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Abstract
With the rising demand for code quality assurance, developers are
not only utilizing existing static code checkers but also seeking
custom checkers to satisfy their specific needs. Nowadays, various
code-checking frameworks provide extensive checker customiza-
tion interfaces to meet this need. However, both the complex check-
ing logic of rules and massive API usages of large-scale checker
frameworks make this task challenging. To this end, automated
code checker generation is anticipated to ease the burden of checker
development. In this paper, we propose AutoChecker, an innovative
LLM-powered approach that can write code checkers automatically
based on only a rule description and a test suite. To achieve com-
prehensive checking logic, AutoChecker incrementally updates the
checker’s logic by focusing on solving one selected case each time.
To obtain precise API knowledge, during each iteration, it lever-
ages fine-grained logic-guided API-context retrieval, where it first
decomposes the checking logic into a series of sub-operations and
then retrieves checker-related API-contexts for each sub-operation.
For evaluation, we apply AutoChecker, five baselines, and three
ablation methods using multiple LLMs to generate checkers for
20 randomly selected PMD rules. Experimental results show that
AutoChecker significantly outperforms others across all effective-
ness metrics, with an average test pass rate of 82.28%. Additionally,
checkers generated by AutoChecker show performance comparable
to that of the official checkers when applied to real-world projects.
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1 Introduction
Static code-checking tools play a crucial role in ensuring code qual-
ity by generating security reports based on a set of predefined rules.
In practice, users often need to customize checkers to meet specific
requirements [29]. Recent studies [37, 52, 60] also emphasize the
importance of tailoring code-checking tools to specific contexts,
such as individual projects and security scenarios. For example, a
survey of experienced developers [60] found that up to one-third
of participants highlighted the need for project-specific rules. Thus,
customizing static code checkers is important for quality assurance.

To meet this demand, many static analysis tools support custom
checkers. For instance, PMD [9] and SonarQube [11] allow users to
write custom checkers in Java, while CodeQL [2] and other DSL-
based tools [67] support custom queries in DSL formats. However,
creating custom checkers remains a significant challenge. An empir-
ical study [25] highlights this, revealing that only 8% of developers
write them in practice. This difficulty stems from several inherent
obstacles: the high complexity of checking frameworks [20] (e.g.,
PMD’s framework alone exceeds 30 KLOC), the need for massive
framework-specific API knowledge, incomplete or unclear API doc-
umentation, and the non-trivial checking logic. These barriers make
checker customization time-consuming and difficult, especially for
users with urgent needs but limited tool familiarity.
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Figure 1: Pipeline of the Manual Checker Development

Recently, the booming of Large Language Models (LLMs) has sig-
nificantly advanced automatic code generation [50, 61, 63]. Inspired
by this, we explore leveraging LLMs to auto-generate checker code,
aiming to alleviate the burden on developers in writing custom
checkers. Notably, some recent studies have combined LLMs with
static checking tools for security issue detection. Specifically, some
studies [44, 62] leverage LLMs to infer source-sink specifications
for specific projects and CWEs, while others [22, 41, 42] use LLMs
to filter false positives reported by static checkers. However, these
works focus on enhancing existing checkers rather than creating
new ones for specific requirements. As far as we know, we are the
first to automate custom checker development from scratch.

Checker generation is more challenging and distinct from typical
code-generation tasks. Fig. 1 illustrates the manual checker develop-
ment process. When a custom checker is needed, the project man-
ager provides an overall rule description for the rough goal and an
adequate test suite for validation. Here, each test case refers to a rule-
specific validation code that demonstrates compliance/violation of
a particular rule. Developers then interpret the rule description and
test suite to derive the correct checking logic and implement it us-
ing framework APIs based on their knowledge. Unlike typical code
generation tasks, which often involve clear and common targets
(e.g., algorithms or function implementations) [47, 63], automated
checker generation is significantly more difficult due to the intri-
cacy of the checking logic and the scale of the required framework
APIs. Specifically, we have to cope with two main challenges:

C1: Generating comprehensive checking logic covering di-
verse scenarios.When using LLMs to generate the compre-
hensive checking logic, both the rule description (for the overall
goal) and test suite (covering diverse scenarios) should be in-
cluded as input. However, as the number of checking scenarios
grows, the input volume can become excessive. This not only
challenges the LLM’s ability to synthesize coherent logic across
all cases but also risks exceeding the model’s token limit. Thus,
the comprehensive checking logic is hard to generate at once.

C2: Retrieving precise API knowledge from high-level rule
descriptions. Developing code checkers requires a deep un-
derstanding of the framework’s APIs. However, with thousands
of APIs, identifying the precise ones for a specific checker is
challenging. A common approach is to retrieve relevant APIs
based on the rule description. However, this often fails due to
the granularity mismatch between high-level rule descriptions
and specific API functionalities. This discrepancy makes pre-
cise API retrieval difficult, as also shown by the results of the
Retrieval Augmented Generation (RAG) baseline in Section 4.2.

To address above challenges, we propose AutoChecker, a novel
approach to automatically generate static checkers from rule de-
scriptions and test suites. First, to cover diverse scenarios, we mimic
the manual checker development process (Fig. 1), where developers
iteratively validate and refine the checker against a test suite. We
introduce the Test-Driven Checker Development (TDCD) approach,
enabling AutoChecker to refine the checker case by case, incremen-
tally building comprehensive checking logic (C1). Second, to re-
trieve precise API knowledge, AutoChecker employs Logic-guided
API-context Retrieval (C2). Unlike common RAG approaches that
simply use the rule descriptions as queries, AutoChecker decom-
poses the checking logic into discrete sub-operations and respec-
tively retrieves corresponding API contexts from two specialized
databases: Meta-API DB (semi-automatically built) and Full-API DB
(automatically built). This fine-grained method retrieves precise
API knowledge on the sub-op level for accurate checker generation.

In this paper, we implement AutoChecker on PMD [9], a widely-
used static analysis tool1. To evaluate AutoChecker, we randomly
select 20 PMD built-in Java rules (10 easy and 10 hard). Experimen-
tal results show that our approach outperforms baselines across all
metrics. Specifically, AutoChecker-generated checkers achieve an
average test pass rate of 82.28% (84.70% for easy rules and 79.86% for
hard ones), which is 2.93× and 2.11× higher than the simplest base-
line NoCaseLLM and the best baseline NoCaseLLM𝑅𝐶 , respectively.
Also, we further evaluate practicality by applying AutoChecker-
generated checkers (that pass all tests) to five large-scale Java
projects. The results show that AutoChecker can write checkers
performing equivalently to official ones when sufficient test cases
are provided. We conclude our main contributions as follows:

• We propose an automated test-driven checker development
approach (TDCD), which uses an iterative generation pipeline
to cope with the complex checking logic case by case.
• We develop a logic-guided API-context retrieval strategy and
design a general Meta-Op set for fine-grained and precise API
retrieval, which contains 354 atomic checking operations.
• We implement our approach into AutoChecker, which automat-
ically develops custom code checkers based on the given rule
and test suite. Experimental results show that AutoChecker
outperforms baseline methods across all effectiveness metrics.
Compare to official checkers, they also achieve expected results
on real-world, large-scale projects.

