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Abstract—Components are the fundamental building blocks of
Android applications. Different functional modules represented
by components often rely on inter-component communication
mechanisms to achieve cross-module data transfer and method
invocation. It is necessary to conduct robustness testing on
components to prevent component launching crashes and privacy
leaks caused by unexpected input parameters. However, as the
complexity of the input parameter structure and the diversity
of possible inputs, developers may overlook specific inputs that
result in exceptions. At the same time, the vast input space also
brings challenges to efficient component testing. In this paper,
we designed an automated test generation and execution tool
for Android application components named ICTDroid, which
combines static parameter extraction and adaptive-strength com-
binatorial testing generation to detect bugs with a compact test
suite. Experiments have shown that the tool triggers 205 unique
exceptions in 30 open-source applications with 1,919 test cases
in 83 minutes, where the developers have confirmed six defects
in three issues we reported.

Index Terms—Android App, Inter-Component Communica-
tion, Combinatorial Testing, Automated Testing

I. INTRODUCTION

Components are considered the primary focus in numerous

analysis and testing efforts for Android applications. The inter-

component communication (ICC) mechanisms [1] they rely on

are essential for interaction within and beyond applications.

Therefore, the robustness problem in processing ICC parame-

ters requires particular attention. In practice, developers handle

and use ICC parameters with complex structures through

branches with different conditions to adapt to user scenarios,

resulting in multiple execution paths. On the one hand, it

increases the possibility of unvalidated data access operations

that cause exceptions. On the other hand, it increases the

difficulty of triggering errors in specific execution paths. In

order to effectively discover the ICC-related hidden bugs, it

is necessary to accurately resolve the structure and values

of ICC parameters and construct parameter models with high

precision to improve the path exploration capability. However,

as the size of the parameter model increases, the combinatorial

space formed by all parameters and their values will expand

dramatically, making it challenging to find the key parameter

combinations that can trigger defects in the execution path.
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To address the problem, this paper proposes a parameter-

aware automated testing approach on Android application

components and develops a prototype tool, ICTDroid. To thor-

oughly explore potential defects behind parameters with com-

plex structures, this approach leverages advanced ICC static

analysis techniques [2], [3] for accurate and comprehensive

modeling of ICC parameter structures and values. In response

to the immense combinatorial space posed by modeled param-

eters, we perform adaptive-strength combinatorial testing (CT)

[4], which uses data-flow analysis to amplify the interaction

between used ICC parameters. Furthermore, we also extract

constraints based on the semantics of ICC parameters to reduce

ineffective parameter value combinations and enhance testing

efficiency. With 1,919 test cases generated for 144 exposed

activities in 30 open-source Android apps, ICTDroid detected

205 unique exceptions in 18 apps through 83 minutes of

dynamic testing, with 88 test cases resulting in application

crashes. Meanwhile, developers from GitHub confirmed six

defects in three issues we reported. More information and

demonstration of ICTDroid is publicly available at [5].

II. BACKGROUND

Intent is the fundamental of the ICC mechanism in the

Android system, which describes operation requests, typically

containing operation type, target component, and additional

data. Due to the complex structure of Intent and its ability to

carry structural data, test cases need to meet multiple condi-

tions simultaneously to reach deeper-level program branches.

Intent parameters can be divided into properties (of the

Intent object itself) and fields (of the key-value pairs in Bundle

type). Consider the Intent processing code with multiple

branches shown in Fig. 1, where the execution path depends on

various properties of the input Intent object. If the loginV2()
method in line 7 has a defect, then the Intent object needs to

satisfy at least three conditions simultaneously to trigger it:

1) Property action of Intent equals to action.LOGIN_V2.

2) Field data with type Bundle exists in property extra of

Intent.

3) Value of field key and token with type String of field

data satisfies the condition (if any) related to the defect.

When preparing ICC test cases for the component contain-

ing such code, it is impossible to detect the defect without

considering the values and structures of the Intent object.

2070

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00071

20
23

 3
8t

h 
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
ut

om
at

ed
 S

of
tw

ar
e 

En
gi

ne
er

in
g 

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

07
1

Authorized licensed use limited to: Institute of Software. Downloaded on November 24,2023 at 05:40:49 UTC from IEEE Xplore.  Restrictions apply. 



1 Intent i = getIntent();
2 if ("action.LOGIN_V1".equals(i.getAction())) {
3 loginV1(i.getIntExtra("appId", -1), i.getStringExtra("token"));
4 } else if ("action.LOGIN_V2".equals(i.getAction())) {
5 Bundle data = i.getBundleExtra("data");
6 if (data != null) {
7 // The loginV2() method has a defect
8 loginV2(data.getString("key"), data.getString("token"));
9 } else {

10 reportError(i.getStringExtra("error"));
11 }
12 }

Fig. 1: Motivating Example

Therefore, it is necessary to obtain some guiding information

about the parameter structure and its values by ICC resolution

techniques [2], which refers to extracting ICC-related informa-

tion by methods like static analysis, including but not limited

to parameters and their structures, sources, targets, and so on.

