.e. state Captured

is collapsed to Created before the destruction.

[DESTRUCT]
s = 〈id , st , rc〉 ∧ st ∈ {Created ,Captured}

DESTRUCT(s): s = 〈id ,Released ,N/A〉

1433

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

5) Transition to Buggy States: Transitions to buggy states

show how a refcount bug is triggered. And the buggy states

represent that an identified bug on the PyObject has been

reported. State Leaked represents reference leaks and state

Reused stands for use-after-released bugs.

When a PyObject s losses all pointers pointing to it, it

cannot be accessed again in the analysis. Operation PRUNE

will remove it from the program state. If its refcount is not

zero, its lifecycle state will be changed to Leaked, and report

a reference leak bug for it.

[PRUNE]
s = 〈id ,Created , rc〉 ∧ rc �= 0

PRUNE(s): s = 〈id ,Leaked ,N/A〉

Besides, for a Released PyObject, using a pointer p to it

with operation USE, which contains the behaviors of

• reading via the pointer (*p or p->);

• returning the pointer (return p);

• calling a function with the pointer (f(p));

• assigning to other non-local pointers (pp = p),

will be reported as a use-after-release bug and transit its

lifecycle state to Reused.

[USE]
s = 〈id ,Released ,N/A〉

USE(s): s = 〈id ,Reused ,N/A〉

For Borrowed PyObjects and Escaped PyObjects with a

refcount of zero, refcount decrement will release a reference

not measured in the current analysis context and make an

external reference dangling. Hence, we report such behaviors

as use-after-release bugs.

[DECREASE]
s = 〈id ,Borrowed ,N/A〉 ∨ s = 〈id ,Escaped , 0〉

DECREASE(s): s = 〈id ,Reused ,N/A〉

Similarly, explicitly destructing PyObjects in state Borrowed

or Escaped with operation DESTRUCT is also recognized as

use-after-released bugs.

[DESTRUCT]
s = 〈id , st , rc〉 ∧ st ∈ {Borrowed ,Escaped}

DESTRUCT(s): s = 〈id ,Reused ,N/A〉

B. Enhanced Program State

We employ symbolic execution to analyze the code and

track the state changes of PyObjects. To model the behavior

of refcount monitors (Section II-B3), we enhance the program

state with a new set M and define the new program state as

P that P = 〈V, S, C,M〉 where

• V contains the assignments of all tracked variables as a

map from a variable to its assigned value (var → value);
• S stores PyObject state tuples currently being used;

• C is the set of path constraints;

• M stores refcount monitor objects.

In this section, we introduce operations modifying the program

state during the symbolic execution.

1) Modeling Refcount Monitors: We model the behavior of

refcount monitors with a simplified C++ smart pointer model

in our previous research [19].

When a monitor object m is constructed, it will be added to

the monitor set M . When assigning a PyObject to a monitor

via method calls, we will store the assignment in the variable

set V , and remove it during reassignment.

[ASSIGN]
σ ∈ S ∧m ∈ M

ASSIGN(m, σ): ∀(m → ς) ∈ V,
V ′ = (V \ {(m → ς)}) ∪ {(m → σ)}

The additional monitor assignment can extend the lifetime of

the PyObject like other pointer variables, which can delay the

leak checker in operation PRUNE until the monitor object goes

out of scope and gets removed from set M .

The reference held in the monitor will not trigger a refcount

decrement immediately after the assignment. And when the

monitor goes out of scope, operation PRUNE will then remove

the assignment from variable set V and decrease the refcount

of the PyObject.

[PRUNE]
P = 〈V ∪ {(m → σ)}, S, C,M ∪ {m}〉 ∧ σ ∈ S

PRUNE(m): P ′ = 〈V, S,C,M〉; DECREASE(σ)

We apply the monitor model on an object if it is an object

of the C++ standard Unique Pointer [20] with a refcount-

decreasing deleter, or (a) it contains one and only one private

PyObject pointer field, (b) it has a constructor accepting a

PyObject pointer argument and initializing the field with the

argument, and (c) its destructor decreases the refcount of the

wrapped PyObject pointer. Besides, users can also manually

add other classes of monitors if they are not automatically

recognized with the above rules.

2) Pointer Nullity Check: Nullity check on PyObject point-

ers is frequently used in native code to check whether an

API call succeeded. The state-of-the-art approach forks the

program path to non-null and null branches when a PyObject

is created and returned from an API [13]. To simplify the path

constraints and reduce unnecessary path forks, we introduce

the lazy-check strategy for nullity check on PyObject pointers.