Both the code and the dataset of AutoChecker are available
at https://github.com/SQUARE-RG/AutoChecker. To demonstrate
intermediate LLM-generated checkers and results in each step of
the checker-development cycle, we also provide a replay website
for visualization at https://autochecker.maskeduser.party.

2 Background and Motivation
In this section, we first briefly introduce the background of custom
static code checkers, with a focus on the specific type (AST-based
checkers) targeted in this paper. Then, we illustrate the challenges
and our proposed solutions through a motivating example.

1AutoChecker can be readily adapted to other AST-based tools and programming
languages with manageable human effort, which is further discussed in Section 5.

https://github.com/SQUARE-RG/AutoChecker
https://autochecker.maskeduser.party
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AssignmentToNonFinalStaticRule :
Assignment to non-final static fields in constructor is unsafe. 

PMD’s Checker: The Ground Truth Generated Checker: By LLM (GPT-4)

AST Nodes to Visit: 
ASTVariableAccess + ASTFieldAccess

Checking Steps:

① Check whether the node is within a 
constructor and is written via a write 
operation (assignment).

② If the assigned identifier is a static and 
non-final field, a violation is found.

AST Nodes to Visit: 
ASTCompilationUnit + ASTConstructorDeclaration

Checking Steps:

① Iterate through all the children of each  
constructor declaration.

② If a child is an ASTName and its grandparent is 
an ASTFieldDeclaration, get the field.

③ If the field is static and non-final, a violation is 
reported.

AST Nodes to Visit: 
ASTConstructorDeclaration

Checking Steps:

① For each constructor, iterate through 
all the assignments within it.

② If the assigned identifier of any  
assignment is a static and non-final 
field, a violation is found.

Generated Checker: By AutoChecker

Figure 2: A motivating example showing the concrete steps of the ground truth and auto-generated checkers for Assignment-
ToNonFinalStaticRule. Specifically, the logic of the checker (as checking steps) generated directly by LLM is incomplete.

2.1 Custom Static Code Checker
Static code checkers are designed in static analysis tools to ana-
lyze code without executing it [16, 24, 56]. Many existing tools,
such as PMD [9], SonarQube [11], and CodeQL [2], support custom
code checkers. These custom checkers can be broadly categorized
into two groups based on their analysis workflow: AST-based (by
traversing Abstract Syntax Tree [18]), and flow-based (by travers-
ing control- and data-flow). Flow-based checkers are heavyweight,
and their customization typically involves enhancing specifications
on predefined data-tracking patterns [44, 62]. Compared to them,
AST-based checkers are more lightweight with a straightforward
checking process: traverse the AST of the target code, apply check-
ing rules to relevant AST nodes, and report potential issues when
a match is found. So, they are easier to customize. To meet new
customization demands, experienced developers can write new
AST-based checkers from scratch (as shown in Fig. 1). These advan-
tages also make AST-based checkers a preferred choice for software
companies in quality assurance. Therefore, this paper specifically
focuses on automating the development of AST-based checkers.

2.2 Motivating Example
PMD [9] is a popular static checking tool supporting 18 program-
ming languages (primarily Java and Apex) with over 400 built-in
rules.We use a PMD Java rule,AssignmentToNonFinalStaticRule, as a
motivating example. Its description states: “Assignment to non-final
static fields in constructors is unsafe.” The corresponding checker
should report all unsafe assignments described by the rule.

First, we prompt multiple LLMs (GPT-4 [5], DeepSeek-V3 [45],
etc.) to generate checkers for this rule by providing its descrip-
tion and full test suite. However, all generated checkers fail due
to incomplete logic and compilation errors caused by hallucinated
APIs. This highlights two key challenges in automated checker
generation: (1) generating comprehensive checking logic (at the
Abstract Level), and (2) invoking correct framework APIs (at the
Implementation Level). Below, we detail the results from GPT-4.

At the Abstract Level, we compare the checking steps from
implementations of the LLM-generated checker and the ground
truth. As shown in Fig. 2, the ground truth checker locates variable
and field accesses within constructors and verifies if the referenced
symbols are static and non-final. In contrast, the LLM-generated

checker identifies unsafe fields starting from constructor decla-
rations but only checks fields in ASTFieldDeclaration, missing
unsafe fields in re-assignment expressions, resulting in incomplete
logic. Despite providing sufficient test cases, the LLM struggles to
generate comprehensive logic due to information overload from
presenting many test cases at once. To address this, AutoChecker
introduces test-driven checker development, refining the checker’s
logic case by case. As shown in Fig. 2, AutoChecker resolves the
soundness issue by examining all assignment expressions within
constructors, producing correct checking logic from a unique per-
spective compared to the ground truth.

At the Implementation Level, we analyze the LLM-generated
checkers’ code. As shown in Fig. 3, when directly prompted to
write a checker, the LLM often guesses framework APIs, leading
to hallucinations like undefined method jjtGetNumChildren and
class ASTName. Specifically, 41.7% (5 out of 12) of the APIs used are
hallucinated, causing compilation errors. To address this, we then
follow the common RAG pipeline [30, 40], retrieving framework
APIs using the rule description as a query. However, due to the
granularity mismatch between the high-level rule description and
specific API functionality, 29.4% (5 out of 17) of the APIs remain
hallucinated. Finally, by introducing fine-grained logic-guided API
retrieval, AutoChecker successfully generates a correct checker
with 26 valid APIs, compiling and passing all tests. Notably, as
API knowledge is provided, the number of APIs in the generated
checker increases, as guessed APIs (often higher-level abstractions)
are replaced with multiple concrete valid APIs.

public class AssignmentToNonFinalStaticRule extends AbstractJavaRulechainRule 
{    ......
    @Override
    public Object visit(ASTConstructorDeclaration node, Object data) {
    for (int i = 0; i < node.jjtGetNumChildren(); i++) {
        Node child = node.jjtGetChild(i);
        if (child instanceof ASTName) {
            ASTName name = (ASTName) child;
            Node parent = name.jjtGetParent().jjtGetParent();
            if (parent instanceof ASTFieldDeclaration) {
                ASTFieldDeclaration field = (ASTFieldDeclaration) parent;
     ......
}

Figure 3: A snippet of the LLM-generated checker for Assign-
mentToNonFinalStaticRule, using the rule description and
test suite as input, includes multiple hallucinated APIs.
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Figure 4: Overview of the LLM-powered Test-Driven Checker Development in AutoChecker

3 Methodology
This section presents the detailed methodology of our proposed
AutoChecker. After showing the overall pipeline in Section 3.1,
Section 3.2 and Section 3.3 introduce the API-context retrieval and
checker development approaches in detail.

3.1 Overview
Given a checker rule and its full test suite, AutoChecker is designed
to automatically generate the static checker following the Test-
Driven Checker Development (TDCD) process. As shown in
Fig. 4, AutoChecker generates and refines the checker case by case.