Another issue is that while the Intent object has numerous

parameters, not all of them affect the execution path of the

program. For example, the only parameters in Fig. 1 that affect

the program execution path include action and the data field

in extra. Suppose we perform exhaustive testing directly on

the Intent parameter structure obtained by ICC resolution. In

that case, it requires enormous test cases, while many would be

ineffective for defect exploration. In addressing this challenge,

CT [4] tackles the problem of vast parameter space by concen-

trating on pairwise (or higher level) interaction between critical

parameters, which significantly reduces the number of required

test cases compared with exhaustive testing, resulting in cost

and time efficiency while preserving a high defect detection

rate.

CT requires the relation specification among several param-

eter groups, where the strength t reflects the degree of interac-

tion coverage among the system parameters under test. The CT

with constant strength among all parameters is also known as

t-way CT. Oppositely, variable-strength refers to the scenario

where the combinatorial strength between different parameters

is non-constant. In applying CT theory, we should pay careful

attention to the setting of the strength. High strength will lead

to an exponential increase in the number of combinations

required to be covered, resulting in a significant growth in

the number of test cases needed. Conversely, low strength

could mask latent faults caused by parameter interactions,

which would only be triggered when the values of multiple

parameters meet specific requirements.

III. ICTDROID: PARAMETER-AWARE COMBINATORIAL

TESTING FOR COMPONENTS OF ANDROID APPS

This chapter gives an overview of the ICTDroid tool and

explains complex-structural parameter modeling and combina-

torial test case generation.

A. Overview of ICTDroid

Fig. 2 shows the overall workflow of our automated testing

tool ICTDroid, which consists of four modules: 1) ICC Param-

eter Modeling, 2) CT modeling, 3) CT Test Suite Generation,

and 4) Test Execution & Log Analysis.

ICC Param Modeling CT Modeling

ICCBot

ICTDroid

Test Report

Data-Flow Analysis

Param Deconstruction

Relation Construction

Constraint Formulation

CT Test Suite 
Generation

Text Execution & 
Log Analysis

Fig. 2: Framework of ICTDroid

For an application package (APK), we perform static anal-

ysis pre-processing through the state-of-the-art ICC resolution

tool ICCBot [3] at the beginning to get the structure of Intent

objects sent or received by each application component. The

ICC Parameter Modeling module takes the result of ICC

resolution as input, extracts data-flow-related information, and

integrates it with the result to form the original parame-

ter model. The CT Modeling module will deconstruct the

properties with structures in the original parameter model,

thus forming a regular and comprehensive CT model. After

performing CT Test Suite Generation, the Test Execution
& Log Analysis module will automatically install target apps,

execute test cases and inspect system logs to export the final

test report.

B. The Model for Complex-Structural Parameter

Some parameters of the Intent objects used by the ICC

mechanism are not simple value but with some specific data

structures. These structured parameters and their values can

not be directly represented in test generation. To fill this gap,

we need to transform the structures of these parameters to

illustrate their value range as a finite discrete point set.

Our approach deconstructs a complex structured parameter

into several value-controlling and structure-controlling param-

eters with their combinations. Value-controlling parameters

represent the actual values of corresponding properties (or

fields) in the original data structure, typically basic data types

or specific objects. Structure-controlling parameters denote the

structural states of corresponding complex-structural proper-

ties (or fields), which correspond to the following eight types

of the structure-controlling value:

a) Unset: Do not set the property or field, cause methods like

hasExtra() and containsKey() return false.

b) Null: Set the current property or field itself to null.

c) MinVal/MaxVal: Upper or lower bound of numeric types.

d) Empty: Empty object created by the parameterless con-

structor of non-primitive types.

e) NotEmpty: Non-null value or object preset for different

types.

f) ArrMinElem/ArrMaxElem: Array or ArrayList con-

taining single MinVal or MaxVal.
g) ArrEmptyElem/ArrNotEmptyElem: Array or ArrayList

containing single Empty or NotEmpty object.

h) ArrNullElem: Array or ArrayList containing single Null
value.
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Consider the category property of Intent. It is a multi-

value attribute of type Set<String>. To deconstruct it for

fine control over the combination of each category value, we

can deconstruct it into the structure-controlling parameter pcat0
and value-controlling parameters pcat1 , pcat2 , ..., pcatk . Here,

pcat0 denotes the structural state of the category property,

with possible values being Empty and NotEmpty. The value

Empty indicates not set any value of the category property,

while NotEmpty implies setting at least one. pcati(i ∈ [1, k])
represents whether the category includes the ith value.

