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Abstract—Android apps are getting bloated by continuously
integrating possibly unnecessary functional modules. This trend
of software bloat negatively impacts the performance of static
analysis tools. As a result, analysis reports are more likely to
contain false positives and experience analysis timeouts. Con-
sequently, developers are forced to manually inspect and trou-
bleshoot errors, as well as restart the analysis process, making
analyzers more time-consuming and less user-friendly. However,
existing approaches for Android app debloating almost only
consider how to remove redundant code elements or functional
features from the perspective of users, thus they are unsuitable
for the analyzer-oriented app debloating task in most cases.

To fill this gap, we propose an Android app debloating
approach that employs a novel Multi-layer Dependence Graph
(MDG) structure to represent the app under analysis. We
hierarchically construct the MDG by sequentially analyzing and
capturing dependence at the class, method, and statement levels.
Throughout this process, we dynamically identify hotspot classes
and narrow down the scope for further dependence extraction,
thereby alleviating the challenge of a too complicated graph
structure caused by the excessive app size. We implement our
approach as the tool FlowSlicer, a novel MDG-based static
Android app debloater. We evaluate FlowSlicer by utilizing it to
debloat the input app first and then observing the performance
difference of two analysis processes which accept the original
and the debloated app as input respectively. The evaluation is
performed on both the hand-crafted and the real-world apps
in our benchmark. Our results show that FlowSlicer is not only
capable of effectively debloating Android apps but also enhancing
the performance of static analyzers. For instance, cooperating
with FlowSlicer, the analyzer FlowDroid could detect 212 more
leaks in real-world apps in our benchmark.

Index Terms—Android, Software Debloating, Static Analysis

I. INTRODUCTION

Android currently dominates the global mobile operating
system market, holding a 71.95% market share in the first
quarter of 2023 [20]. Owing to the portability and conve-
nience of mobile devices, an increasing number of mobile
apps have emerged within the Android ecosystem, becoming
indispensable to everyday life [21]. To ensure the quality and
security of Android apps, numerous static analyzers have been
developed and tailored for features specific to the Android
framework. These analyzers play a crucial role for developers
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in identifying code vulnerabilities, ensuring code quality, and
enhancing security through automated checks. For instance,
one of the renowned static taint analyzers for Android is
FlowDroid [6], which introduces a novel approach by con-
structing a dummyMain class as the entry point for its analysis.
This technique allows for accurate integration of Android
component lifecycle methods into the call graph, enabling
precise modeling of taint data flow and effective detection of
potential data leaks in Android apps.

Behind the prosperity of the Android market lies a largely
overlooked phenomenon—an escalating trend known as “soft-
ware bloat”, which is rapidly spreading across the entire
Android ecosystem. Software bloat, defined as the results
of continuously adding new features to software programs
to the point where the benefit is outweighed by the defects
of resources consuming [17], [24], is gradually becoming a
common phenomenon for Android apps. For instance, as the
largest standalone mobile app in China, WeChat’s installation
package size has increased nearly 600 times in eleven years
from 457KB in January 2011 (version 1.0) [1] to 264MB in
August 2024 (version 8.0.50) [4], which significantly depicts
the current situation of overall Android app size bloating faced
by users and developers.

As for the negative efects of software bloat, a bloated app
may raise various privacy, safety, and resource consumption
problems [17]. From a developer’s perspective, performing
static analysis on bloated apps often leads to inefficiencies,
as static analyzers may get trapped in infinite loops due to
the excessive code volume and the complexity of integrated
functionalities. This, in turn, prevents the tools from pro-
ducing comprehensive analysis results. For example, static
taint analysis aims to track the propagation of sensitive data
within a program. In the context of Android apps, a data leak
occurs when private information (e.g., phone numbers, device
identifiers) flows from sensitive sources to public sinks (e.g.,
the Internet, SMS transmission), resulting in unintended ex-
posure. Automated taint analyzers, such as FlowDroid [6], are
designed to trace tainted information throughout an app and
provide precise insights into how data leaks occur. However,
prior research has demonstrated that most static taint analyzers
struggle to yield reliable results when analyzing real-world



apps collected from Google Play [38]. Therefore, it is crucial
to propose efficient and effective approaches to mitigating the
phenomenon of software bloat in Android apps.

To alleviate Android app bloat, both industry and academia
have proposed a series of debloating approaches and developed
tools to assist users in removing code elements of the target
app. Google Play has set a maximum size limit for app bun-
dles, feature modules, and asset packs that users can download
from the platform [12]. It also released a series of static
analyzers to help developers understand the APK structure,
inspect the source code, and reduce app size [l1]. Prior
academic studies also have presented several approaches to
debloating Android apps. Jiang et al. [17] considered the dead
code as bloated code and identified the dead code in Android
apps statically. Tang et al. [30] identified user-defined features
from different perspectives statically, and asked developers to
debloat the app by only retaining the selective features. To
sum up, existing tools primarily focus on reducing the size
of Android apps downloaded by end users. However, none
of them have implemented a debloating approach specifically
tailored for the static analysis process, i.e., these approaches
are largely ineffective in addressing the challenges developers
encounter when using static analyzers to analyze bloated apps.

To fill this gap, we propose FlowSlicer, a tool that automat-
ically debloats Android apps through multi-layer dependence
graph (MDG) construction and program chopping technol-
ogy. Specifically, we define and extract the class-, method-
and statement-level dependence hierarchically through static
analysis techniques. First, we perform reachability propagation
at the class level to identify hotspot classes while exclud-
ing irrelevant ones from further analysis, thereby effectively
controlling the size of the constructed dependence graph.
Then we merge method- and statement-level dependence to
handle inter-procedural behaviors and construct the MDG as
the program representation. By solving the vertex reachability
problem on the MDG, we obtain a pruned, refined MDG as
the result of program chopping. Based on this chopped MDG,
we eliminate the corresponding code elements, ultimately
achieving debloating of the input app.

We have conducted a series of experiments to evaluate the
effectiveness, efficiency, and code removal capability of our
approach on both hand-crafted apps and complex real-world
apps. We utilize FlowSlicer to debloat apps before inputting
them into the analyzer FlowDroid. The evaluation results
show that FlowSlicer is capable of not only retaining true
positive leaks but also enhancing the precision of FlowDroid
through eliminating false positives. On hand-crafted apps, our
tool successfully identifies all original TP leaks and reduced
38.09% FPs compared to the original results; it helps reduce
the total FlowDroid time of real-world apps by 67.29% and
achieves an average 59.91% FlowDroid time reduction after
debloating. Cooperating with FlowSlicer, FlowDroid could
detect 56 new leaks on the non-time-out benchmark and 156
new leaks on the time-out benchmark of real-world apps.
Moreover, FlowSlicer is capable of removing unnecessary
statements significantly on all our benchmarks.