To start with, AutoChecker maintains a candidate test pool to
store test cases that have not yet been verified or passed. During
each round of TDCD, a single test case is selected from this pool 1 .
Using the selected test case and given checker rule, AutoChecker
employs the Logic-guided API-Context Retrieval approach to
collect relevant API-contexts 2 . To ensure precision, AutoChecker
breaks down the checking logic into fine-grained sub-operations
using LLM and retrieves the corresponding APIs respectively. Ad-
ditionally, to obtain the accurate AST-based information of the test
case, AutoChecker utilizes a parser to get its AST 3 .

After preparing all the necessary input information, AutoChecker
constructs the checker-generation prompt 4 , which consists of the
rule description, PMD checker template, selected test case (both source
code and AST), related API-contexts and last-generated checker (not
for the first round). By passing on the prompt to the LLM, a checker
is generated for this round 5 . To verify whether the generated
checker is correct, it will then be validated with the full test suite
6 . If the checker fails to pass all tests, AutoChecker will update
the candidate test pool to keep all the failed test cases and start the
next iteration 7.1 . Otherwise, once the generated checker passes
all tests or reaches a test-passing bottleneck, AutoChecker will
terminate the TDCD process and output the final checker 7.2 .

3.2 Logic-guided API-Context Retrieval
As shown in Fig. 4, API-context Retrieval serves as a crucial module
within the TDCD process, which is designed to provide accurate
and sufficient API knowledge for checker generation. Inspired by
Chain-of-Thought [43, 65] and Compositional API Recommenda-
tion [51], we propose a fine-grained Logic-guided API-Context
Retrieval approach. Specifically, AutoChecker first uses the LLM

to decompose the checker rule into a checking skeleton with sub-
operations. Then, each sub-operation is used for individual API-
context (API signatures and usages) retrieval and finally makes up
the whole API-contexts. In this section, we sequentially explain the
Logic-guided API-Context Retrieval approach in three parts: API
Collection, Database Construction, and the Retrieval Process.

3.2.1 Framework API Collection. In general, framework APIs for
AST-based checkers can fall into the following three categories:

• Node-related APIs perform concrete operations for specific
AST nodes, e.g., obtaining the name of a method, etc.
• Edge-related APIs deal with connections and transitions be-
tween nodes, e.g., finding the closest parent AST node, etc.
• Util-related APIs offer utility functions that can be invoked
anywhere, e.g., checking whether a type is abstract, etc.

In PMD specifically, APIs are defined in AST Node Classes (e.g.,
ASTMethodDeclaration) and Utility Classes (e.g., JavaAstUtils).
Thus, we identify node- and edge-related APIs from AST Node
Classes, while Util-related ones are collected from Utility Classes.

☞ Collecting Node-related and Edge-related APIs from
AST Node Classes. First, we map each AST Node Class (ANC) to
its available APIs, including methods declared within the class and
those inherited from its superclasses. Among all APIs, edge-related
APIs, which handle general node-traversal functions, are primarily
defined in the abstract ANC, JavaNode. From the available APIs
of JavaNode, we identify edge-related APIs as those whose return
value is another node. After filtering out these edge-related APIs,
the remaining ones are categorized as node-related APIs.

☞ Collecting Util-related APIs from Utility Classes. Each
util-related API is a static methodwithin a utility class characterized
by a final modifier and a private constructor. By searching all the
utility classes, we collect the util-related APIs.

Overall, the number of collected Java-checking framework APIs
of PMD in each type is shown in Tab. 1. The significant number of
APIs (over 11k) also underscores the necessity of precise retrieval.

Table 1: PMD’s Framework APIs of Each Type

API Type Collect From Number

Node-related APIs Concrete ANCs 11,243
Edge-related APIs Abstract ANC 21
Util-related APIs Utility Classes 377
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Table 2: Descriptive Text Generation for All Types of APIs

API Type Return Type Descriptive Text (prefix+basic phrase+comments)

Node, Edge Boolean Check whether [className]𝑠 [methodName]𝑠 //cmt.
Util Boolean Check whether [methodName]𝑠 //cmt.
Node, Edge non-Boolean [methodName]𝑠 of [className]𝑠 //cmt.
Util non-Boolean [methodName]𝑠 //cmt.
𝑠 denotes splitting the name into individual words according to the CamelCase rule.

cmt. denotes the comments of each API for simplicity.

3.2.2 API-Context Database Construction. Based on the collected
framework APIs, we construct two API-context databases: Full-
API DB and Meta-API DB. An API-context is defined as either an
API’s signature or usage snippet, paired with descriptive text (used
as query for semantic retrieval). The Meta-API DB is built based on
the Full-API DB, according to a crafted Meta-Op Set. We explain
the process in three steps: Full-API DB Construction, Meta-Op Set
Preparation, and Meta-API DB Construction.

☞ Full-API DB Construction. The Full-API DB is constructed
using all three types of APIs. To generate the descriptive text for
each API, we leverage the semantic information embedded in its
signature. As demonstrated in Tab. 2, each descriptive text consists
of three parts: the prefix, basic phrase, and comments.

First, we determine the prefix of the descriptive text based on the
API’s return type. For an API with a Boolean return type, used for
judgment, we add “check whether” as the prefix of the descriptive
text. For an API with a non-Boolean return type (e.g., String),
used for data acquisition, the method name usually starts with an
action word like “get”, so no additional prefix is required.

Then, we generate the basic phrase based on the API’s class
and method names. Specifically, we split these names into indi-
vidual words based on the CamelCase naming rule and remove
unnecessary or repetitive terms (e.g., AST). For example, the class
ASTStringLiteral yields the basic phrase “String Literal”, while
the method isEmpty produces “is empty”. Notably, for util-related
APIs, class names (e.g., JavaAstUtil) are typically omitted, as they
often lack relevance to the API’s concrete functionality.

To enhance the descriptive text, we also extract comments (docs)
of the APIs and append them to the end of the description text,
prefixed with “//”. Irrelevant comments, such as those related to
exceptional conditions or authorship, are filtered out.

Finally, the prefix, basic phrase, and comments are combined to
form the descriptive text of each API. Based on that, we construct
the Full-API DB, where each element is a description-signature
pair with the descriptive text and signature of an API. Fig.5 gives
an example element for the API isEmpty in the Full-API DB.

➼ Description-Signature Pair:
Description (descriptive text): "Check whether string literal is empty"
API−context (API signature):
"net.sourceforge.pmd.lang.java.ast.ASTStringLiteral:
public java.lang.Boolean isEmpty() //True if the constant value is empty."

Figure 5: An Example Element in Full-API DB

When using the Full-API DB for retrieval, we focus retrieval
efforts on node- and util-related APIs and directly include all the
edge-related API-contexts to the retrieved result. Edge-related APIs,
which provide AST-traversing functions, are usually limited in
number (21 for PMD as shown in Tab. 1) but fundamental. Thus,
we treat them as essential information to be provided by default.