Assuming the values of category include "DEFAULT" and

"NORMAL," the parameter model after applying the approach

mentioned above can be represented as Fig. 3.

category: [Empty, NotEmpty]
category_DEFAULT: [true, false]
category_NORMAL: [true, false]

c
c
c

1:

2:

3:

Fig. 3: Parameter Model of Category Data

Similarly, we can deconstruct and model the extra property

in the code shown in Fig. 1. The extra property is essentially

based on the Bundle data structure provided by the Android

system, which is a container composed of key-value pairs.

The extra property of the Intent in the code shown in Fig. 1

can be correspondingly represented as the tree structure shown

in Fig. 4a, and the result shown in Fig. 4b can be obtained by

further preserving the tree node position information based on

the deconstruction and modeling approach mentioned above.

extra

appId token data

key token

error

0

1 2 3

4 5

6

(a) Tree of Extra

extra: [Null, Empty, NotEmpty]
extra_0_1_int_appId: [Unset, -1]
extra_0_2_String_token: [Unset, Null, Empty, NotEmpty]
extra_0_3_Bundle_data: [Unset, Null, Empty, NotEmpty]
extra_0_6_String_error: [Unset, Null, Empty, NotEmpty]
extra_3_4_String_token: [Unset, Null, Empty, NotEmpty]
extra_3_5_String_key: [Unset, Null, Empty, NotEmpty]

e
e
e
e
e
e
e

1:

2:

3:

4:

5:

6:

7:

(b) Parameter Model of Extra

Fig. 4: Tree and Parameter Model of Extra in Fig. 1

C. The Model for Combinatorial Testing
After modeling the parameters of an Intent object, we can

obtain numerous parameters corresponding to original proper-

ties and fields. These parameters and their values can represent

the complex-structural parameters to a certain degree, but all

their combinations would form a vast space of test cases. To

reduce test costs while maintaining error detection capability,

we introduce the CT theory to alleviate the issue of exploding

combinations of parameters and their values.
Relation construction. To properly set the combination

strength among ICC parameters, we isolate the subsets of

Intent parameters that appeared in each program path of the

components. With a default combinatorial strength, we set

inter-parameter relations with higher combinatorial strength

for each parameter that have inter-parameter relations. Gen-

erally, for standard testing configurations, the default strength

is set to one and the higher strength to three. Users can adjust

these values through tool configuration.
Constraint formulation. According to the semantics and

structures of the ICC parameters, some values are mutu-

ally exclusive, which form invalid combinations that can be

reduced by formulating constraints. For example, for the

structure-controlling parameter pcat0 and the value-controlling

parameters pcat1 , pcat2 , . . . , pcatk obtained after modeling the

category property, if pcat0 has a value of Empty, which

means do not set any value for the category property, then

the value of pcati can only be false, i.e., pcat0 = Unset →
∀pcati = false(i ∈ [1, k]); if pcat0 has a value of NotEmpty,

it implies that at least one pcati should be true, i.e., pcat0 =
NotEmpty → ∃pcati = true(i ∈ [1, k]).

IV. USAGE

For a user-given set of APKs, ICTDroid will first call

ICCBot [3] to perform ICC static resolution, extract parameters

based on the above process, and construct variable-strength CT

model for ICC. Subsequently, ICTDroid invokes ACTS [6], a

highly efficient tool to produce CT test suites, by using the

auto-generated CT model like Fig. 5 as input to generate CT

test suites that satisfy the strength and constraint requirements.

Fig. 5: Example of Auto-Generated CT Model

ICTDroid provide a Test Bridge application running on

Android device for dynamic ICC testing, which converts the

generated static representation of test cases into well-formed

ICC message objects. After installing and launching the Test

Bridge app, ICTDroid will automatically detect the device,

install the target application, grant necessary permissions, and

sequentially send each test case to the target application via the

Test Bridge. Throughout this process, ICTDroid continuously

monitors the application’s runtime status using Android system

services such as the Activity Manager and collects execution

logs through Logcat.

After test execution, ICTDroid will analyze the log files

generated during runtime and output the test report, which

provides detailed stack traces for any exceptions in the ap-

plication, along with the corresponding Intent data for one or

more test cases.

