
SPrinter: A Static Checker for Finding

Smart Pointer Errors in C++ Programs

Xutong Ma1,3,†, Jiwei Yan2,†, Yaqi Li2,3,‡, Jun Yan1,2,3,†,§ and Jian Zhang1,3,†,§

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences

Email: †{maxt, yanjw, yanjun, zj}@ios.ac.cn, ‡liyaqi17@otcaix.iscas.ac.cn

Abstract—Smart pointers are widely used to prevent memory
errors in modern C++ code. However, improper usage of smart
pointers may also lead to common memory errors, which makes
the code not as safe as expected. To avoid smart pointer errors
as early as possible, we present a coding style checker to detect
possible bad smart pointer usages during compile time, and
notify programmers about bug-prone behaviors. The evaluation
indicates that the currently available state-of-the-art static code
checkers can only detect 25 out of 116 manually inserted errors,
while our tool can detect all these errors. And we also found 521
bugs among 8 open source projects with only 4 false positives.

Keywords-C++ Smart Pointer; Memory Error; Coding Styles

I. INTRODUCTION

In the programming languages without garbage collection,

such as C/C++, Pascal, etc., it is the programmer’s job to

manually deallocate the memory that is dynamically allocated

in the program, which is always verbose and bug-prone. As a

result, the improper manual deallocations will lead to lots of

common known memory errors (ME), such as memory leak

(ML), use after free (UaF), double free (DF), and so on.

To prevent these MEs, smart pointers (SP) are introduced

into C++ to automatically deallocate the memory pieces that

are no longer used. Although they are very helpful to reduce

MEs, improper usages can also introduce new MEs, which are

sometimes even harder to detect. We call them smart pointer

errors (SPE).

There are mainly three factors leading to SPEs. First, the

concept of the SP is unfriendly to beginners. It is difficult

to explain the differences between the four kinds of standard

C++ SPs [1]. Second, the API usage of the SP classes is

also confusing. We have found more than 5,500 questions

about SPs on StackOverflow by now, and the number is

still increasing. Third, since SPs are used to avoid MEs,

programmers may be credulous to their code when SPs are

used, which will make related errors more likely to be ignored.

Therefore, an SPE checker is required to detect the bug-prone

and unsafe usages during compilation, so as to avoid serious

MEs ahead of time.

We have also found similar requirements in the industry.

The earliest functionality requirement of checking SPEs was

proposed in 2012 [2]. However, there are still very limited

§Corresponding authors

choices of SPE checkers available in practice by now. On

one hand, some C++ specific static analyzers like CSA [3]

can detect a small part of SPEs through their ME checkers.

However, their bug reports will mark only the MEs (e.g. the

second deallocation site in a DF error), rather than the misused

smart pointer APIs, which makes the reports inconvenient to

use. On the other hand, other tools like Clang-Tidy [4] and

Cppcheck [5] can only detect deprecated or out of date usages

that will not directly lead to MEs.

In this paper, we present SPrinter1, a static coding style

checker for detecting SPEs and avoiding possible MEs. We

extracted 10 error patterns by manually reviewing about 800

smart pointer related issue reports on GitHub and questions on

StackOverflow, and SPrinter is implemented based on these

extracted patterns.

We evaluate SPrinter on the benchmark composed with 32

manually designed instances and 8 open-source C++ projects.

According to the experiments, SPrinter can find all 116 in-

serted errors in the 32 instances, while Cppcheck can only find

25 of them. For the open-source projects, SPrinter reported

521 errors, and 517 of them are true positives.

II. SMART POINTERS

Smart pointers are designed according to the principle of

Resource Acquisition Is Initialization (RAII), which indicates

that the life cycle of the allocated memory is bound with

a smart pointer object. A smart pointer object acquires the

memory when it is constructed, keeps the memory valid to

access in its scope, and deallocates the memory when it is

destructed. The ownership to the memory can be held by one

or more smart pointers, and it can be therefore categorized

into two types, the exclusive and the shared.