After the construction of a PyObject, its nullity is kept unde-

termined until checked on branch conditions or dereferenced

directly. On the null branch of the nullity check, operation

PRUNE will remove the PyObject from symbol set S and reset

the assignments of PyObject pointers to NULL.

[PRUNE]
σ ∈ S

PRUNE(σ): S′ = S \ {σ} ∧ ∀(p → σ) ∈ V,
V ′ = (V \ {(p → σ)}) ∪ {(p → NULL)}

Whereas on the non-null branch, we will add a non-null

constraint σ != NULL to the constraint set C with operation

USE. Besides, if a PyObject is directly used without a nullity

check, we will also append the non-null constraint to set C,

as developers believe that it cannot be NULL.

[USE]
σ ∈ S ∧ σ = NULL /∈ C
C′ = C ∪ {σ != NULL}

IV. CASE STUDY

In this section, we will use three examples to illustrate the

detailed program state transition. For assignments of PyObject

pointers in set V , we use their ids for simplicity.

• Figure 7 shows the transition of program state for the

example in Figure 2. As no monitors are present in the

example, we omit the monitor set M in the program state.

1434

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Program state transition of the example in Figure 2

On line 165, we apply the returning-a-reference operation

on API PyObject_New according to the API model, which

creates PyObject 〈S165, Created, 1〉 and assigns it to pointer

encp. Then on line 166, we apply the pointer-nullity-check

operation on the if statement. On the then branch, a non-null

constraint is appended; and on the else branch, the original

assignment is cleared with the assigned symbol removed.

Next on line 171, if the path constraint C171 is satisfiable,

PyObject S165 is returned with its lifecycle state changed

to Escaped (Sink-1). Otherwise (¬C171), PyObject S165 is

destructed with its lifecycle state changed to Released and

refcount deactivated (Sink-2). And hence, we can avoid a false

reference leak report for S165.

Fig. 8: Program state transition of the example in Figure 3

• Figure 8 shows the transition of program state for the

example in Figure 3. On line 2857, for the non-API call,

we create PyObject S2857 with an initial state of Captured,

according to the PyObject model. As it is used directly

by passing to function _zerofill, we append a non-null

constraint for S2857. And the parameter self of the callee

is also aliased to S2857 before the function call.

In the callee, if the path follows the then branch (C154) on

line 154, the lifecycle state of S2857 is transited to Released

with the refcount decrement according to the transition rules.

Whereas on the else branch (¬C154), the state of S2857 is

not changed.

After returning from the callee, the dead assignments,

symbols, and path constraints are pruned from the state. And

the return value is stored via built-in variable $? in the variable

assignment set V . As the branch condition on line 2869 can

be directly determined with the return value, the analysis will

follow the correct path of the if statement. On the then

branch, the dangling pointer to PyObject S2857 is used. This

makes the lifecycle state changed to Reused indicating a use-

after-released bug. Whereas on the else branch, the PyObject

is returned with its lifecycle state unchanged.

• File: torch/csrc/Module.cpp
592 THPObjectPtr list(PyList_New(...)); // Monitor assignment

· · ·
595 if (...)

596 throw python_error(); // Monitor destructor call

(a) An example function extracted from PyTorch, where our tool
generates a false positive without the model of refcount monitors.
Class THPObjectPtr implements the refcount monitor.

(b) Program state transition on the exception branch

Fig. 9: Example of automatic refcount decrement

• Figure 9 presents the program state transition when the

analyzer applies the model of refcount monitors. When the

PyObject symbol S592 is created on line 592, the constructor

of the monitor object list is invoked. It assigns the pointer

field list.ptr to S592. The monitor model then adds list

to the monitor set M and adds the monitor assignment of

list→S592 to the assignment set V .

If the execution takes the then branch on line 595, it

will throw a python_error exception and terminate the

path. The analysis engine then removes the dead assignment

list.ptr→S592, and the monitor assignment helps to

1435

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

extend the lifetime of S592. Finally, monitor object list

is removed during stack unwinding, which decreases the

refcount of S592 and changes its lifecycle state to Released.

Without the monitor model, the analyzer will generate a false

alarm reporting S592 leaks a reference, when assignment

list.ptr→S592 is removed.

V. EVALUATION

To evaluate the effectiveness and usability of revealing

refcount bugs, we carried out the following experiments to

answer the three research questions below.

• RQ 1: How many refcount bugs can we detect? What are

the reasons for false positives?

• RQ 2: How is the result compared with other tools? What

are the reasons for our false negatives?

• RQ 3: How much system resource is consumed during

the analysis compared with other tools?