In summary, this work makes the following contributions.

o We give the definition of the multi-layer dependence graph
(MDG) and achieve a lightweight dependence analysis via
constructing the MDG.

o We propose an Android app debloating approach tailored
for static analyzers based on the MDG.

o We implement our debloating approach in a publicly avail-
able tool FlowSlicer. The evaluations on hand-crafted and
real-world apps show that FlowSlicer is not only capable
of effectively debloating Android apps but also enhancing
the performance of static analyzers.

II. PRELIMINARIES AND MOTIVATING EXAMPLE

This section introduces the related preliminary knowledge
and presents a motivating example to illustrate our ideas.

A. Preliminaries

1) Taint Analysis: Taint analyzers aim at tracking sensitive
“tainted” information by starting at a pre-defined source and
then following the data flow until it reaches a given sink,
reporting precise information about how the sensitive data
may be leaked. Taint analysis can be implemented both
statically and dynamically. We mainly focus on static taint
analyzers for Android, i.e., those that track taint propagation
by analyzing Android app code without actually running it,
including FlowDroid [6], Amandroid [33], DroidSafe [13], etc.
These tools primarily differ in their design choices aimed at
balancing precision and scalability in the analysis process.

2) Program Slicing and Chopping: Since its introduction
in the 1980s [14], [35], program slicing has been employed
for numerous tasks on programs including testing, debugging,
analysis, understanding, etc. A slice of a program is taken
concerning a program point p and a variable x; the slice
consists of all statements of the program that might affect
the value of x at point p. The tuple (p,x) is defined as the
corresponding slicing criterion. Program chopping [15], [16] is
a generalization of program slicing, which expands the concept
of a slicing criterion into two sets of variable instances called
source and sink. Chopping then yields the sub-program that
shows how the definitions of the source instances can affect
the uses of the sink instances.

3) Dependence Graph: Slicing and chopping are related
operations, and both can be performed by solving reacha-
bility problems in a dependence-graph representation of the
program [14], [15], [28]. In the case of intra-procedural
slicing/chopping, the slice/chop can be obtained by solving a
reachability problem on the procedure’s dependence graph. To
solve the inter-procedural slicing/chopping problem, whereas
the dependence graphs for all procedures need to be collected
together to form a global dependence graph. The results
of traversing the global dependence graph are equivalently
mapped to the results of inter-procedural slicing/chopping.

B. Motivating Example

In this subsection, we present an example to illustrate
how our approach is motivated. Considering the alignment



>l public class MainActivity extends Activity {

protected void onCreate (Bundle bundle) {
super.onCreate (bundle) ;
setContentView (R.layout.activity_main);

}

private boolean isOkToShow () {
PackageManager packageManager =
this.ctx.getPackageManager () ;
List 1 = packageManager.
getInstalledApplications (128);//Source
Collection ¢ = checkForLaunchIntent (1);
for (ApplicationInfo appInfo : c) {
String str2 = packageManager.getPackageInfo
(appInfo.packageName, 0).versionName;
//Leakl: source -> appInfo -> sink
Log.d( ’
appInfo.packageName);//Sink
//Leak2: source -> appInfo -> str2 -> sink
Log.d( , str2);//Sink
Yoo}

Listing 1. A Motivating Example with Two Leaks.

between the taint sources and sinks identified by taint
analyzers and the sets of source and sink variables required
for program chopping, we design our Android app debloating
approach specifically to support tainted data-flow leak
detection tasks. The code snippet in Listing 1 shows the
taint leaks in a real-world Android app. From Listing 1
we can see that there are two obvious leaks in the
MainActivity class, which both flow from the source API
getInstalledApplications (int) to the sink API
d(java.lang.String, java.lang.String). The
concrete leak paths are all marked in red.

To comprehensively detect potential data leaks before ex-
ecuting the app, one way is to adopt widely used static
taint analyzers such as Flowdroid. However, in our experi-
ments using FlowDroid’s runInfoflow () API with default
configurations, no taint flow leaks were reported within the
predefined timeout period. To investigate this issue, we man-
ually examined the analysis reports and traced FlowDroid’s
workflow step by step. Finally, we observed that the analysis
was significantly delayed during the data-flow solving phase,
where the framework attempts to determine whether any
feasible path exists from a source to a sink.

This performance bottleneck primarily stems from the com-
plexity of solving data-flow equations over a large domain of
data facts. Specifically, FlowDroid adopts the IFDS frame-
work [27], whose time complexity is O(|E|-|D|3), where |E)|
denotes the number of control-flow edges and | D| denotes the
size of the data-flow domain. Given this cubic dependency,
the sheer number of data facts significantly impacts analysis
performance and scalability.

Rather than directly applying taint analyzers, an alternative
approach is leveraging Android app debloating tools to pre-
process the app before conducting taint analysis. XDebloat,
presented by Tang et al. [30], is a novel Android app de-

bloating tool that allows users to customize the features they
want to keep or remove in different granularity. However, the
tool does not perform specific source and sink identification
for taint analysis. It cannot effectively eliminate unnecessary
code while preserving essential data-flow paths, which is a
common limitation to all Android debloating tools targeted
at end users. As for program slicers, we experimented with
Jicer [25], a multi-functional static slicer for Android apps.
However, applying Jicer to our motivating app presented
several intractable challenges. For instance, the GUI may
freeze when selecting slicing criteria, and Jicer may fail to
execute properly due to the excessive size of the globally
constructed dependence graph.

Motivated by these attempts, we propose a static analysis
pre-processing approach that aims to reduce the size of the
data-flow domain by eliminating code elements and corre-
sponding data facts that are irrelevant to taint propagation. By
pruning such irrelevant information prior to taint analysis, our
apporach effectively reduces the computational burden of the
IFDS solver, enabling faster and more scalable taint analyses.

III. METHODOLOGY

This section presents the workflow of our debloating ap-
proach and the details in each step.

A. Overview

Fig. 1 gives the overview of our debloating approach. The
input is the original binary Android app, and the output is the
generated app which has been debloated. As shown in Fig. 1,
our approach processes the input app through two main steps.
First, it performs the multi-layer dependence graph construc-
tion step (Section III-B) to build the dependence graph, which
contains the intra- and inter-procedural dependence between
statements in the target app. Then in the debloating stage
(Section III-C), our approach solves the reachability problem
on the dependence graph to form a chopped dependence
graph and removes the unnecessary code elements of the
app. To ensure the analyzability of the debloated app, it also
replenishes necessary extra code (e.g., entry point callbacks
and the corresponding statements in the Android app).