The exclusive ownership indicates that the memory is

uniquely occupied by one smart pointer object (for unique and

auto pointers). Therefore, the ownership can only be moved

from one smart pointer object to another, and the original

smart pointer object will reference the null pointer, which is

an invalid address, after the ownership is transferred.

For the shared ownership, the memory can be shared be-

tween multiple smart pointers (for shared and weak pointers).

To manage those owners, the reference counting model is

1Available at: https://github.com/Snape3058/SPrinter.

1122

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00117

TABLE I: Detailed Error Patterns Checked in SPrinter

Patterns Errors

1. Unconscious ownership transfer.

1.1. Using auto pointers in STL containers.1 UaF
1.2. Declaring private auto pointer fields with default

copy constructor and assignment operator.
UaF

2. Leaked ownership.

2.1. Unused return values of release method.2 ML, DF
2.2. Using release method as an observer. ML, DF
2.3. Deallocating the return value of the get method. DF

3. Forked ownership.
3.1. Using raw pointers to initialize smart pointers. DF, FMnH

3.2. Multiple initializations with the same raw pointer.3 DF, FMnH

4. Invalid memory ownership.
4.1. Using non-heap memory to initialize a smart pointer. FMnH
4.2. Array and non-array type mismatch. NDTM
4.3. Using weak pointers without checking for validity. UaF

1 Fully available in Cppcheck.
2 Fully available in Clang-Tidy.
3 Checked in Cppcheck, but the diagnostic information is confusing.

used to decide when the memory should be deallocated. And

when the last owner pointer is being destructed, the memory

will be finally deallocated. To prevent the ML errors caused

by circular referencing, the weak pointers are introduced to

reference the memory without sharing the ownership (the

reference number will not be modified), and they should be

cast to temporary shared pointers before being used.

To be compatible with the functions that will deallocate

its argument pointer in it (the sink functions), the ownership

can also be released to another owner. Then the programmers

should make sure the ownership is properly transferred and

the new owner will finally deallocate the memory.

Violating the principle of RAII can make the program bug-

prone. Common violations, including unconscious ownership

transfer, leaked ownership, forked ownership, and invalid

memory ownership, can lead to different kinds of MEs. There-

fore, the classes using SPs should be well designed and the

SPs should also be carefully used. The corresponding error

patterns will be described in detail in the next section.

III. SMART POINTER ERROR PATTERNS

In this section, we demonstrate the 10 error patterns with

some detailed examples. The patterns are categorized with the

type of common RAII violations mentioned in the previous

section. Table I describes the SPE patterns and corresponding

memory errors in detail. In addition to the errors (ML, DF and

UaF) mentioned in Section I, the freed memory not on heap

(FMnH), and new and delete operator type mismatch (NDTM)

errors can also be checked with SPrinter. Since the ownership

transfer will make the original SP references a null pointer,

we also call the null pointer dereference error caused by a

transferred smart pointer a UaF error for simplicity.

A. Unconscious Ownership Transfer

The first group of patterns are categorized as unconscious

ownership transfer operations. Since the ownership transfers

of auto pointers are carried out with copy assignments, it may

be incorrectly and thoughtlessly used. Therefore, every auto

pointer transfer should be carefully checked.

1 class Group1 {

2 public:

3 void foo(auto_ptr<int> ap) { x = *ap; }

4 private:

5 int x;

6 auto_ptr<Group1> self;

7 };

8
9 void bar() {

10 vector<auto_ptr<Group1>> obj(2);

11 *obj[1] = *obj[2];

12 auto_ptr<int> ap(new int(3));

13 obj[1]->foo(ap);

14 *ap = 3;

15 }

Fig. 1: Example of unconscious ownership transfer.

Figure 1 shows an example of the errors in this group. There

are two diagnostic notices generated for the example based on

pattern 1.1 (line 10), pattern 1.2 (line 6).