A. Setup of Experiments

Tool Implementation. We implement our tool, PyRefcon,

on top of a static symbolic execution engine, the Clang

Static Analyzer (CSA) [14]. The PSTM and enhanced program

state are added together with new checkers to detect refcount

bugs based on state transition. Refcount operations of 384

APIs are semi-automatically extracted from the formatted

documentation and added to the analyzer.

To speed up the analysis process, we execute PyRefcon on

each translation unit separately in parallel with Panda [21].

And the interfile function calls are handled with the cross-

translation-unit analysis mechanism of CSA. To remove re-

dundant bug reports generated for the same buggy site from

different analyzer instances, we deduplicate bug reports with

a categorization and sorting based strategy [22].

Environment and Tools. The experiments are executed on

a Linux server with Intel® Xeon® E5-2680 v4 CPU of 56

threads and 256 GB of memory. Unfortunately, the state-

of-the-art tools, Pungi [13] and RID [18], are not publicly

available. We hence evaluate our tool against CpyChecker [23],

which is the tool that both Pungi and RID have compared

with. It implements refcount bug checks with a path-sensitive

approach similar to Pungi. Besides, we also literally compare

our results with the original data provided in the paper of

Pungi and RID.

We build CpyChecker from source on an Ubuntu 18.04

Docker image with GCC 6.5, which are the highest versions

that CpyChecker can work with [24]. The experiments are

executed under Python 3.8 header files for both PyRefcon and

CpyChecker.

Benchmark Composition. The benchmark is composed of

two parts: the open-source Python binary extension modules

used by the state-of-the-art research, as well as popular large-

scale open-source modules written in C/C++. The detailed

information is presented in Table I.

For the first part, we select six out of thirteen projects

from the benchmark of Pungi [13] and RID [18]. Among the

TABLE I: Information of evaluated open-source Python binary

extension modules. The name, Git repository link, and version

(refer to the references) of selected modules (Project); the

research where this project comes from (Source); the number

of kilo lines of C/C++ code in the project repository (Kloc);

and whether the project can be analyzed by PyRefcon and

CpyChecker: analyzer exits normally with reports correctly

generated (�), analyzer exits in error state with some reports

generated (��), and no reports are generated due to analyzer

errors or unsupported input project (�).

Project Source Kloc PyRefcon CpyChecker

pyaudio [25]
Pungi

RID
2.86 � �

pycrypto [26] Pungi 17.48 � ��

pyxattr [27] Pungi 1.23 � �

rrdtool [28] Pungi 1.48 � ��

dbus [29] Pungi 12.59 � �

duplicity [30] Pungi 0.50 � �

NumPy [31] - 298.05 � �

SciPy [32] - 1,146.91 � �

Numba [33] - 251.09 � �

Pillow [34] - 22.08 � �

TensorFlow [35] - 43.74 � ��

PyTorch [36] - 2,617.65 � �

expunged projects, four of them (krbV [37], ldap [38], py-

OpenSSL [39], and netifaces [40]) cannot support the Python

3 API under the selected versions; whereas for the other three

(gst, canto, and yum [41]), we cannot find a Python binary

extension module with the names on GitHub.

For the second part, six other projects are selected for their

reported refcount bugs in our previous research [42]. These

projects mainly cover the scene of machine learning, scientific

computation, and so on. These usage scenarios have high

efficiency and usability requirements and sometimes need to be

executed with limited system resources. Hence, it is important

for these projects to avoid memory leaks and use-after-free

bugs that can be triggered with refcount bugs.

B. Effectiveness and Correctness (RQ 1)

Reports generated by PyRefcon. To evaluate the effective-

ness of checking real-world projects, we run PyRefcon on

the benchmark. Table II shows the statistics of the reports

generated by PyRefcon.

Reports are manually reviewed by two authors to determine

their correctness. As seen in the table, 259 true bugs are

identified from 280 reports according to the manual revision

of two authors. Beyond the 280 reviewed reports, the dedupli-

cation strategy for bug reports removes 270 redundant reports

(Column Redu.), which report the same bug triggered from

different entries with similar paths.

Reports of initial state Borrowed and Captured. Among

the bug reports, 18 reports have these two kinds of initial state

(Column B.&C.), where 16 of them are real bugs together with

1436

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The statistics of reports generated by PyRefcon.

The Bug Reports columns show the number of true positives

(TP) and false positives (FP) reporting Reference Leak (RL)

and Use-after-Release (UaR) bugs. And the Strategies columns

present the number of reports on PyObjects starting with

state Borrowed or Captured (B.&C.), redundant reports pruned

with the categorization approach (Redu.), and false alarms

eliminated with the monitor model (FPMo.). The +1 TPRL. in

PyTorch is reported after applying the monitor model.