B. Multi-layer Dependence Graph Construction

Before the chopping stage, we first perform static analysis
on the input app to extract the dependence through the level
of class, method, and statement hierarchically. Specifically, we
define five kinds of dependence relationships between classes,
two kinds of dependence relationships between methods, and
seven kinds of dependence relationships between statements
in total. At the stage of collecting class-level dependence, we
locate the source-sink invocations and execute the reachability
propagation step to find out hotspot classes which will be re-
served in the following method- and statement-level analyses.
After extracting the method- and statement-level dependence,
we will combine them to form a Multi-layer Dependency
Graph (MDG) to serve the program chopping phase.
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Since our MDG is different from the classic dependence
graphs described in prior program slicing work [14], [28],
[35] in the feature of hierarchical dependence extraction, we
first define a Complete Dependence Graph (CDG) constructed
from the input app and then present the difference between our
MDG and the CDG in detail.

Given an input Android app P, the definition of a complete
dependence graph is as follows:

Definition 1. The complete dependence graph (CDG) for app
P is a directed graph G = (B,V, R, E), where

o B represents the basic information of the target program,
which is a triple (S, M, C). Sets S, M, and C denote the
sets of all statements, methods, and classes in P.

o V is a set of nodes. Each node v € V is triple (s,m,c),
which represents a statement s € S in the method m € M
and the class c € C.

o R is a set of statement-level dependence relationships. For
each r € R, r is statement-level dependence, which is a
homogeneous relation over the set V, r CV x V.

o FE is a set of directed edges, which satisfies E CV x V.

In a CDG, the node set V' comprises all statements from
the input app, resulting in an excessively large dependence
graph and significantly slowing down the subsequent debloat-
ing process. In contrast, when constructing our MDG, we
first extract the class dependence and perform a reachability
propagation step to retain only hotspot classes. By excluding
irrelevant classes early in the process, we eliminate numerous
unnecessary dependence extraction operations in later stages
of the analysis. This substantially reduces the computational
overhead and mitigates the challenges associated with analyz-
ing a large-scale dependence graph.

We then introduce how to extract dependence in the order
of classes, methods, and statements.

1) Class Level Analysis: Our multi-layer graph construc-
tion approach starts with the class dependence extraction
step. The class-level dependence contains the class hierarchy
relations, invocation relations, field dependence relations, etc.
Given the input Android app P and the set C' containing all
classes in P, the class-level dependence is defined as follows:

Definition 2. The class-level dependence denoted by R¢ is a
homogeneous relation over the class set C, which contains

Code Addition
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o the class inheritance relation: For A, B € C, class A is
a subclass of class B.

o the interface implementation relation: For A,B € C,
class A implements the interface B.

o the outer class relation. For A,B € C, class A is the
outer class of class B

o the field dependence relation. For A, B € C, an instance
of class A is the field variable of class B.

o the calling relation. For A, B € C, there exists a method
m in class A that invokes a method n in class B.

Class Dependence Extraction. We leverage the class hi-
erarchy query APIs provided by the Soot Framework (e.g.
the getSuperclass () method in SootClass. java)
to capture the dependence between classes, including the
inheritance relation, the interface implementation relation, and
the outer class relation. In addition, if an instance of a class
serves as a field variable of another class in a specific situation,
the field dependence between the two classes will be collected
by our approach. Lastly, we implement the Class Hierarchy
Analysis (CHA) algorithm [10] to extract calling relationships
between classes in cases where method invocations occur.

Hotspot Class Selection. After collecting the class-level
dependence, we select the hotspot classes through transitive
dependence relationships to narrow down the analysis scope.
Specifically, in this step, we identify the source and sink API
invocation sites in P and perform a reachability propagation to
filter and exclude classes not reachable from original source-
sink invocation sites through the dependence edges, thus
obtaining the hotspot class set denoted by C'r. We use the
denotation “R” to represent “reachability” and each class in
the set Cg is reachable from or to the source-sink invocations
through the class-level dependence.

Algorithm 1 depicts the complete process of source-sink
identification and reachability propagation. As shown in phase
1 of algorithm 1, for a given app, our approach identifies
and records its source-sink API invocation sites as the slicing
criteria for the chopping step. FlowDroid provides a compre-
hensive and well-maintained list of default configurations for
common source-sink APIs in Android app. By comparing with
the API list in lines 5-13, we systematically detect all source-
sink invocations appearing in the app, analyzing statements
sequentially. Notably, since a few source and sink APIs listed



Algorithm 1 Source-Sink Identification and Reachability
Propagation
Input: P - a given app.
C - the set of all classes in the app P.
L - the default source and sink API list.
R¢ - the collected class-level dependence.
Output: CR - the hotspot classes.
{Phasel: Source-Sink Identification.}
1 manifest < processManifest(P);
: permissions < readPermissions(manifest);
: sourceSinkMap < 0;
M <+ 0;
: foreach ¢ € C, m € c.methods(), u € m.units() do
foreach api € £ do
if needsPermission(api) then
(¢, m,u) < checkEquality(u, api, permissions);
else
10: (¢, m,u) < checkEquality(u, api);
11: end if
12: end for
13: end for
{Phase2: Reachability Propagation.}
14: graph < buildAdjacencyGraph(Rc¢);
15: sccGraph <+ extractSCC(graph);
16: Lg < retrieveDetectedSourceSinkList();
17: Cr < DFS(Lg, sccGraph);
18: sccGraphReversed < reverseEdges(sccGraph);
19: Cr < DFS(Lg, sccGraphReversed);
20: return Cg;

LRI N RN

by FlowDroid require user-granted permissions to be invoked
normally, we collect the permissions defined in the manifest
file of the app in line 2 and refer to them when judging
whether a statement invokes the source-sink API or not in
lines 7-10. Extracting permissions helps our approach avoid
false positives in scenarios where there is a source-sink API
invocation but no permission is granted.

Phase 2 of algorithm 1 gives the basic procedures of
the reachability propagation. In line 14, we first construct
the adjacency graph through class-level dependence and then
extract the Strongly Connected Components (SCC) [31] to
condense the adjacency graph into a Directed Acyclic Graph
(DAG) in line 15. After that, we perform the depth-first search
algorithm on the DAG in line 17 to record all traversed classes
reachable from identified source-sink invocations. At the same
time, we reverse the DAG through its edges and perform an
identical depth-first search on the reversed graph in line 19
to collect classes reachable to the source-sink invocations.
Finally, we obtain the set of hotspot classes as the output of
algorithm 1, denoted by C'r. Thus we have managed to narrow
the scope of analysis from the set C containing all classes in
the app to the set C'r containing all reachable classes through
class-level dependence.