When auto pointers are used as the element type of an STL

container (line 10), the assignment operations between the

container elements may lead to undesired ownership transfers,

which can lead to unanticipated deallocations of the managed

memory. Therefore, it is dangerous to put an auto pointer

inside an STL container, and this usage should be warned.

Similarly, if a private auto pointer field is declared inside a

class without copy constructors and copy assignment operators

defined (line 6), the copy operation between two objects of

this class (line 11) will make the ownership transferred rather

than the value copied. Since the syntax of C++ allows such

kind of operations, the programmers may implicitly transfer

the ownership by accident.

To help the programmers to debug implicit ownership

transfer, we add a debug checker to present all ownership

transfers of auto pointers (line 13). As presented in the

example, the ownership is transferred from variable ap to the

argument of function Group1::foo, then the variable ap

will be assigned nullptr implicitly, and the dereference on

line 14 will trigger a UaF error. With this debug checker, the

programmer can be explicitly notified of all implicit transfers

and correct the bug conveniently.

B. Leaked Ownership

The release method is used to release the ownership

to other owners, while the get method is an observer to

access the managed memory. Because of their similarity,

programmers may be confused with these two methods [6].

If the released ownership is not taken by another owner,

the memory will be probably leaked. And if the memory is

deallocated through the observer, it will probably be accessed

or deallocated again after becoming invalid.

However, when checking the real-world code based on

the patterns, we found another kind of ownership leak with

these two methods. In the example shown in Figure 2,

class Container takes ownership from outside with method

take (line 4), and the managed memory pieces are deal-

located in the destructor of the class (line 7). Since the

take method cannot take the ownership until the parameter

pointer is stored in vector v, one safe way (no memory leak

1123

1 class Container {

2 public:

3 // Acquire ownership:

4 void take(int *p) { v.push_back(p); }

5 // Destruct memory:

6 ˜Container() {

7 for (auto &i : v) delete i;

8 }

9 private:

10 vector<int *> v;

11 } C;

12
13 int foo() {

14 unique_ptr<int> p = make_unique<int>(42);

15 // Transfer ownership from p to C.v:

16 C.take(p.get());

17 // Release ownership of p:

18 return *p.release();

19 }

Fig. 2: Example of leaking ownership to raw pointer container.

possibility) to transfer the ownership is to separate it into

two steps: 1) the Container class accesses the memory

through the observer of the smart pointer (line 16), and then

2) the ownership is released from the smart pointer after the

ownership is successfully transferred (line 18).

Generally speaking, there are no memory errors during

this process. However, the design of the class Container

violates the principle of RAII, which makes the ownership

leaked through the get method, rather than released directly

to another owner. If the user forgets to release the ownership,

or smart pointer p is a shared pointer, it will probably lead to

a DF error.

C. Forked Ownership

Figure 3 presents an example of forking the ownership to

two shared pointers. Since different smart pointer objects have

their independent destructors, one address can only be used to

initialize one smart pointer object. Otherwise, it will trigger

a DF error. For shared pointers, the ownership is shared by

copy assignments, rather than creating another shared pointer

with the same address. And this feature is also confusing to

beginners. One simple way to initialize different smart pointers

with the same address is to assign the address to a raw pointer

variable. To prevent this kind of error, we reported the smart

pointers initialized with raw pointers (line 3 and line 4).

D. Invalid Memory Ownership

The invalid memory ownership describes three kinds of

invalidity: the ownership from non-heap memory, mismatched-

type memory, and expired memory. Figure 4 presents a de-

tailed example.

Non-allocated memory should not be deallocated, hence

they should not be managed by smart pointers (pattern 4.1).

However, we still found some questions asking about whether

1 void foo() {

2 int *p = new int(42);

3 shared_ptr<int> sp1(p);

4 shared_ptr<int> sp2(p);

5 }

Fig. 3: Example of forked ownership.