Project
Bug Reports Strategies

TPRL FPRL TPUaR FPUaR B.&C. Redu. FPMo.

pyaudio 42 - - - - - -
pycrypto 2 2 5 - 5 - -
pyxattr 2 - - - - - -
rrdtool 18 - 6 - - - -
dbus 9 2 - - - 1 -

duplicity 3 - - - - - -

NumPy 26 3 13 - 10 41 -
SciPy 21 2 2 1 1 225 5

Numba 30 3 1 - - - -
Pillow 40 4 - - - 1 -

TensorFlow 31 4 2 - - 1 9
PyTorch 5+1 - - - 2 1 45

Total 229+1 20 29 1 18 270 59

2 false positives due to the side effects of third-party function

calls.

Reasons for false positives. The main reason for false

positives is due to the unmodeled behaviors of PyRefcon. The

root causes can be categorized into three clusters.

We mark six reports as false positives since we do not

model the functionality but only the refcount operations of

API functions. The side effects of API functions and implicit

constraints between PyObjects make PyRefcon follow an in-

feasible program path, which finally leads to a false positive.

Another five false positives are caused by the analysis

engine. When a noreturn function is called on the path,

such as function abort, the engine will first invoke the

reference leak checker before terminating the path. This makes

PyObject with unreleased references reported as leaked. These

reports can be eliminated with an option of CSA, which will

move the dead symbol deletion to the end of the path, but the

memory usage will be increased.

There are also three reports marked as false positives as we

assume that the developers did this on purpose. And four other

false positives are due to the path provided in the report is not

complete and cannot be reviewed.

False positives pruned by monitors. The recognition strate-

gies for monitors find three wrapper classes as refcount

monitors. When applying the monitor model to objects of

these classes, as shown in Column FPMo., all 59 false positives

related to refcount monitors are eliminated with one additional

true positive newly reported, and no true positives originally

reported are suppressed with the monitor model.

Among the pruned 59 false positives, 48 of them are

triggered by throwing exceptions like the example in Figure 9;

3 false alarms are triggered by noreturn functions in

assertions, which is similar to the previous type; and the rest

8 reports are generated because the destructor of the monitor

object is not called for the invocation limitation of the analysis

engine. The experimental results prove that modeling refcount

monitors are helpful in suppressing related false positives.

Revisions from Developers. To further confirm the fair-

ness of our revision on reports, we submit 168 (60%) true

positives to the developers. Among them, 22 of them have

been confirmed; 84 of them have been fixed according to

our reports; 53 of them are still pending; and 9 of them are

closed as developers do not think there are problems with their

knowledge of the code.

The rest 112 reports are not submitted, where 21 of them are

false-positive reports; 9 of them are fixed or deleted before our

submission; 51 of them from two projects (pyaudio and dbus)

are due to the projects do not have an interactive issue system;

and 31 of them from two projects (pycrypto and rrdtool) are

due to the projects being out of support.

C. Comparison with Related Tools (RQ 2)

Comparison with CpyChecker. To further compare the

effectiveness, we compare our reports against those generated

by CpyChecker. The number of common true positives with

CpyChecker is shown in Figure 10a.

After reviewing the reports, we found that most of the

reference leak bugs missed by CpyChecker are caused by

incomplete program paths. The CpyChecker will miss the bugs

far from the entry, whereas our PyRefcon can track deeper

call stack. This observation may be caused by the reporting

strategy of CpyChecker and its stability problem when analyz-

ing Python 3 projects. And 11 use-after-release bugs are not

reported by CpyChecker. This is due to lacking the lifecycle

state of PyObjects when tracking only the refcount values as

mentioned in Section II-D.

Among the reports generated by CpyChecker, one reference

leak bug is not detected by PyRefcon. The reason is that the

corresponding source file is not analyzed, as it is not compiled

when building the project. The difference in compiler versions

used by PyRefcon and CpyChecker leads to this result.

Comparison with Pungi and RID. To evaluate the per-

formance of PyRefcon against the state-of-the-art approaches,

we literally compare the results provided by Pungi and RID in

their papers [13], [18]. The number of true positives of these

four tools is shown in Figure 10b.

According to the figure, our tool can report twice more true

bugs as CpyChecker does for the total number from both Pungi

and RID. And compared with the data provided by Pungi, our

tool can still find approximately twice as many true bugs from

the latest versions of the compared projects, where the bugs

previously found may have been fixed if they were submitted

to the developers. Whereas for RID, it can find four more bugs

than PyRefcon on the evaluated project.