V. EVALUATION

To validate the effectiveness of our approach, we reuse a

dataset of 30 real-world apps on F-droid according to recent

work for evaluation of ICC resolution techniques [2]. In the

adaptive combination strength strategy, we set the default

strength to one and the increased strength to three. The

evaluation metrics primarily include:

Execution efficiency. It refers to the ratio of the number

of unique exceptions detected by the tests to the execution

time in minutes. A higher value indicates a better exception

detection capability within a unit of execution time.
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TABLE I: Evaluation Result of Dynamic Testing on 30 Apps

with Different Combi. Strength

Strategy UniqueExc
Count*

Case
Count

Test Case
Efficiency

Execution
Time

Execution
Efficiency

Adaptive 205 1,919 10.68 4,924s 2.50

1-way
153

(-25.4%)
552

(-71.2%)
27.72

(+159.5%)
1,631s

(-66.9%)
5.63

(+125.3%)

2-way
217

(+5.9%)
2,080

(+8.4%)
10.43

(-2.3%)
5,735s

(+16.5%)
2.27

(-9.1%)

3-way
246

(+20.0%)
6,699

(+249.1%)
3.67

(-65.6%)
18,112s

(+267.8%)
0.81

(-67.4%)

4-way —
19,488

(+915.5%)
— — —

Case efficiency. It refers to the ratio of the number of unique

exceptions detected by the tests to the number of test cases in

hundreds. A higher value indicates a better exception detection

capability within a unit quantity of generated test cases.

Table I compares the evaluation results of automatic dy-

namic testing under different combination strengths. Since the

4-way CT resulted in excessive test cases and high testing

costs, only the number of test cases is listed here for illus-

tration purposes. According to the result, we can draw the

following conclusions:

• Under the 1-way CT, it only takes about 30% of the test

cases under the adaptive strength strategy to detect approx-

imately 75% of unique exceptions. Moreover, it exhibits

relatively high execution and case efficiency, demonstrating

the rationality and effectiveness of our modeling strategies.

• The adaptive strength strategy contributes another 25% of

unique exceptions compared to 1-way CT. Although there

is a slight decrease in efficiency, there is still a marginal

improvement compared to 2-way CT. The overall number

of test cases and execution time remain acceptable.

• When the strength reaches three or even higher, the number

of test cases and execution time rapidly increases. Despite an

increase in detected unique exceptions, there is a significant

decrease in execution and case efficiency, making the overall

testing cost unacceptable.

TABLE II: Comparison on Detected Unique Crashes

Tool Apps Can
be Tested

Avg. Analysis / TestExec Time
(minutes)

Unique
Crashes

ICTDroid 30 / 30 16.4 / 2.7 88

Fax 26 / 30 3.8 / 60.0 58

IntentFuzzer 30 / 30 - / - 24

Table II compares ICTDroid with two available related tools

Fax [7] and IntentFuzzer [8] in terms of the number of unique

crashes detected. Note that the time of IntentFuzzer is ignored

because it only performs two test cases per activity. ICTDroid
found the highest number of unique crashes on all 30 apps

within an acceptable analysis and test execution time.

Meanwhile, we reported six defects on three apps detected

only by ICTDroid with three issues (check README at [5]

for details). Developers from GitHub confirmed all of them.

*For the strategies of the combination strength, we compare the Unique
Exception instead of Unique Crash, since one Unique Crash may correspond
to multiple Unique Exceptions.

VI. RELATED WORK

Regarding Android application testing, the literature review

by Kong et al. [1] indicates that there have been numerous

GUI-based approaches and tools in recent years, like Monkey

[9] and Appium [10]. However, the publicly accessible tools

for automated testing based on ICC are limited. IntentFuzzer

[8] can test all components of an application using empty

Intent or Intent with all null values but without Intent with

valid values and structured data. Hwacha [11] allows fuzzing

tests through ADB using only manually-specified Intent spec-

ifications, while the command line cannot handle extra data

with complex structures. Fax [7] introduces simple static

analysis strategies to extract ICC parameter structures to aid

multi-entry GUI testing. However, its analysis precision is

restricted, and it needs to consider the interactions between

parameters sufficiently. The previous version of ICTDroid,

known as AACT, was utilized by Deng et al. [12], serving

as a foundation upon which enhancements were made to both

test generation methodologies and test execution capabilities.

VII. CONCLUSION

This paper presents ICTDroid, a precise and efficient au-

tomated testing tool for Android application components.

ICTDroid overcomes the challenges in automatic parame-

ter analysis and complex-structural data representation using

state-of-the-art static analysis techniques for ICC. It employs

an adaptive-strength CT method to reduce the test set, striking

a balance between testing cost and error detection capability.

Furthermore, ICTDroid constitutes a viable solution for cost-

sensitive scenarios, such as feature testing after porting of

Android apps onto emerging architectures like RISC-V.
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