1 void foo() {

2 int v = 42;

3 unique_ptr<int> up(&v);

4 auto_ptr<int> ap(new int[42]);

5 weak_ptr<int> wp;

6 { shared_ptr<int> tp(new int); wp = tp; }

7 *wp.lock() = 0;

8 }

Fig. 4: Example of invalid memory ownership.

they can use smart pointers managing non-allocated mem-

ory [7]. Therefore, the & operator computed addresses, array

addresses, and literal addresses will be warned when they are

used to initialize a smart pointer object. An example is shown

on line 3.

Besides, a new array operator (new[]) should not be paired

with a delete object operator (delete), and vice versa for

new and delete[]. A checker is added to detect the type

mismatch of new operators and the template argument of smart

pointers (line 4, pattern 4.2), which determines the type of

delete operator used in its destructor. This check is also a

functionality requirement for CSA proposed in 2012 [2].

Since the weak pointers do not share the ownership, they

should be cast to a temporary shared pointer (with the

lock method) before being used. However, if the referenced

memory gets expired (already been deallocated), which may

frequently happen under multi-thread environments, the cast

will fail, and dereferencing such temporary shared pointers

will trigger a UaF error (pattern 4.3). To avoid such errors,

we check all the dereference sites of the shared pointers who

are returned by the lock method, and report an error if the

shared pointer is not checked (line 7).

IV. IMPLEMENTATION

We implement our checkers on top of the Clang-Tidy

framework, which is a widely used tool and can be integrated

into various IDEs and editors. When a source file is being

checked, it will be first compiled to an Abstract Syntax

Tree (AST). Then the registered AST matchers (analogy with

regular expressions for strings) are used to filter the AST sub-

trees that are concerned in this check. Finally, the matched

sub-trees are checked by the related AST inspectors.

We implement our AST matchers according to the above

error patterns, and the matched sub-trees are further checked

to ignore invalid or unnecessary matches. Since it is difficult to

compute the real life cycle of the allocated memory, SPrinter

does not provide any fix suggestions. As checkers in Clang-

Tidy are managed with modules based on their categories,

we also create a new module called smart pointer safety to

manage all our matchers and inspectors. The usage of SPrinter

is the same as Clang-Tidy. The SPEs can be checked by simply

enabling our smart pointer safety module.

V. EVALUATION

To evaluate the effectiveness of SPrinter, we ran it against

Cppcheck (version 1.86) on 32 manually designed benchmark

instances with 116 inserted errors. And we also tested it on 8

open-source projects, whose reports are manually reviewed. To

avoid the impacts of other checkers in Clang-Tidy, we enabled

1124

TABLE II: Results of Manually Designed Instances

Pattern ID All Errors SPrinter Cppcheck

1.1 12 12 12
1.2 5 5
2.1 16 16
2.2 6 6
2.3 6 6
3.1 16 16
3.2 16 16 11
4.1 21 21
4.2 10 10 2
4.3 8 8

Total 116 116 25

only our smart pointer safety module during the evaluation.

As the total execution time is dominated by the compilation

process, there is no need to evaluate the checking overhead.

The command line output of running SPrinter on the code in

Figure 3 is presented below:

4 warnings generated.

temp.cpp:2:8: warning: Raw pointer used for

initiating multiple smart pointers.

int *p = new int(42);

temp.cpp:3:23: warning: Initiating smart

pointer with a raw pointer.

shared_ptr<int> sp1(p);

temp.cpp:2:8: note: Referenced raw pointer:

int *p = new int(42);

...

Table II presents the statistics of reports generated by

SPrinter and Cppcheck on our manually designed benchmark

instances. The columns indicate the ID for each pattern, the

number of all the bad usages inserted in the instances, and

the number of reports generated by SPrinter and Cppcheck.

According to the table, our SPrinter can find all the inserted

errors, while Cppcheck can find only a few of them.

Table III presents the statistics of reports for selected open-

source projects generated by SPrinter. The columns indicate

the problems we found in different projects. According to

the table, SPrinter can find 521 problems among different

patterns in all the selected projects. To ensure the correctness

of the reports, we manually inspected every report generated

by SPrinter. And we found that only the four reports under

pattern 3.2 are false positives, and the reports under pattern 3.1

do describe true problems, but will not lead to fatal errors.