Since neither tools nor detailed reports generated by them

are publicly available, we cannot tell the intersection and

1437

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

RL UaR

0

50

100
107

11

53

0

52

0

PyRefcon

CpyChecker

Common

(a) Actual comparison

Pungi RID

0

50

100 87

4236 32
42 46

PyRefcon

CpyChecker

Pungi / RID

(b) Literal comparison

Fig. 10: Comparison among all tools. Subfigure (a) shows the

number of common and respective true positives of PyRefcon

against CpyChecker, where the projects for which CpyChecker

can generate reports (the projects marked as � or �� in Table I)

are measured. Subfigure (b) presents the number of true

positives of Pungi, RID, and CpyChecker from their original

papers against PyRefcon, where the data of the corresponding

source (Column Source) is measured.

differences between PyRefcon and the other tools. And hence,

we cannot draw further conclusions from this comparison.

D. Resource Consumption (RQ 3)

In this subsection, we show the resource consumption of

PyRefcon against the CSA engine (by executing PyRefcon with

all our checkers and models disabled) and CpyChecker. The

data is measured with the average value of five executions.

Table III shows the resource consumption comparison of

PyRefcon and the CSA engine when executing them in

parallel. For all projects in the benchmark, the total time

consumption under a concurrency of 16 parallel processes is

13,152.89 seconds or 3.65 hours, which spends 1.26× time

TABLE III: Time and memory consumption of PyRefcon and

corresponding overhead compared with executing the CSA

engine under a concurrency of 16 parallel processes.

Project
Time (Seconds) Memory (GB)

Total Overhead Peak Overhead

pyaudio 1.18 3.28× 0.01 0.95×
pycrypto 2.89 1.52× 0.16 1.63×
pyxattr 1.54 1.49× 0.01 0.86×
rrdtool 5.30 1.70× 0.01 0.86×
dbus 6.25 1.74× 0.24 1.46×

duplicity 0.20 1.08× 0.01 2.36×

NumPy 489.93 1.63× 0.67 2.12×
SciPy 588.19 2.03× 0.62 1.51×

Numba 10.44 1.50× 0.24 1.51×
Pillow 67.94 1.77× 0.30 0.82×

TensorFlow 7,243.75 1.28× 3.08 1.68×
PyTorch 4,735.28 1.15× 3.28 3.10×

Total 13,152.89 1.26× 3.47 1.84×

than the CSA engine. Besides, we also estimate the upper

bound of peak memory usage under concurrent analysis with

the sum value of peak memory usage of the top 16 translation

units. According to the peak memory usage of each translation

unit, the estimated upper bound of memory consumption under

a concurrency of 16 parallel processes is 3.47 GiB, which uses

1.84× memory as the CSA engine.

To evaluate the detailed resource consumption, we also

measure the time cost and peak memory usage for each

translation unit separately. Among the 12,208 translation units

in 12 projects, 4,415 kilo lines of code are analyzed. The

average resource consumption per Kloc is 81.29 seconds and

2.00 GB. Compared with the CSA engine, where resource

consumption is 30.46 seconds and 0.91 GB, the overheads are

2.67× and 2.20× respectively.

Furthermore, we also measure the resource consumption

of PyRefcon and CpyChecker on the three projects that Cpy-

Checker can correctly analyze. Among them, PyRefcon uses

49.99% memory and 38.71% time on average compared with

CpyChecker.

VI. THREAT TO VALIDITY

Handling Pointer Aliases. Symbolic execution does a pre-

cise pointer analysis that can detect all alias relations inside

the current analysis context. Whereas for external pointers,

such as parameters and return values of a callee function, we

assume that they point to separated PyObjects, and analyze

their refcount and lifecycle state respectively.

Since it is difficult to have a full vision over the project,

third-party libraries, and the interpreter, a preferred solution for

developers to avoid potential refcount bugs is to follow this

assumption, especially for developers in large projects. And

the submitted bug reports also prove that it will not introduce

false alarms on aliased pointers, as developers can neither tell

whether two external pointers can be aliased.

Captured PyObjects. In PyRefcon, we design the inference-

based transition rules for Captured PyObject by following

a conservative manner. And our evaluation has successfully

shown the low false positive rate of the strategy. Unfortunately,

there would be some bugs missed by our approach. To over-

come this problem, users can add specific model definitions

for the private and third-party API functions in their projects

by imitating our built-in models for Python/C APIs.

Besides, only the PyObjects returned from functions will be

tracked, whereas PyObjects accessed from global variables and

parameters are not considered. Due to the conservative man-

agement strategies of CSA for global variables, the PyObjects

assigned to such pointers will be soon invalidated and pruned,

even though the PyObjects that are pointed to by global

variables can also be analyzed with our approach. To avoid

false alarms and unreasonable reports, we also drop them in

PyRefcon, which may also lead to false negatives.