☞ Meta-Op Set Preparation. For real-world scenarios, frame-
work APIs vary widely in encapsulation granularity, both within
and across frameworks. This inconsistency makes it hard to reliably
find the correct APIs solely based on the Full-API DB, which may
lead to mismatches or overlaps. Thus, we need a more standardized
API-context database (Meta-API DB). To meet this, we propose an
abstraction layer, the Meta-Operation Set (Meta-Op Set), designed
to unify API-context granularity across frameworks.

Specifically, the Meta-Op Set contains meta-operations (meta-
ops) with basic functionalities commonly used for code-checking
tasks. To get a comprehensive Meta-Op Set, we invited three devel-
opers with more than two years of checker-development experience
for the collection. The first developer collected and organized most
meta-ops into categories according to their experience across var-
ious checking frameworks (mainly based on PMD and CodeQL),
and the other two brainstormed to supplement them. As shown in
Fig. 6, the Meta-Op Set contains 354 meta-ops in 14 categories. We
have open-sourced the Meta-Op Set in our project repository.

Java Feature
27

Class

36

Method

77Method Call
48

Control Stmt

14

Field

33

Local Var

26

Var Usage

30

Exception

9

Array

15

Object

2
Expression

21 Literal
15 Multi-thread1

Figure 6: Category of Operations in the Meta-Op Set

☞ Meta-API DB Construction. Using the Meta-Op Set as a
foundation, we construct the Meta-API Database (Meta-API DB),
where each entry pairs a meta-operation (meta-op) with its corre-
sponding API-context (either API signature or usage snippet).

For each meta-op, we first search the Full-API DB to identify
API descriptions that semantically align with the meta-op’s func-
tionality. Once a match is found, we extract the associated API
signature as the API-context for that meta-op. Otherwise, if no
API descriptions match the given meta-op, we manually craft an
implementation code snippet to fulfill the meta-op’s functionality
as its API-context. Overall, the API-contexts in Meta-API DB are in
the form of operation-signature pairs and operation-snippet
pairs. We provide two examples in Fig. 7.

➼ Operation-Signature Pair:
Meta−op: "Get the name of class"; Category: "Class".
API−context (API signature):
"net.sourceforge.pmd.lang.java.ast.ASTClassOrInterfaceDeclaration:
public java.lang.String getSimpleName()"

➼ Operation-Snippet Pair:
Meta−op: "Check whether the return type of method is int"; Category: "Method".
API−context (code snippet):
"import net.sourceforge.pmd.lang.java.ast.ASTMethodDeclaration;
import net.sourceforge.pmd.lang.java.types.JPrimitiveType;
public boolean isReturnValueIntType(ASTMethodDeclaration m) {
return m.getResultTypeNode().getTypeMirror()

.isPrimitive(JPrimitiveType.PrimitiveTypeKind.INT);
}"

Figure 7: Example Elements in Meta-API DB
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3.2.3 API-Context Retrieval Process. With the constructed DBs, Au-
toChecker retrieves related API-contexts based on the checker rule
and a given test case. To start with, all 21 edge-related API-contexts
from the Full-API-DB are directly added to collected API-contexts,
as mentioned in Section 3.2.2. Then, AutoChecker leverages the
Logic-guided API-context Retrieval approach to retrieve related
node- and util-related API-contexts, which is shown in Fig. 8.

Meta-Op Set

Meta-API DBFull-API DB

Sub-op 1

Sub-op 2

Retrieved API 1

Retrieved API 2

…… ……

…

Retrieved 
APIs

Retrieve
Meta-API DB

Retrieve
Full-API DB

Checking 
Sub-ops

Rule 
Description

Selected 
Test Case

Meta-Op  
Set

Prompt
- Rule description

- Selected Test Case

- Meta-Op Set

< Decompose the given rule 
into sub-ops. We provide a 
Meta-Op set as examples of  
sub-ops and a selected test 
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Figure 8: Pipeline of the Logic-guided API-context Retrieval

First, AutoChecker decomposes the checker rule into a series
of sub-operations (sub-ops) as the checking skeleton. Given the
checker rule, test case and Meta-Op Set as inputs, AutoChecker
leverages the LLM to make the split. Specifically, the Meta-Op Set
serves as references to sub-ops, which guides the LLM to gener-
ate sub-operations under the similar granularity of meta-ops. The
overall decomposition prompt is also demonstrated in Fig. 8.

Next, AutoChecker fetches API-contexts for each sub-op using
both the Meta-API and Full-API DBs. During each retrieval process,
the sub-op serves as the query to find the API-context with the
highest semantic similarity score. If the score falls below a set
threshold, the retrieval fails and returns None. AutoChecker first
queries the Meta-API DB. If unsuccessful, it then searches the Full-
API DB. Note that, before querying the Full-API DB, AutoChecker
filters out irrelevant node-related APIs for higher precision and
efficiency. Here, APIs defined in AST node classes that don’t appear
in the test case’s AST are deemed irrelevant. Finally, all relevant
API-contexts, both foundational and retrieved, are gathered.

3.3 Test-Driven Checker Development
This section focuses on the technical details of the TDCD process.
While Figure 4 shows the high-level pipeline, Algorithm 1 presents
the detailed, step-by-step implementation of the methodology.

3.3.1 Prompt Settings. In each round of TDCD,AutoCheckerwrites
a checker based on a selected test and the checker rule. There are
two types of prompts in TDCD: one for initial checker generation
and the other for iterative checker refinement.

☞ Prompt for Initial Generation. In the 1𝑠𝑡 round, the prompt
instructs the LLM to generate a rule-specific checker capable of
passing the provided test using the following input on line 11.

★ Rule description. It is derived from the original input.
★ Test case code. It is picked from the candidate test pool (line 5).
★ Test case AST . Since AST information is crucial for AST-based

checking, AutoChecker extracts the test’s AST using PMD’s

Algorithm 1 Algorithm of Test-Driven Checker Development (TDCD)
Input: r: the checker rule description, Ta : the full test suite with all tests
Output: cf : the final checker, prf : the test pass rate for the final checker
1: Load the checker template C
2: Tc ← Ta, c← None ⊲ initialize the candidate test pool Tc and checker c
3: Tp ← {}, Ts ← {} ⊲ record the passed tests in Tp and skipped tests in Ts
4: while |Tc | > 0 do
5: t← pickNextTest (Tc )
6: Kapi ← retrieveAPIContexts (r, t) ⊲ use logic-guided API-context retrieval
7: ast← parseAST (t)
8: j← 0 ⊲ the number of retries for t
9: while j < MAX_RETRY_TIMES do
10: if c = None then
11: c← genInitialChecker (r, t, ast,C,Kapi ) ⊲ LLM-based generation
12: else
13: c← refineLastChecker (r, t, ast,C,Kapi, c) ⊲ LLM-based refinement
14: end if
15: rep← validateChecker (c, Ta ) ⊲ get the validation report
16: if t ∈ rep.passedtests and rep.failedtests ∩ Tp = ∅ then
17: break ⊲ the checker passes t without regression errors
18: end if
19: j← j + 1
20: end while
21: if j = MAX_RETRY_TIMES then
22: Ts .add (t) ⊲ skip t if it reaches the retry limit
23: end if
24: Tp ← rep.passedtests, Tc ← rep.failedtests \ Ts ⊲ update test sets
25: end while
26: cf ← c, prf ← rep.pr ⊲ return the final checker and test pass rate

built-in parser (line 7). To clearly link AST nodes to their
source code, AutoChecker also retains the concrete names of
AST nodes parsed from identifiers. For instance, the AST node
ASTClassDeclaration parsed from the method name “length”
is augmented as “ASTMethodDeclaration(length)”.