2) Method Level Analysis: Method-level dependence pri-
marily captures inter-procedural behaviors, including method
invocations and data flows between fields and local variables.
Given that parameter transmission and return values can prop-
agate sensitive data, accurately modeling method invocation
behaviors is both valuable and necessary for precise program
analysis. However, the Android framework introduces signif-
icant challenges to invocation dependence extraction, leading

to limited effectiveness in traditional approaches. One major
difficulty arises from Android’s event-driven programming
model, which relies heavily on callback methods. These call-
backs can be triggered by user interactions or system events,
creating dynamic execution paths that are difficult to detect
through static analysis. Additionally, Android components
(e.g., Activities) define predefined lifecycle methods, which
the framework invokes at various execution stages. Since the
Android runtime manages the order of execution dynamically,
accurately capturing invocation dependence across different
lifecycle phases further complicates the analysis.

Given the set C'r and the set My containing all methods
of Cr, we define the method-level dependence as follows:

Definition 3. The method-level dependence denoted by R,
is a homogeneous relation over the set Mg, which contains

o the method invocation relation: For A, B € Mg, method
A invokes method B explicitly or implicitly.

o the inter-procedural field-data relation. For A, B € Mp,
method A defines the field variable used in method B.

Method Dependence Extraction. In detail, we extract the
invocation dependence from the following two aspects:

« Callback Invocation. We implement our invocation de-
pendence extraction approach atop FlowDroid’s dummy-
Main mechanism. FlowDroid provides interfaces for col-
lecting lifecycle methods and callback methods, allowing
us to systematically link them to the constructed dummy-
Main class in a flexible order. By leveraging dummyMain
as a centralized entry point, we can traverse the call
graph more efficiently, eliminating the need to process all
potential entry points individually.

o Implicit Method Invocation. Android apps also allow
implicit method calls. For reflection, to identify the tar-
get of the reflection, we utilize FlowDroid to iden-
tify all propagated string constants. For inter-component
communication (i.e., ICC), we support inputting the
analysis result of ICCBot [37] to detect ICC in the
target app. For asynchronous tasks, we follow Tang
et al. [30] and add the following edges to the call
graph: AsyncTask.execute() — onPreExecute(), and
onPreExecute() — doInBackground(), etc.

The inter-procedural field-data dependence between fields
and local variables is modeled through a reaching definition
analysis. Fields are never referenced directly in Jimple, they
are always assigned to local variables before being defined
or used. In consequence, to detect which definitions reach
which uses of a certain field, we implement the classic
reaching definition analysis approach [3] to conclude the field
dependence relations through the def-use chains of fields in
classes of the set Cg.

Source-Sink Pairing on Invocation Dependence. After
extracting the invocation dependence and locating source-sink
invocations in the given app, our approach performs a source-
sink pairing step on the method-level dependence to figure out
whether there are no invocations from a certain source API to



all sink APIs. Once this case happens, we will set these source
APIs excluded from the following analysis, i.e., we will not
take these API invocation statements as slicing criteria in the
phase of chopping. Similarly, if there are not any invocations
to a certain sink API, these sink APIs will not contribute to
the leak detection and thus need to be excluded.

We implement the source-sink pairing approach through
the state-of-the-art reachability querying algorithm named
IP+ [34], which utilizes a randomized labeling approach to
compute labels and answer reachability queries on large-scale
graphs. After constructing the adjacency graph according to
the collected invocation dependence, we have successfully
transformed the pairing problem on the method-level depen-
dence to the reachability querying problem from source to sink
API on the graph and utilized the /P+ algorithm to update the
detected source-sink invocations.

3) Statement Level Analysis: Given the method set Mg,
we denote the set containing all statements of My by the set
Sr and define the statement-level dependence to illustrate the
dependence relationship between statements as follows:

Definition 4. The statement-level dependence denoted by Rg
is a homogeneous relation over set Sg, which contains

e the control dependence relation. For A,B € Sg, the
statement A is control-dependent on the statement B.

o the data dependence relation. For A,B € Sg, the
statement A is data-dependent on the statement B.

Statement Dependence Extraction. In this step, we extract
intra-procedural dependence between statements.

When a statement s; € Sg is control-dependent on another
statement s; € Spg, the execution of s; depends on the
execution of s;. For example, s; could be the head of an if-
branch while s; belongs to its body. We have manually added
an entry node for every method and set the return statements
and the throw statements as the exit nodes. The entry node
has control dependence on all statements in the method.

A statement s; € Sp is data-dependent on another statement
s € Sg, if a variable defined in s; is used in s; and
there are no intervening uses in between. As for the im-
plementation, we employ Soot’s post-domination computation
to finish the control dependence analysis and extract data
dependencies between statements through an intra-procedural
reaching definition analysis [3]. The data dependence analysis
leverages StubDroid’s [5] method summaries for Android and
Java libraries, mapping inputs (e.g., method base, parameters)
to outputs (e.g., fields, return values). This enables determining
redefinitions of base objects or parameters without directly
analyzing the library method, thus enhancing the scalability.

Method and Statement Dependencies Merging. To ac-
complish the inter-procedural analysis tasks, we merge the
method- and statement-level dependence to form the expanded
inter-procedural statement-level dependence. During the merg-
ing process, we follow the classic approaches to additionally
extracting parameter-in, parameter-out, and summary depen-
dence [28]. Specifically, for every method invocation, we

record key information including the call site, the callee, the
actual-in and actual-out statements at the call site, the formal-
in and formal-out statements in the callee procedure, and so
on. After collecting these elements, we just add statement invo-
cation, parameter-in, parameter-out, and summary dependence
according to their definitions. For instance, whenever a method
is invoked, the statement invocation dependence between the
invoking statement and the entry node of the invoked method
is added to the dependence graph. Due to space constraints, we
do not provide detailed definitions of parameter-in, parameter-
out, and summary dependence. Readers are encouraged to
refer to the paper [28] for a deeper understanding of these
concepts in the context of program slicing.