Selection of compared tools. In this paper, we compare

our tool against CpyChecker in practice, as it is the only

tool publicly available and compared with both state-of-the-

art work, even though it is outdated and out-of-support.

1438

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

To compensate for this unfairness, we carry out the literal

comparison with state-of-the-art work through the original data

from their papers. Besides, as all these three tools cannot

support the latest stable version of Python (version 3.9 when

writing this paper), the results may be affected by the behavior

changes of API functions, which can affect the fairness of our

comparison.

VII. RELATED WORK

As a static analysis approach checking for refcount bugs in

Python binary extensions, PyRefcon is mainly related to the

topic of Reference Counting checkers, and native code analysis

on languages with virtual machines or interpreters.

Reference Counting Checkers. For projects using the Refer-

ence Counting mechanism to manage heap objects, developers

usually have their dynamic checkers to detect cyclic structures

or check refcount values during execution. In the Python

interpreter, a generational garbage collector is used to detect

circular reference problems for container objects [43]. Related

PyObjects are required to be registered to make the garbage

collector check their references. In Firefox, they use a tracking

and balancing approach to find out potentially forgotten decre-

ments [44]. Logs are dumped during the tracking process, and

then an analysis step will locate the bugs.

Li and Tan proposed a tool called Pungi [13] for checking

the Python Reference Counting Errors. They transformed the

original C code to affine programs [12] and checked the

property violations of reference counts with a path-sensitive

verification tool on the affine code. But during the transfor-

mation, a lot of information such as path constraints were

dropped. Whereas our approach can precisely analyze the code

with a very low false-positive rate. Similarly in CpyChecker

made by Malcom [23], the same error patterns are followed.

They used the Static Single Assignment (SSA) form in GCC

to analyze the code for reference counting bugs with an intra-

procedural and path-sensitive approach.

Mao et al. created RID [18] that also checks the Reference

Count Bugs. They used a summary-based approach to collect

operations on reference counts and search for path pairs whose

refcount changes are different but external effects (return

values, etc.) are the same. Similar to Pungi, the input code

is also transformed to affine programs before being analyzed.

Tan et al. proposed an approach to checking reference counts

by pairing the increment and decrement operations via their

path conditions [45]. And they tried to further report reference

count bugs by comparing the usages for the same increment

and decrement function pairs and reporting the cases different

from the majority.

Besides, Emmi et al. presented an approach to verifying

the implementations of reference counting mechanisms [46].

They modeled the reference counts of target objects and used a

model-checking tool to verify the correctness of the properties

and hunt for bugs. And Férey et al. provided PVS2C [47]

to convert a high-level language to C for runtime efficiency

with the help of the reference counting approach to manage

dynamic memory deallocations.

Native Code Analysis. Tan et al. proposed an approach

to detecting the Python code that may lag the program

execution [48]. They mapped the memory addresses and their

operations in binary libraries to the original Python code and

searched for efficiency issues via memory operations. Hu and

Zhang presented their research on the evolution of Python/C

API usage [9]. They also provided the error patterns they found

during the research. Monat et al. create Mopsa [49], which

statically scans Python exceptions and C runtime errors for

a Python program using binary extension modules. They use

an abstract interpretation based approach to analyze both the

Python and C code by sharing abstract domains between the

two languages. However, they cannot check refcount bugs.

Besides, Kondoh and Onodera checked the Java native code

for memory errors of four patterns with a typestate analysis

approach and a coding style checker [50]. Li and Tan focused

on finding mishandled Java exceptions thrown in native code

in their research [51], [52]. Brown et al. attempted to report

bugs for the intermediate binding layer between JavaScript and

C++ [53]. Kalubandi et al. also focused on this problem [54].

They tried to prevent JavaScript exceptions and C++ runtime

crashes by checking the type errors. And Degenbaev et al.

proposed an approach to tracking the objects crossing the

borderline to JavaScript heap and help developers to find

potential memory errors [55].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to tracking the life-

cycle of PyObject with the help of its refcount manipulations

to detect refcount bugs in native code. We defined the lifecycle

states and transition rules in the novel model. Beyond the

model, we also track the changes in lifecycle state and refcount

triggered with pointer operations and refcount monitors. We

implemented the PyRefcon analyzer based on the approach

and found 259 real bugs from 12 open-source projects.