★ Related API-contexts. AutoChecker adopts the API-Context
Retrieval to retrieve related API-contexts based on the checker
rule and cleaned test case on line 6, introduced in Sec. 3.2.

★ Checker template. We manually summarize a PMD checker
template from existing checkers, which is shown in Fig. 9.

package RULE_PACKAGE;
import net.sourceforge.pmd.lang.java.rule.AbstractJavaRulechainRule;
import net.sourceforge.pmd.lang.java.ast.*;
......  // other imports for PMD checkers are omitted for simplicity
​
public class RULE_NAME extends AbstractJavaRulechainRule {
  public RULE_NAME() { super(AST_NODE_TO_VISIT_1.class, AST_NODE_TO_VISIT_2.class, ......); } 
  @Override
  public Object visit(AST_NODE_TO_VISIT_1 node, Object data) { ...... }
  @Override
  public Object visit(AST_NODE_TO_VISIT_2 node, Object data) { ....... }
  .......
}

Figure 9: Simplified PMD Checker Template

☞ Prompt for Iterative Refinement. In subsequent rounds,
the prompt is designed for checker refinement. It instructs the LLM
to refine a given rule-specific checker to pass the selected test case.
Compared to the initial generation prompt, this one also includes
the ★ last-generated checker as input.

Notably, after generating the checker using the above prompts,
AutoChecker employs a simple strategy to prevent import errors.
Specifically, it replaces the import section of the generated checker
code with default imports, matching those in the template (Fig. 9).
This ensures that all required packages are correctly imported.

3.3.2 Checker Development Cycle. The TDCD cycle follows an
iterative refinement process. Throughout the cycle, AutoChecker
dynamically maintains three test sets as follows.
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• Tc is the candidate test pool with unprocessed and failed tests.
• Tp is a test set that records all passed tests.
• Ts is a test set that records all skipped tests. In a single round,
sometimes the LLM may fail to generate a checker that passes
the given test case within allowed attempts, AutoChecker then
skips this test to prevent blocking the cycle.

To start with, the cycle begins by initializing Tc with all tests
from the full suite Ta. Then, AutoChecker selects a single test from
Tc in each round of the cycle to guide the checker development
process on lines 5-19. For each round, the generated checker will be
validated with the full test suite on line 15. Note that AutoChecker
ensures that each newly generated checker in every iteration should
pass the given test case without affecting the already passed test
cases (without regression errors). If not, AutoChecker will re-query
the LLM to re-generate the checker within allowed retry attempts
on lines 8-20. After validation, all test sets are updated on lines 21-
24. Specifically, passed tests are moved to the Tp, while persistently
failing tests (after maximum attempts) are added to Ts. Besides, Tc
is updated with the failed tests, excluding skipped ones in Ts.

Finally, the cycle terminates when Tc becomes empty, indicating
all tests have been either validated or skipped. The final checker cf
and its test pass rate prf are derived from the last validation results.

4 Evaluation
We conduct extensive experimental evaluations of AutoChecker to
address the following research questions:

• RQ1 (Effectiveness): Can AutoChecker effectively generate
high-quality code checkers?
• RQ2 (Ablation Study): How do different strategies contribute
to AutoChecker’s effectiveness?
• RQ3 (Cost): CanAutoChecker develop checkers cost-effectively?
• RQ4 (Practicality): How do AutoChecker-generated checkers
perform on real-world projects?

4.1 Evaluation Setup
4.1.1 Implementation Settings. In this paper, we build AutoChecker
specifically for PMD, an open-source AST-based code-checking tool
known for its effectiveness and ease of use [46]. Specifically, we
used the latest version 7.0.0-rc4 when we started our work.

We implemented AutoChecker on LangChain [7], a widely-used
framework for LLM applications. For the API-context retrieval
module, it employs vector databases with the SOTA open-source
bge-large-en-v1.5 [66] embedding model from BAAI [1]. Draw-
ing from our experience and prior work [48, 71], we set similar-
ity score thresholds to 0.85 for Meta-API matching and 0.8 for
API-context searching. In the checker development cycle, we set
MAX_RETRY_TIMES as 5 for each round of checker generation. Cur-
rently, AutoChecker supports two working modes: writing checkers
from scratch and incrementally. In the incremental mode, developers
can enhance existing checkers by providing additional test cases,
which will continuously trigger the TDCD process.

To evaluate the effectiveness of AutoChecker, we use multiple
popular LLMs, including self-hosted and official ones, as follows:

• Self-hosted LLMs: Llama3.1 (Llama-3.1-8B-Instruct) [6] and
Qwen2.5-Coder (Qwen2.5-Coder-32B-Instruct-AWQ) [35].

Table 3: Basic Information of the Benchmark RuleSet

Easy Rules Hard Rules
Category

Rule Name #TC Rule Name #TC
Method Decl. SignatureDeclareThrowsException 22 MethodNamingConventions 12
Method Call InefficientEmptyStringCheck 18 LiteralsFirstInComparisons 33

Class Decl. ExcessivePublicCount 7 ClassWithOnlyPrivateConstructors
ShouldBeFinal 22

Variable Decl.
and Usage

UseStringBufferForStringAppends 28 AssignmentToNonFinalStatic 6

Exception ExceptionAsFlowControl 7 AvoidThrowingNullPointerException 9
Expression NullAssignment 19 BrokenNullCheck 25
Control Stmt IdenticalCatchBranches 7 EmptyControlStatement 31

Object Inst. StringInstantiation 10 AvoidInstantiatingObjects
InLoops 23

Import ExcessiveImports 2 UnnecessaryImport 73
Literal AvoidUsingOctalValues 8 AvoidDuplicateLiterals 11
#TC: the number of test cases. Abbr.: Decl.→Declaration, Inst.→Instantiation

• Official LLMs: GPT-4 (gpt-4-0613) [5] and DeepSeek-V3 [45].

4.1.2 Benchmark RuleSet. The benchmark ruleset for evaluation is
derived from the official built-in rules in PMD 7.0.0-rc’s open-source
repository [10]. Initially, there are 132 built-in PMD Java rules. We
exclude four rules that are either deprecated or undocumented2. The
remaining 128 rules are classified based on the primary ASTNode
they check, as defined in their official implementations. Fig. 10
shows the distribution of rules across these reclassified categories.