Thus we re-define the expanded statement-level dependence
as follows:

Definition 5. The expanded statement-level dependence de-
noted by Rg is an expanded set based on the statement-level
dependence Rg, which additionally contains

o the statement invocation relation. For A, B € Sg, state-
ment A is the call site statement and statement B is the
entry statement of the called method.

o the parameter-in relation. For A, B € Sg, statement A is
the actual-in statement at call-site and statement B is the
corresponding formal-in statement at callee.

o the parameter-out relation. For A, B € Sg, statement A
is the formal-out statement at callee, and statement B is
the corresponding actual-out statement at call-site.

o the summary relation. For A,B € Sg, statement A is
the actual-in statement, and statement B is the actual-out
statement at the same call site.

o the statement field-data relation. For A, B € Sg, state-
ment A defines field variables used in statement B.

4) MDG Construction: As constructing CDG is complex
and time-consuming, we design a series of strategies during
the multi-layer dependence analysis process. Based on this
analysis, we can construct a more concise dependence graph
structure named the multi-layer dependence graph (MDG). We
define the MDG as follows:

Definition 6. Given a source-sink API list L, a multi-layer
dependence graph (MDG) for app P is denoted by Gp; =
(Bms Vs Rsy, Enr), where

e By denotes the narrowed analysis scope in the target
program, which is a tripe (Sr, Mgr,CR). Set Sr, Mg,
and Cg denotes the set of L-related statements, methods,
and classes in ‘P respectively.

o Vs is a set of nodes. Each node v € V) is tripe (s, m, c),
which represents a statement s € S in the method m €
Mg and the class ¢ € Cg.

e Rg. is the expanded statement-level dependence.

o Ey is a set of directed edges, which satisfies Epy C Vi X
Var.

According to the MDG definition, we hierarchically extract
class-, method-, and statement-level dependence and merge



them into inter-procedural statement-level dependence. The
MDG is constructed by adding these dependence as edges
between statement nodes. By identifying class-level depen-
dence and hotspot classes, we effectively reduce the size of
the node and edge set, generating a smaller dependence graph
than the CDG. Finally, we merge method- and statement-level
dependence to complete the MDG construction.

C. Debloating

After constructing the MDG, we use it as input for the de-
bloating stage. This stage consists of two phases: the chopping
phase, which applies a program chopping algorithm to slice the
MDG and corresponding code in the app, and the supplement
phase, which restores necessary code elements to ensure the
debloated app remains analyzable by static analysis tools.

Program Chopping. Given the source-sink API, our ap-
proach sets the source-sink invocation list as the chopping
criteria. Following the definition of chopping on a dependence
graph [16], we apply a vertex-reachability algorithm on the
MDG to obtain a chop. Specifically, we alternately perform
backward slicing from the to-criteria and forward slicing from
the from-criteria to construct a chopped MDG. Since the
dependence graph represents the target program, removing a
node in the graph naturally corresponds to eliminating a state-
ment in the actual program. Thus, we utilize the chopped MDG
as a reference to remove the corresponding code elements and
debloat the target app.

Entry Points Supplement. Although the MDG slice pre-
serves all necessary dependence from source to sink invoca-
tions, this does not guarantee that the debloated app can be
successfully analyzed by static analysis tools. In most cases,
the forward-slicing step in the chopping phase omits entry
points, causing the app to fail analysis checks. To address
the multi-entry characteristics of the Android framework, we
extract all component classes from the manifest file and
collect their lifecycle and callback methods, along with other
callbacks in non-component classes. By leveraging reaching
definition analysis, we identify statements with data depen-
dencies on entry methods and restore them in the chopped
MDG, ensuring compatibility with static analyzers.

IV. EVALUATION

We have implemented the debloating approach in our tool
FlowSlicer, which debloats Android apps with the MDG
construction module and the program chopping module.
FlowSlicer is built on top of the bytecode transforming frame-
work Soor [32], which supports re-writing Dalvik bytecode
with the tool Dexpler [7]. In the MDG construction module,
it adopts FlowDroid [6] to build the dummyMain class for
method-level dependence extraction. FlowSlicer also reuses
the data-flow summaries for Android libraries provided by
tool StubDroid [5]. FlowSlicer supports a user-customized
source-sink API list and maximum execution time, which
are configured by default as the SourcesAndSinks.txt file in
FlowDroid and 60 minutes respectively.

We conducted a comprehensive review of existing Android
app debloating tools and identified several representative ap-
proaches, including XDebloat [30], Autodebloater [19], and
Minimon [20]. These tools typically rely on user-specified
entry points or heuristics to remove unused code. While
effective at reducing app size or simplifying app functionality,
they are not designed to preserve source-to-sink data-flow
paths and generally lack awareness of the data-flow semantics
required for precise taint analysis. We believe that including
these general-purpose tools in our evaluation would produce
misleading results: changes in the number of detected leaks
may reflect arbitrary removal of taint-relevant code, rather than
actual improvements in analysis precision or performance.
Therefore, we excluded such tools to maintain a fair and
meaningful comparison centered on taint-aware debloating.

A. Evaluation Setup

Target Static Analyzer. Our evaluation is designed to
figure out whether FlowSlicer can promote static taint analysis
through the debloating approach. As FlowDroid [6] is one of
the state-of-the-art Android static taint analyzers [22], [26],
[38], we chose it as the target static analyzer to evaluate
the performance of FlowSlicer. FlowSlicer is tool-agnostic
and operates at the APK level, removing code unrelated to
source-sink flows. While we use FlowDroid as the target
analyzer, other tools like Amandroid [33] and DroidSafe [13]
can analyze the debloated apps as well and benefit from the
reduced analysis scope.

Research Questions. Overall, our evaluation is driven by
the following research questions:

« RQI1: How effective is FlowSlicer in retaining static anal-
ysis results?

o RQ2: How efficient is FlowSlicer in debloating real-world
applications?

« RQ3: How much code can be removed by FlowSlicer?

Timeout Threshold. To conduct our experiments, we em-
ployed FlowDroid to perform taint analysis on the real-world
Android apps, using a timeout threshold of 120 minutes. Se-
lecting an appropriate timeout value is non-trivial, as analysis
times can vary significantly across different apps. According
to our survey of prior work, existing studies typically con-
figure FlowDroid with time budgets ranging from 30 to 120
minutes [22], [26], [38]. To empirically determine a practical
timeout setting, we conducted exploratory experiments on real-
world apps using four different timeout thresholds: 60, 90, 120,
and 150 minutes. Among these, the 120-minute configuration
offered the best trade-off between analysis completeness and
resource efficiency. Based on this observation, we adopted the
120-minute timeout for our large-scale evaluation.