In the future, we will continue our research on checking

the Captured PyObjects, and improving the efficiency of

the approach with summary-based strategies, and automatic

approaches to searching for refcount monitors.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (NSFC) under grant No.62132020. Many

appreciations to Mr. Xin Zhang for his discussion on the

idea of this paper, Mr. Shuo Sun for gathering the data, the

developers of project NumPy for their in time feedback on our

bug reports, and anonymous reviewers of this paper for their

suggestions for improving this work.

REFERENCES

[1] IEEE, “Top programming languages 2022.” [Online]. Available:
https://spectrum.ieee.org/top-programming-languages-2022

[2] TIOBE Software BV, “TIOBE Index.” [Online]. Available: https:
//www.tiobe.com/tiobe-index/

[3] M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-language
development in machine learning frameworks,” in 2020 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 546–556.

1439

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

[4] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020.

[5] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems.” [Online]. Available: https://www.tensorflow.
org/

[6] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems

32, 2019, pp. 8024–8035.

[7] “Python/C API reference manual.” [Online]. Available: https://docs.
python.org/3/c-api/index.html

[8] P. Bian, B. Liang, J. Huang, W. Shi, X. Wang, and J. Zhang, “SinkFinder:
harvesting hundreds of unknown interesting function pairs with just one
seed,” in Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2020, pp. 1101–1113.

[9] M. Hu and Y. Zhang, “The Python/C API: Evolution, usage statistics,
and bug patterns,” in 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020,
pp. 532–536.

[10] Z. Xu, J. Zhang, and Z. Xu, “Melton: A practical and precise memory
leak detection tool for C programs,” Frontiers of Computer Science,
vol. 9, no. 1, pp. 34–54, 2015.

[11] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke:
Scalable path-sensitive memory leak detection for millions of lines of
code,” in 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 2019, pp. 72–82.

[12] A. Lal and G. Ramalingam, “Reference count analysis with shallow
aliasing,” Information processing letters, vol. 111, no. 2, pp. 57–63,
2010.

[13] S. Li and G. Tan, “Finding reference-counting errors in Python/C
programs with affine analysis,” in European Conference on Object-

Oriented Programming. Springer, 2014, pp. 80–104.

[14] LLVM Project, “Clang Static Analyzer (CSA).” [Online]. Available:
https://clang-analyzer.llvm.org

[15] “The Python programming language.” [Online]. Available: https:
//github.com/python/cpython

[16] “Objects, types and reference counts.” [Online]. Available: https:
//docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts

[17] Wikipedia, “Resource acquisition is initialization.” [Online]. Available:
https://en.wikipedia.org/wiki/Resource acquisition is initialization

[18] J. Mao, Y. Chen, Q. Xiao, and Y. Shi, “RID: finding reference count bugs
with inconsistent path pair checking,” in Proceedings of the Twenty-First

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2016, pp. 531–544.

[19] X. Ma, J. Yan, W. Wang, J. Yan, J. Zhang, and Z. Qiu, “Detecting
memory-related bugs by tracking heap memory management of C++
smart pointers,” in 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 2021, pp. 880–891.

[20] cppreference, “std::unique ptr.” [Online]. Available: https://en.
cppreference.com/w/cpp/memory/unique ptr

[21] X. Ma, “Panda: A parallel tooling driver based on compilation
database.” [Online]. Available: https://github.com/Snape3058/panda

[22] X. Ma, J. Yan, J. Yan, and J. Zhang, “Reorganizing and optimizing post-
inspection on suspicious bug reports in path-sensitive analysis,” in 2019

IEEE 19th International Conference on Software Quality, Reliability and

Security (QRS). IEEE, 2019, pp. 260–271.

[23] D. Malcolm, “GCC Python Plugin,” 2011–2018. [Online]. Available:
https://gcc-python-plugin.readthedocs.io/en/latest/index.html

[24] “gcc-python-plugin,” release 0.17. [Online]. Available: https://github.
com/davidmalcolm/gcc-python-plugin/releases/tag/v0.17

[25] “PyAudio,” commit fc7bd1d2b0c887d65473283c10889f446030b4cc,
version 0.2.8. [Online]. Available: https://people.csail.mit.edu/hubert/
pyaudio/

[26] “pycrypto,” commit 7acba5f3a6ff10f1424c309d0d34d2b713233019.
[Online]. Available: https://github.com/pycrypto/pycrypto

[27] “pyxattr,” commit c3466e74a2d72ede0d121aabdf687fa8d348bfc6. [On-
line]. Available: https://github.com/iustin/pyxattr

[28] “python-rrdtool,” commit 93c72b3a8f06d7308d913a6f3cf3d2f200ea8e70.
[Online]. Available: https://github.com/commx/python-rrdtool

[29] “dbus-python,” commit 012f0e3adbe3bebf73d983b3a0a8eb8138e06548,
Originally downloaded from: https://github.com/freedesktop/dbus-
python, deleted by the authors when this paper is published.