27 23 22 15 12 10 8 4 4 3

 Variable Declaration and Usage
 Method Declaration

 Class Declaration
 Method Call

 Control Statement
 Object Instantiation

 Expression
 Exception

 Literal
 Import

Figure 10: Distribution of Classified PMD’s Built-in Rules

For a clearer evaluation, we also divide the collected rules into
easy rules and hard rules based on the implementation complex-
ity of their official checkers. Statistically, we measure complexity
by analyzing specific elements in the checker code: a rule is la-
beled as easy if its checker’s line count, import statements, method
calls, and control statements are all below the average values across
all built-in checkers, and if it uses fewer than one semantic class
(from pmd.lang.java.types or pmd.lang.java.symbols). Rules
not meeting these criteria are labeled as hard.

Overall, we have 128 rules across 10 categories, evenly split into
64 easy and 64 hard rules. For evaluation, we randomly select 10
easy and 10 hard rules, ensuring each represents a unique category.
Since PMD provides official test cases for each rule, we extract the
default test suites for these 20 rules from PMD’s website [9]. By
default, these test cases are generally ordered by their difficulty,
and we retain this order for AutoChecker. Finally, the benchmark
ruleset’s details are summarized in Tab. 3.

4.1.3 Baselines and Ablation Methods. According to our knowl-
edge, AutoChecker is the first LLM-based approach for automated
code checker generation, specifically for AST-based ones. Thus, we
manually develop comprehensive baseline and ablation methods
based on LLMs to demonstrate the effectiveness of AutoChecker.

For RQ1, we design five baselines to generate the checker at one
time inspired by common practices in LLM-powered SE tasks [34]:
2Excluded rules are ExcessiveMethodLength, ExcessiveClassLength, BeanMembersShould-
Serialize, and AbstractNamingConvention.
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• NoCaseLLM: generates checkers using only the rule descrip-
tion and PMD’s checker template, without test cases.
• AllCasesLLM: generates checkers with the rule description,
PMD checker template, and the full test suite. If the test suite
exceeds the LLM’s token limit, excess cases are dropped.
• NoCaseLLMR: enhances NoCaseLLM with RAG, adding the
top-k (default k=19, the mean API count of PMD’s built-in
checkers) APIs retrieved from the Full-API DB using the rule
description as query.
• NoCaseLLMC: enhances NoCaseLLM with Chain-of-Thought
(CoT) prompting, the LLM is asked to “first create a comprehen-
sive checking skeleton and then generate the checker”.
• NoCaseLLMRC: enhances NoCaseLLM with both RAG and
COT strategies.

For RQ2, we evaluate the impact of AutoChecker’s two key
strategies: the logic-guided API-context retrieval and the TDCD
cycle (case-by-case iteration). We designed three ablation methods:

• AutoCheckerWoI: removes the TDCD cycle, providing all test
cases, their ASTs, and API-contexts at once. Excess tests are
dropped, similar to AllCaseLLM.
• AutoCheckerWoR: removes the API-context retrieval but re-
tains the TDCD cycle, prompting LLMs without API-contexts.
• AutoCheckerWoM: removes Meta-Op Set and Meta-API DB.
For API-context retrieval, it splits logic into sub-ops based on
the rule and test case and retrieves solely on Full-API DB.

In our evaluation, we run each method (including baselines and
AutoChecker) three times to account for LLM’s randomness, and
the best performance from each is collected for fair comparison.

4.1.4 Metrics. We design four types of metrics to evaluate a given
approach in developing static code checkers.

◆ Rule𝑝𝑐 : A rule is counted as 𝑅𝑢𝑙𝑒𝑝𝑐 if the approach success-
fully generates a pass-compilation checker for it. For the approach,
the total number of such rules is recorded as #𝑅𝑢𝑙𝑒𝑝𝑐 .

◆ Rule𝑝𝑜𝑡 : A rule is counted as 𝑅𝑢𝑙𝑒𝑝𝑜𝑡 if the approach gen-
erates a checker that passes at least one of its test case. The total
number of such rules is recorded as #𝑅𝑢𝑙𝑒𝑝𝑜𝑡 .

◆Rule𝑝𝑎𝑡 : A rule is counted as𝑅𝑢𝑙𝑒𝑝𝑖𝑡 if the approach generates
a checker that passes all the test cases in its test suite. The total
number of such rules is recorded as #𝑅𝑢𝑙𝑒𝑝𝑎𝑡 .

◆ TPR and TPR𝑎𝑣𝑔 : For each rule, we record the test pass rate
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑎𝑠𝑠𝑒𝑑 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
) of the generated final checker as 𝑇𝑃𝑅.

𝑇𝑃𝑅𝑎𝑣𝑔 denotes the average pass rate across all rules.

4.2 RQ1: Effectiveness Evaluation
Tab. 4 shows the main evaluation result of AutoChecker and other
baseline methods on the benchmark ruleset based on metrics de-
fined in Section 4.1.4. For each method, we record the result with
the highest TPRavg across three runs for fair comparison.

When paired with GPT-4, AutoChecker outperforms all other
baselines across different LLMs on all metrics. Specifically, it suc-
cessfully generates checkers that can pass all tests for six rules, and
at least one for all 20 rules (passing 278 test cases in total). Though
the generated checkers cannot pass all tests for all the rules, they

Table 4: Overall Performance Results of AutoChecker and
Baselines Using Different LLMs on the Benchmark RuleSet.

Method + LLM #Rule𝑝𝑐 #Rule𝑝𝑜𝑡 #Rule𝑝𝑎𝑡 #TC𝑝𝑎𝑠𝑠 TPR𝑎𝑣𝑔(/20) (/20) (/20) (/373)

𝑁𝑜𝐶𝑎𝑠𝑒𝐿𝐿𝑀 ✎ naive baseline without test cases
+ Llama3.1 0 0 0 0 0.00%
+ Qwen2.5-Coder 5 5 1 40 19.41%
+ GPT-4 7 7 1 62 27.92%
+ DeepSeek-V3 8 8 1 56 28.06%

𝐴𝑙𝑙𝐶𝑎𝑠𝑒𝑠𝐿𝐿𝑀 ✎ naive baseline with all test cases
+ Llama3.1 0 0 0 0 0.00%
+ Qwen2.5-Coder 4 4 1 17 14.40%
+ GPT-4 5 5 2 36 21.53%
+ DeepSeek-V3 6 6 2 43 24.60%
𝑁𝑜𝐶𝑎𝑠𝑒𝐿𝐿𝑀R ✎ enhanced baseline with RAG
+ Llama3.1 2 2 0 16 4.71%
+ Qwen2.5-Coder 9 9 2 60 30.68%
+ GPT-4 10 10 1 108 30.82%
+ DeepSeek-V3 9 9 2 92 32.05%
𝑁𝑜𝐶𝑎𝑠𝑒𝑠𝐿𝐿𝑀C ✎ enhanced baseline with COT
+ Llama3.1 0 0 0 0 0.00%
+ Qwen2.5-Coder 6 6 1 45 21.18%
+ GPT-4 8 8 1 94 27.26%
+ DeepSeek-V3 9 9 0 66 29.40%
𝑁𝑜𝐶𝑎𝑠𝑒𝐿𝐿𝑀RC ✎ enhanced baseline with RAG + COT
+ Llama3.1 2 2 0 7 6.25%
+ Qwen2.5-Coder 9 9 1 60 30.49%
+ GPT-4 9 9 1 105 27.74%
+ DeepSeek-V3 11 11 1 101 38.93%

AutoChecker ✎ our approach
+ Llama3.1 3 3 1 22 8.41%
+ Qwen2.5-Coder 20 ✿ 20 ✿ 4 257 79.01%
+ GPT-4 20 ✿ 20 ✿ 6 ✿ 278 ✿ 82.28% ✿
+ DeepSeek-V3 19 19 4 278 ✿ 80.86%
We keep the result with higheset TPRavg across three runs for each method.