Benchmarks. For both RQ1 and RQ3, we take Droid-
Bench2.0 [2] as our benchmark. DroidBench 2.0 is an open-
source test suite designed to evaluate the effectiveness of
Android taint-analysis tools. It consists of 119 hand-crafted
apps, each tailored to assess various aspects of static analy-
sis, including fundamental taint-analysis challenges, Android-



specific complexities, etc. For RQ2 and RQ3, we also select
the real-world Android app benchmark constructed by Luo et
al. [22]. After utilizing FlowDroid to perform taint analysis
on the real-world apps with a 120-minute timeout, we found
out that 174 out of 1,022 apps finally triggered the timeout.

Due to the substantial time required for a single analysis run,
we sorted all the 1,022 apps alphabetically and divided them
based on whether FlowDroid could complete analysis on the
app within 120 minutes. From each subset, we alphabetically
sampled 40 apps to form the COVABench, ensuring diversity
and avoiding size bias. Specifically, the COVABench consists
of 80 apps in two subsets:

o COVABench; contains 40 apps (4.IMB on average) se-
lected from the 848 analyzed apps under FlowDroid.

« COVABench, contains 40 apps (5.8MB on average) se-
lected from the 174 apps triggering a 120-minute timeout
under FlowDroid.

The DroidBench and the COVABench together provide
a comprehensive basis to validate FlowSlicer’s effectiveness
across different analysis scenarios.

Experimental Environment. All experiments are con-
ducted on a server equipped with dual Intel(R) Xeon(R) Gold
6133 CPUs, each running at 2.50 GHz with 20 cores and 40
threads per CPU, providing a total of 40 physical cores and
80 threads. It also features 512 GB of DDR4 memory, using
eight Samsung 64 GB modules.

B. RQI: How effective is FlowSlicer in retaining static anal-
ysis results?

1) Effectiveness on DroidBench: For RQI, the evaluation
is firstly conducted on the DroidBench dataset, which equips
the apps with corresponding leak oracles to verify whether the
taint analyzer correctly identifies the tainted data-flow leaks.
After checking and confirming the leak oracles of all apps,
we found that the leak oracles recorded in DroidBench 2.0
are incomplete and just 117 out of 119 apps are provided
with leak oracles. Thus we inspected the source code of the
remaining apps and added oracles for the left leaks manually.
For evaluation, we measure the performance of FlowDroid by
recording the detected leaks in the scenarios of using Flow-
Droid only and using FlowDroid cooperated with FlowSlicer,
i.e., we take two types of the input app for FlowDroid, one
is the original Android app P, and the other is the debloated
app P’. The results of detected leaks by FlowDroid in both
cases are listed in Table I.

TABLE 1
DETECTED LEAKS BEFORE AND AFTER DEBLOATING
Benchmark | #App | Input | #Leak | #TP | #FP | Prec.
. P 94 73 21 0.777
DroidBench 119 7 6 7 3 0.849

Table I represents the number of detected leaks as well as
the true positives (TP) and false positives (FP) annotated ac-
cording to the leak oracles, exhibiting FlowSlicer’s capabilities

of preserving tainted data flows and improving taint analysis
precision. Before debloating, FlowDroid detected a total of 94
leaks, achieving 73 true positives, but misidentifying 21 false
positives. After applying FlowSlicer, FlowDroid identified 86
leaks, successfully retaining all 73 TPs while reducing FPs
from 21 to 13, reaching a 38.09% decrease. The results also
show a clear improvement in precision (I'"P/(TP + F'P)),
rising from 0.777 to 0.849 when FlowSlicer is applied. The
enhancement of FlowSlicer’s debloating effects on FlowDroid
is two-fold: FlowSlicer is capable of retaining data flows be-
tween identified sources and sinks due to its precise modeling
of dependence in MDG. What is more, the precise source-
sink identification step in FlowSlicer reduces the number of
possible false positive leaks detected by FlowDroid.

After manually checking and reviewing the false positive
leaks eliminated by FlowSlicer, we found that 7 out of the 8
reduced false positive leaks are related to correct source and
sink APIs identification. It is worth mentioning that for apps
equipped with source-sink invocation statements but without
permission declaration, no leaks will occur in actual execution
scenarios. Flowdroid did not pay attention to the required
permission check when pre-matching source and sink APIs,
so the APIs lacking necessary Android permissions are also
labelled as sources or sinks. Fortunately, our tool performs a
separate effective source-sink identification before debloating,
thus successfully removing the invalid sources and sinks.
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Fig. 2. App Distribution by Leak Difference Range on COVABenchy
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Fig. 3. Venn Diagram of Unique and Identical Leaks Before and After
Debloating on COVABenchy

2) Effectiveness on COVABench;: For real-world apps, we
pick COVABench; to evaluate whether the identified leaks
remain consistent after debloating, as these apps do not trigger
timeout. The results of detected leaks on real-world apps
before and after debloating are listed in Fig. 2 and Fig. 3.

As shown in Fig. 2, the bar chart represents the number of
apps whose detected leak difference after debloating lies in the
ranges of less than -5, from -1 to -5, 0, from 1 to 5, and more
than 5. It is evident that for most apps (23 out of 40), the



number of leaks remain unchanged after debloating and the
number of apps whose leaks increased after debloating is less
than those decreased respectively (5 vs. 12). Specifically, the
venn plot in Fig. 3 summarizes the number of identical and
unique leaks before and after debloating on COVABench;.
We conducted a comprehensive analysis and deduplication of
all leaks detected across the apps in Fig. 3, yielding a total
of 389 leaks. Among them, 65.81% (256 out of 389) were
identical leaks before and after debloating, while 56 leaks
were newly identified. Additionally, 77 leaks disappeared after
the debloating process. As the default reports do not include
leak paths, we collected this information by rerunning under
FlowDroid’s “debug mode” and manually inspected the leak
paths that can be re-collected under this mode (23 leaks in
total). We found that 19 missed leaks were false positives and 4
were wrongly removed true positives, which means FlowSlicer
may bring unexpected code removal in a few cases.

Specifically, the key limitations causing the unexpected
precison loss stem from the precision of MDG construction
and the design of the slicing strategy. Since the MDG is
built statically, it cannot capture all runtime behaviors. This
introduces a fundamental tradeoff: a more aggressive slicing
strategy yields greater code reduction but may risk removing
taint-relevant paths, while a conservative strategy better pre-
serves precision but offers less debloating benefit. We also
confirmed that the 56 newly identified leaks are true positives.
Therefore, as FlowSlicer can help to report more new true
leaks, it is still an effective tradeoff in static analysis.