[30] “duplicity,” commit 7f91932c8316ed1a91e3f85decf7e525e616b772.
[Online]. Available: https://gitlab.com/duplicity/duplicity

[31] “NumPy,” commit 04ab04d93d4d7a4d241fe0ceb725436a8b6c8c2e.
[Online]. Available: https://github.com/numpy/numpy

[32] “SciPy,” commit 8ef583067438a16e7f3a4bed2e109168f16dfda8. [On-
line]. Available: https://github.com/scipy/scipy

[33] “Numba,” commit 0c499bfff7ebe4fe5d8a6c1d20653e69f1f2a639. [On-
line]. Available: https://github.com/numba/numba

[34] “Pillow,” commit 8714ac55660cfb7ca8733d4fb67c12975e7c3f7a. [On-
line]. Available: https://github.com/python-pillow/Pillow

[35] “TensorFlow,” commit faad219fc46032a0ae9576ccc3076612cc1f5f72.
[Online]. Available: https://github.com/tensorflow/tensorflow

[36] “PyTorch,” commit 703675a18b438e7be1f3aab93c6fb4d5f8549526.
[Online]. Available: https://github.com/pytorch/pytorch

[37] “krbv,” commit 29fe0f856145e265f1aa12cbd7e21f2bfa156b74, version
1.0.90. [Online]. Available: https://github.com/vijaykiran/python-krbv

[38] “ldap,” commit 69335a5af193290d1522f4dde19b6e71fb383949, version
2.4.20. [Online]. Available: https://github.com/python-ldap/python-ldap

[39] “pyOpenSSL,” commit 5bc85ffff99a0cc767f378b1fc6b03cf869f4d2d.
[Online]. Available: https://github.com/msabramo/pyOpenSSL

[40] “netifaces,” commit 53fcdb6e5dccc84f6734939cfee1a95d3f470d7b.
[Online]. Available: https://github.com/al45tair/netifaces

[41] “yum,” non Python native project. [Online]. Available: https://github.
com/rpm-software-management/yum

[42] X. Zhang, X. Ma, J. Yan, B. Cui, J. Yan, and J. Zhang, “Improving tese
case generation for Python native libraries through constraints on input
data structures,” arXiv preprint arXiv:2206.13828, 2022.

[43] “Supporting cyclic garbage collection.” [Online]. Available: https:
//docs.python.org/3/c-api/gcsupport.html

[44] M. Foundation, “Refcount tracing and balancing - Firefox source docs.”
[45] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “Detecting kernel

refcount bugs with two-dimensional consistency checking,” in 30th

USENIX Security Symposium (USENIX Security 21), 2021, pp. 2471–
2488.

[46] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar, “Verifying reference
counting implementations,” in International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer,
2009, pp. 352–367.

[47] G. Férey and N. Shankar, “Code generation using a formal model of
reference counting,” in NASA Formal Methods Symposium. Springer,
2016, pp. 150–165.

[48] J. Tan, Y. Chen, Z. Liu, B. Ren, S. L. Song, X. Shen, and X. Liu,
“Toward efficient interactions between Python and native libraries,” in
Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2021, pp. 1117–1128.
[49] R. Monat, A. Ouadjaout, and A. Miné, “A multilanguage static analysis

of Python programs with native C extensions,” in Static Analysis

Symposium (SAS), 2021.
[50] G. Kondoh and T. Onodera, “Finding bugs in Java native interface

programs,” in Proceedings of the 2008 international symposium on

Software testing and analysis, 2008, pp. 109–118.
[51] S. Li and G. Tan, “Finding bugs in exceptional situations of JNI

programs,” in Proceedings of the 16th ACM conference on Computer

and communications security, 2009, pp. 442–452.
[52] S. Li and G. Tan, “JET: exception checking in the Java native interface,”

ACM SIGPLAN Notices, vol. 46, no. 10, pp. 345–358, 2011.
[53] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan,

“Finding and preventing bugs in JavaScript bindings,” in 2017 IEEE

Symposium on Security and Privacy (SP). IEEE, 2017, pp. 559–578.
[54] V. K. Kalubandi, T. Elwell, and J. Muralikumar, “Toward preserving the

crash safety of JavaScript in Node.”
[55] U. Degenbaev, J. Eisinger, K. Hara, M. Hlopko, M. Lippautz, and

H. Payer, “Cross-component garbage collection,” Proceedings of the

ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–24, 2018.

1440

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:41:19 UTC from IEEE Xplore. Restrictions apply.