#TC𝑝𝑎𝑠𝑠 denotes the number of passed test cases in total; ✿ marks the best result of
each metric across all methods; is the best LLM (based on TPRavg) for each method.

attain an 82.28% average test pass rate (TPRavg), indicating the
method’s remarkable effectiveness in generating usable checkers.

In general, the performance of all methods (excluding ablation
methods in this RQ) across various LLMs follows these rankings:

• LLM Rank: Llama3.1 < Qwen2.5-Coder ≲ GPT-4 ≲ DeepSeek-V3
• Method Rank: AllCasesLLM < NoCasesLLM < NoCaseLLMC

< NoCaseLLMR < NoCaseLLMRC < AutoChecker.

The LLM-rank result generally aligns with other LLM-evaluation stud-
ies [35, 45, 47]. The smallest model, Llama3.1, with limited code-related
capability, often leads to compilation failures caused by syntax errors. In con-
trast, the other three LLMs, being more powerful, can generate test-passing
checkers. Among them, DeepSeek-V3 excels in all baselines, while GPT-4
gets the best result for AutoChecker (checkers generated with DeepSeek-V3
and GPT-4 pass the same number of tests but vary in test distribution over
rules, leading to the difference in TPRavg). Notably, AutoChecker with the
self-hosted LLM (Qwen-Coder-2.5) also achieves a considerable TPRavg of
79.01%, making it promising for privacy-sensitive and resource-constrained
code-checking applications.

Based on the method rank, AutoChecker significantly outperforms all
baselines. Specifically, it achieves 2.93× the performance of NoCaseLLM,
3.34× of AllCasesLLM, 2.57× of NoCaseLLM𝑅 , 2.80× of NoCaseLLM𝐶

and 2.11× of NoCaseLLM𝑅𝐶 on TPRavg. Though the performance of No-
CaseLLM can be augmented with prompt engineering techniques (COT
and RAG), the metric TPRavg is still below 40%, and most generated check-
ers cannot even pass compilation. Compilation errors primarily stem from
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Figure 11: TPR Distribution for Checkers Generated by
AutoChecker+GPT-4 on Easy Rules and Hard Rules

insufficient API knowledge, leading to API hallucinations such as incor-
rect class names and method calls. These results also prove that simply
retrieving API-contexts based on the rule description (in AutoChecker𝑅

and AutoChecker𝑅𝐶 ) is coarse-grained, often resulting in retrieval failures
and, eventually LLM hallucinations.

To further analyze AutoChecker’s performance on easy and hard rules,
we collect the TPR distribution for all rules using GPT-4, the best-performing
LLM. As shown in Fig. 11, the results align with expectations: hard rules are
more challenging, with average TPRs of 84.60% for easy rules and 79.90%
for hard rules. Specifically, the generated checkers pass all tests for 4 easy
rules and 2 hard rules.

Failure Discussion. From the results, checkers generated by AutoChecker
with GPT-4 fail on 95 test cases, which are skipped after reaching the retry
limit.We randomly sample about half (45) from different rules and categorize
the failures into compilation errors (due to hallucinated APIs), selected
test failures (failing the current test), and regression test failures (failing
previously passed tests). Besides API retrieval precision, LLM capability is
also a key reason for these failures, as we observed LLMs using deprecated or
wrong APIs even when correct ones are provided (e.g., using deprecated API
jjtGetNumChildren for rule ExecptionAsFlowControlRule even the correct
API getNumChildren has been provided in prompts).

➠ Answering RQ1: AutoChecker outperforms both naive and enhanced
baselines, achieving the highest 82.28% TPRavg with GPT-4. It indicates
that our approach can effectively help developers to write their own
checkers only with the rule and test suite.

4.3 RQ2: Ablation Study
To evaluate the effectiveness of specific strategies in AutoChecker, we con-
duct ablation experiments. As GPT-4 and DeepSeek-V3 achieve comparable
performance (discussed in RQ1), we use both for the ablation study. Tab. 5
gives the overall results.

We start by analyzing the effectiveness of retrieval and iteration set-
tings. In terms of TPRavg, AutoCheckerWoI achieves better performance
using DeepSeek-V3, while AutoCheckerWoR performs better using GPT-4.
Compared to them, AutoChecker with GPT-4 improves TPRavg by 53.97%
and 22.31%, respectively. This shows that both API-context retrieval and
the TDCD cycle are essential, with API-context retrieval being particu-
larly crucial. As shown in the second column, AutoCheckerWoI has fewer
pass-compilation checkers than AutoCheckerWoR. Without accurate API
knowledge, AutoChecker and any other LLM-based methods use halluci-
nated APIs and will fail due to compilation errors.

To validate the effectiveness of the meta-settings (Meta-Op Set and Meta-
API DB) inAutoChecker, we introduce the ablationmethodAutoCheckerWoM.
As shown in Tab. 5, while it gets good performance on TPRavg of around
70% only based on the Full-API DB, it is still at least 10 percent point lower
than AutoChecker. This result highlights the critical role of meta-settings
in retrieval.

Table 5: Results of AutoChecker and Ablation Methods using
GPT-4 and DeepSeek-V3 on the Benchmark Ruleset.

Method + LLM #Rule𝑝𝑐 #Rule𝑝𝑜𝑡 #Rule𝑝𝑎𝑡 #TC𝑝𝑎𝑠𝑠 TPR𝑎𝑣𝑔(/20) (/20) (/20) (/373)
𝐴𝑢𝑡𝑜𝐶ℎ𝑒𝑐𝑘𝑒𝑟WoI ✎ ablation method without iterations
+ GPT-4 8 8 2 65 29.37%
+ DeepSeek-V3 14 14 4 141 53.44%

𝐴𝑢𝑡𝑜𝐶ℎ𝑒𝑐𝑘𝑒𝑟WoR ✎ ablation method without API-context retrieval
+ GPT-4 18 18 2 231 67.27%
+ DeepSeek-V3 15 15 2 221 59.17%

𝐴𝑢𝑡𝑜𝐶ℎ𝑒𝑐𝑘𝑒𝑟WoM ✎ ablation method without Meta-Op Set and Meta-API DB
+ GPT-4 17 17 3 256 66.42%
+ DeepSeek-V3 18 18 1 258 72.92%

AutoChecker ✎ our approach
+ GPT-4 20 ✿ 20 ✿ 6 ✿ 278 ✿ 82.28% ✿
+ DeepSeek-V3 19 19 4 278 ✿ 80.86%

➠ Answering RQ2: Both the Retrieval and Iteration strategies are neces-
sary for AutoChecker. Also, with the meta-settings, its average test pass
rate increases by around 10 percentage points.