After demonstrating the effectiveness of FlowSlicer, we
would also like to further illustrate the safety of the tool. In
the context of FlowSlicer, safety refers to the preservation of
taint-relevant code for static analysis. We define safety along
two dimensions: (1) analyzability—whether the debloated app
remains analyzable; and (2) correctness—whether the tool
preserves true positive leaks by analyzing the debloated app.
In our experiments, all debloated apps remained analyzable,
and FlowSlicer preserved the vast majority of real leaks.

Answer to RQ1: FlowSlicer is capable of not only
retaining the leaks detected by the static analyzer
FlowDroid but also improving the analysis precision in
certain cases. On DroidBench, it successfully identifies
all of original TP leaks and reduces 38.09% FP leaks
compared to the original results. On real-world apps, it
primarily achieves high consistency in identifying leaks
before and after debloating.
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Fig. 4. FlowDroid Time Reduction Before and After Debloating for Apps in
COVABench; .

C. RQ2: How efficient is FlowSlicer in debloating real-world
applications?

For RQ?2, the evaluation is adopted on both COVABench;
and COVABenchs. Generally speaking, the leak detection
involves two main procedures: executing FlowSlicer to debloat
the target app; and running FlowDroid on the generated app.
To verify the efficiency, we record the time consumed by the
two procedures and observe whether these apps successfully
execute these two processes within the preset 120-minute
timeout. For apps in COVABench;, the execution time of
FlowDroid before debloating is available, thus enabling us
to compare the difference of FlowDroid time before and
after debloating. The average execution time of FlowSlicer
on COVABench; is 5.61 minutes. The results of FlowDroid
time difference on COVABench; are listed in Fig. 4.

According to the results in Fig. 4, the execution of
FlowSlicer significantly reduces the analysis time required by
FlowDroid for apps in COVABench;. The percentage reduc-
tion in time consumption ranges from a minimum of 4.17%
to a maximum of 99.34%. Despite the wide variation in time
reduction percentage across individual apps, both the median
(63.82%) and mean (59.91%) time reduction rates indicate
a substantial improvement in efficiency. The wide range of
analysis time reduction can be attributed to differences in
app complexity, code redundancy, and taint-relevant logic
distribution. Apps with a large proportion of irrelevant third-
party libraries or loosely connected components tend to benefit
more from our debloating process. In contrast, lightweight
or densely taint-connected apps exhibit more modest gains
due to limited optimization potential. Fig. 4 also visually
demonstrates that the majority of apps experience considerable
time savings. Moreover, when aggregating the total FlowDroid
runtime across all evaluated apps, we observe a 67.29%
reduction after debloating, further confirming FlowSlicer’s
effectiveness in accelerating static taint analysis at scale.

Apart from COVABench;, we also evaluate the efficiency
of FlowSlicer on COVABenchs. According to the results
on COVABenchy, we find out that 6 of 40 real-world apps
successfully finished the leak detection task in 120 minutes.
Among these, FlowDroid identified 156 new leaks when
analyzing the debloated apps with FlowSlicer, compared to
directly analyzing the original apps. Table II gives the number
of statements, execution time of FlowSlicer, execution time of
FlowDroid, and the number of newly detected leaks for the six
apps managing to pass the analysis. To provide an overview
of the target app size, we record their Jimple statements
and list them in Table II. The average statement number is
130.45K. The execution time consumed by FlowDroid (Trp)
and FlowSlicer (Tgg) varies from less than 1 minute to about
40 minutes, showing great instability in the results which
depend on the basic conditions of apps under analysis. For
example, although the FlowDroid and FlowSlicer times for
the last two apps are significantly shorter than those of the
first four apps, our examination on their debloating results
revealed no issues in the debloating process. After debloating,



these apps successfully triggered leaks that FlowDroid initially
missed, further demonstrating that FlowSlicer’s code reduction
effectively lowered FlowDroid’s analysis complexity. Finally,
there are a total of 156 leaks newly detected by FlowDroid
with the help of FlowSlicer, indicating that the debloating
process not only enhances the efficiency but also improves
the accuracy of FlowDroid’s leak detection, as previously
obscured or overlooked leaks become detectable.

TABLE 11
DETAILS OF APPS THAT CAN DETECT NEW LEAKS AFTER DEBLOATING
App Name #Stmt (K) | Tpg (min) | Tpp (min) | #Leak
MassagersCou 261.79 42.20 12.27 60
Eccentric lady 112.68 11.27 15.17 24
Downloader 119.45 8.17 26.08 19
CatClinic 262.09 38.41 11.05 49
Santa Doroteia
Porto Alegre 12.91 0.25 0.03 2
TainData Tierra 13.79 0.24 0.02 2

Answer to RQ2: FlowSlicer is capable of de-
bloating real-world applications efficiently on both
COVABench; and COVABenchs. The debloating pro-
cess substantially decreases FlowDroid’s runtime while
simultaneously revealing previously undetected leaks,
underscoring its dual benefit of enhancing both effi-
ciency and precision in static analysis of Android apps.

D. RQ3: How much code can be removed by FlowSlicer?

For RQ3, we evaluate the code removal performance of
FlowSlicer on DroidBench, COVABench;, and COVABenchs.
The code removal amount of FlowSlicer is relevant to the
size of input source-sink API list, and we adopt the default
SourcesAndSinks.txt file provided by FlowDroid to conduct our
experiments. After running FlowSlicer to debloat apps in our
benchmarks, we calculate the ratio of the removed statements
in the generated app to original statements to measure the
code removal capability of FlowSlicer. Results are displayed
in Fig. 5, where the recorded values are the relative size of
the removed statements in percentage.

According to Fig. 5, for DroidBench, the distribution of re-
moved statement percentages is centered around a higher range
compared to COVABench; and COVABench,. For Droid-
Bench, the removed statement percentages of half apps fall
within 55.48%-66.33%. The median value is around 60.77%
and the highest ratio is 82%. Although DroidBench shows
a higher average code removal ratio, it exhibits considerable
variability, with code removal ratios ranging from as low
as under 40% to as high as around 80%. Compared to it,
COVABench; and COVABenchs possess a relatively lower
range of removed statements due to their more complicated
app scales. Between two COVABenches, COVABench, re-
moved only 10.42% statements in the mean and the maximum
reduction ratio is about 38%, while COVABench; showed a
higher mean statement removal percentage of 25.27% and an

overall higher half-app-range from 19.78% to 28.15%, indicat-
ing a generally higher code removal amount in COVABench;.
The key reason lies in the fact that apps in COVABench,
are selected due to their inability to complete FlowDroid
analysis within a 120-minute timeout, revealing their averagely
larger size and more complex internal dependence compared to
apps in COVABench;. When debloating COVABenchy apps,
FlowSlicer often encounters cases where it cannot complete
debloating within the maximum execution time. As a result, it
adopts a relatively conservative code removal range to ensure
the generation of debloated apps, significantly reducing the
removed statements ratio. Overall, FlowSlicer achieved an
average code removal ratio of 60.77% on DroidBench and
17.85% on COVABench; and COVABenchsy, demonstrating
FlowSlicer’s exceptional performance in code reduction.
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Fig. 5. The Removed Statement Ratio in DroidBench, COVABench1, and
COVABenchs.