According to the table, there are three patterns (1.1, 2.3 and

4.2) that cannot be matched in open-source projects. As these

patterns will trigger program crashes immediately after they

are executed, there is almost no chance to find them in a fully

tested project.

VI. RELATED WORKS

The concept of RAII is similar to the pointer ownership

model (POM) [8], which has been widely used to check or

prevent memory errors of C programs in a lot of works. D. L.

Heine et al. [9] introduced an ownership model that limits the

ownership occupied by only one owner to prevent ML and DF

errors, and developed a tool to check the potential violation

of the ownership model. In AliasJava [10], J. Aldrich et al.

TABLE III: Results of Open-Source Projects

Ru.
BI

CC CH CS GS LP MS OT VC Total

1.1 0
1.2 10 10
2.1 1 6 8 6 7 28
2.2 1 2 3
2.3 0
3.1 11 2 8 43 7 6 77
3.2 2 2 4
4.1 5 5
4.2 0
4.3 36 358 394

Total 2 17 12 16 58 14 36 366 521

The abbreviations indicate the following projects: centreon-clib (CC), Click-
House (CH), cppcms (CS), geos (GS), LLVM-Project (LP), MySQL-Server
(MS), opendht (OT) and vmpc (VC).

proposed a memory ownership model with detailed ownership

description, and the ownership type cannot be changed. This

model is used to annotate the variables in a Java program, and

help the programmers to understand its data flows. M. Maalej

et al. [11] introduced an extension to the Ada language to

provide a new feature similar to C++ smart pointers. Besides,

B. Bence et al. [12] also analyzed the overheads of using

smart pointers, which is a very useful suggestion for the

programmers of performance-sensitive projects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a static coding style checker

for C++ smart pointer errors caused by API misuses of the

smart pointer classes. As a systematic tool focusing on SPEs,

SPrinter can really help programmers to detect smart pointer

errors and prevent potential memory errors. In the future, we

will continue working on checking smart pointer errors with

precise static analysis methods.

ACKNOWLEDGMENT

This work is supported in part by the Key Research Program

of Frontier Sciences, Chinese Academy of Sciences (CAS),

Grant No. QYZDJ-SSW-JSC036.

REFERENCES

[1] I. Donchev et al., “Experience in teaching C++11 within the under-
graduate informatics curriculum,” Inf. in Education, vol. 12, no. 1, pp.
59–79, 2013.

[2] D. Gribenko, “Static analyzer: add smart pointer checker,” http://lists.
llvm.org/pipermail/cfe-dev/2012-January/019446.html, 2012.

[3] “Clang Static Analyzer (CSA),” https://clang-analyzer.llvm.org/.
[4] “Clang-Tidy,” http://clang.llvm.org/extra/clang-tidy/.
[5] “Cppcheck,” https://github.com/danmar/cppcheck.
[6] “What if I delete the pointer that the smart pointer is managing?” https:

//stackoverflow.com/q/30294604, 2015.
[7] “C++ create shared ptr to stack object,” https://stackoverflow.com/q/

38855343, 2016.
[8] D. Svoboda et al., “Pointer ownership model,” in 47th HICSS, 2014, pp.

5090–5099.
[9] D. L. Heine et al., “A practical flow-sensitive and context-sensitive C

and C++ memory leak detector,” in PLDI, 2003, pp. 168–181.
[10] J. Aldrich et al., “Alias annotations for program understanding,” SIG-

PLAN Not., vol. 37, no. 11, pp. 311–330, 2002.
[11] M. Maalej et al., “Safe dynamic memory management in Ada and

Spark,” in Ada-Europe, 2018, pp. 37–52.
[12] B. Babati et al., “Comprehensive performance analysis of C++ smart

pointers,” Pollack Per., vol. 12, no. 3, pp. 157–166, 2017.

1125