Answer to RQ3: FlowSlicer is capable of removing
unnecessary statements significantly on both the Droid-
Bench (60.77%) and real-world (17.85%) applications.

V. THREATS TO VALIDITY

In this section, we illustrate the main threats to the validity
of our approach.

We have applied several approximations to the implemen-
tation of our debloating approach. For example, Callback
classes are identified on the basis of FlowDroid’s default list of
callback classes in our tool. Callback methods are identified in
general by a name prefix (“on”). Our tool relies on the static
analyzer StubDroid [5] to automatically construct data-flow
summaries from Android library methods, thus accomplishing
the complete define-use chain analysis when generating the
program dependence graph for every method. When there is
no available StubDroid summary (although generatable) for a
given library method, it is assumed that neither the base nor a
parameter of the method is reassigned by the invoked method,
thus resulting in the inaccuracy of the built dependence graph
and the incompleteness of the chopped app.

The correctness of our evaluation results to the DroidBench
set depends on the correctness of their publicly available
leak oracles. We have also manually checked the two apps
without leak oracles and re-added the necessary leak oracles,
which, however, may cause errors in annotations if we do not
understand the author’s intention in designing the app leak. As
for the static taint analyzer for Android, we choose FlowDroid
but not other tools to evaluate our approach. Due to the
limited length of the paper and experimental resources, we can



only continue to conduct experiments on other static analysis
tools in our future work to launch a more comprehensive and
diversified evaluation of the effectiveness of our method.

Our tool does not support apps that have been obfuscated.
The main problem comes from the source-sink identification
step. If an app is obfuscated, the source-sink identification may
fail to locate source and sink invocations correctly, especially
for the permission-oriented API items provided by FlowDroid,
because this location approach relies on the method signatures
for locating source and sink APIs in an app.

VI. RELATED WORK
A. Program Debloating

Previous work on program debloating sheds light on how to
prune unused functions in a program. Soto et al. [29] utilized
several Java bytecode coverage tools to precisely capture code
dependence when running with a specific workload and thus
implemented coverage-based debloating on java projects. Tang
et al. [30] supported different feature location methods and de-
bloated apps at various granularity. Liu et al. [19] proposed an
ATG-based debloating approach to remove activities selected
by users in Android apps. Bruce et al. [8] leveraged augmented
static reachability analysis to debloat Java bytecode, which
was capable of dealing with different dynamic features (e.g.
Reflection, Invokedynamic, JNI, etc.) in Java. Based on this
work, Macias et al. [23] provided rich visualizations of the
bloated code elements within the target software project.
Different from these studies, our work not only focuses on
removing unused functional features from the perspective of
users but also performs analyzer-oriented debloating steps on
Android apps.

B. Program Slicing

Program slicing is a classical program analysis technique
that extracts the parts of a program relevant to a specific
computation, facilitating tasks such as debugging, refactor-
ing, vulnerability detection, and large-scale information flow
analysis. Over the years, it has evolved into a versatile tool
adapted across diverse domains, including program repair,
visualization, graph processing, etc.

From a foundational perspective, Zhang et al. [41] proposed
a novel formalism based on the modular monadic semantics of
programming languages. By modeling slicing as a slice monad
transformer, their approach enabled semantic-level integration
of slicing into language descriptions, providing a basis for
more principled slicing frameworks that abstract away from
intermediate representations. To further improve the efficiency
and scalability of slicing in practice, Zhang et al. [40] intro-
duced SymPas, a lightweight symbolic slicing technique that
avoids repeated reanalysis of procedures by generating param-
eterized symbolic slices. Compared to traditional SDG-IFDS-
based slicing, SymPas demonstrates significant reductions in
both time and space costs in large-scale applications.

In the area of program repair and vulnerability detection,
program slicing is often used to localize contextually relevant
or irrelevant statements. Zhang et al. [42] utilized slicing and

dependence analysis to extract bug-centered code contexts,
which were then used to guide learning-based repair. Simi-
larly, Cai et al. [9] leveraged slicing to eliminate irrelevant
segments in smart contract functions, improving the precision
of vulnerability detection.

Beyond code-level analysis, slicing has also shown great
potential in structuring large-scale data. Li et al. [18] applied
a hierarchical slicing strategy to visualize academic graphs
containing millions of nodes. Their system divided the graph
into manageable slices and applied overlap-removal algo-
rithms, improving scalability without compromising layout
clarity. Wu et al. [36] further extended the slicing principle
to image segmentation, modeling sliding windows and inter-
nal pixels as nodes in a graph to extract semantic regions
using graph convolutional networks. In temporal networks,
Zhang et al. [39] proposed a segmentation-based time slicing
technique that grouped temporal edges with identical optimal-
path characteristics. This grouping significantly promoted the
efficiency of computing centrality metrics such as betweenness
and closeness in dynamic graphs.

Taken together, these works demonstrate the breadth and
adaptability of program slicing—from the formal foundations
and lightweight symbolic methods to performance-critical
systems analysis and visual processing. While most prior
approaches focus on improving the modularity, efficiency,
or scalability of slicing, our work departs from a different
perspective: we utilize slicing as a cooperative mechanism that
interweaves with taint flow analysis. By coupling slicing with
a precise MDG and the backward-forward-combined traversal
strategy, FlowSlicer achieves both improved leak detection
accuracy and reduced analysis overhead.

VII. CONCLUSIONS

We propose a novel debloating approach based on multi-
layer dependence graph and develop FlowSlicer to automate
this process. FlowSlicer performs multi-layer dependence
graph construction and program chopping to generate the
chopped MDG and debloat Android apps according to the
chop. FlowSlicer is competent for cooperative analysis with
static taint analyzers. We evaluate FlowSlicer with the static
taint analyzer FlowDroid on hand-crafted and real-world apps,
and the experimental results show that FlowSlicer is capable
of not only retaining true positive leaks but also enhancing
the precision of static analyzers through eliminating false
positives.

VIII. DATA AVAILABILITY

FlowSlicer’s replication package, including the benchmark
and the source code, is publicly available at https://github.com/
SQUARE-RG/FlowSlicer.
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