4.4 RQ3: Cost of AutoChecker
We evaluate AutoChecker’s time and financial costs respectively. Our obser-
vations show consistent time and token costs across different LLMs, as they
are all accessed via official or self-hosted APIs. Since AutoChecker struggles
to achieve good results with Llama3.1, we analyze the average costs across
the other three LLMs.

For time cost, we measure the average duration across three runs for easy
rules, hard rules, and all rules combined. As shown in Fig. 12, AutoChecker
takes 70 minutes to generate the final checker per rule on average: 40
minutes for easy rules and 100 minutes for hard rules. As a comparison,
traditional checker development in practice needs both manual implementa-
tion and may suffer multi-day delays from cross-role coordination between
managers and developers. Thus, AutoChecker is more efficient and able to
generate checkers automatically once tests are prepared.

For financial cost, we calculate the token usage using the corresponding
tokenizers, accounting for 121k input and 388 output tokens on average.
Generating a checker costs approximately $3.65 for GPT-4 and $0.035 for
DeepSeek-V3 per rule. As Tab. 4 shows, AutoChecker achieves compara-
ble performance across LLMs, enabling users to opt for cheaper options
(DeepSeek-V3) or API-free ones (Qwen2.5-Coder). For enterprises that need
custom checkers, the financial cost of AutoChecker is far more affordable
than hiring expertise for manual development.

0 50 100 150 200 250 300 350 400 450
minutes

all rules

hard rules

easy rules
Outliers
Median
Mean

Figure 12: Time Cost of AutoChecker on Different Rule Set

➠ Answering RQ3: The time and financial cost of AutoChecker is more
affordable compared to traditional checker development.

4.5 RQ4: Practicality in Real-world Projects
To evaluate the applicability of AutoChecker-generated checkers, we apply
them to scan real-world projects and compare their performancewith official
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Table 6: Violations Reported by the Official andAutoChecker-
Generated Checker on Real-world Projects

Checker Rule #TC+
#Violations on Five Projects

official CheckerAutoChecker+GPT-4
checker with TSorig with TSaug

NullAssignment +5 2,560 1,632 (↓928)✘ 2,562 (↑2)
ExcessivePublicCount +6 389 330 (↓59) 389 (=0)
ExcessiveImports +0 3,321 3,321 (=0) 3,321 (=0)
AvoidUsingOctalValues +7 58 0 (↓58) 58 (=0)
MethodNamingConventions +1 11,562 11,560 (↓2) 11,562 (=0)
AssignmentToNonFinalStatic +0 8 8 (=0)✘ 8 (=0)
StringInstantiation +0 347 347 (=0) 347 (=0)
InefficientEmptyStringCheck +2 16 28 (↑12) 16 (=0)
TS𝑜𝑟𝑖𝑔(original test suite) + TC+(new test cases)→ TS𝑎𝑢𝑔(augmented test suite);

Checker with TSorig/TSaug: generated checker based on a rule and its TSorig/TSaug ;
✘ denotes that the checker meets crash during project scan.

checkers. For project selection, we choose five popular Java projects3 from
GitHub, each with over 50K stars and ranging from 50 to 1,517 KLOC. For
checker selection, we use the generated ones that pass all tests and identify
them as successful. Instead of selecting from a single run, we collect the
successful checkers from all three runs. Specifically, we select the eight4
successful checkers generated by AutoChecker with GPT-4, as this exceeds
the number with DeepSeek-V3 (six) and other LLMs.

Table 6 shows the number of reported violations by both official and
AutoChecker-generated checkers for each project. As shown in the fourth
column, only three of the generated checkers based on the original test
suite achieve the same performance compared to official ones. Among all
the eight checkers, we observe missing reports (FNs) for four checkers
and mistaken reports for one checker (FP), while two checkers encounter
crashes during code scanning.

Through careful manual analysis, we identified two main reasons for the
performance gap: implementation bugs (crash) and omitted checking logic
for corner cases (FPs and FNs). Implementation bugs are mostly simple,
missing null checks and failing to perform type checking before casting.
They are quickly fixed by directly asking LLMs to repair with bug reports.
For FPs and FNs, they can be reduced by augmenting the original test suite.
To address this, we craft test cases to cover missing checking scenarios. The
number of added cases is shown in the fifth column in Table 6.

After bug fixes and test augmentation, the newly generated checkers suc-
cessfully report all violations, matching the performance of official ones. Ad-
ditionally, the NullAssignment checker reports two more violations, which
are repeated ones at the same location (other reports are not repeated). As
they are redundant true violations, we do not take them as FPs.

➠ Answering RQ4: Given an adequate test suite, AutoChecker can
generate checkers with comparable real-world performance to official
ones. It shifts the development effort from the challenging task of writing
checkers to the more manageable task of designing test suites.

5 Threats to Validity
A primary threat to validity is the generalizability of AutoChecker. As our
implementation targets PMD for Java, it may not easily apply to other code-
checking tools and programming languages. To address this, we design
AutoChecker with framework- and language-agnostic strategies. Specifi-
cally, the core test-driven development cycle is LLM-based and language-
independent, while theMeta-Op Set for API-context retrieval is conceptually
universal. Ideally, AutoChecker can be adapted to any tool that supports
custom AST-based checkers and all languages. During extension, the main

3Algorithms/Java [13], elastic/elasticsearch [3], macrozheng/mall [8], google/guava [4],
and spring-projects/spring-boot [12].
4The number of successful checkers across three runs: 6, 6, 5; Deduplicated total: 8.

practical hurdle is the one-time, manual effort to construct the API-context
databases. This cost is made manageable through a semi-automated process.
For initial framework API collection, manual work is needed to adapt the
API-collecting scripts to new framework. Then, the Full-API DB can be
automatically built, while the Meta-API DB needs further manual validation
and supplementation as introduced in Section 3.2.

Another threat is that the selected rules in the benchmark ruleset may
not be representative. To mitigate this, we choose rules from PMD’s built-in
set, which are widely recognized as references. After classifying these rules
by difficulty and targets, we randomly select rules via the stratified sampling
strategy to ensure balanced representation across both difficulty levels and
categories, as introduced in Section 4.1.2.

6 Future Directions
The overall checker development workflow consists of both the test prepa-
ration and checker development. Our work focuses on automating checker
development, as it represents the primary bottleneck in complete workflow,
demanding specialized expertise. In contrast, test case creation is a more
manageable task. However, this preparatory step could also be automated.
One direction for future work could be exploring using LLMs or histori-
cal patterns to automatically generate test suites from rule descriptions,
creating a fully automated, end-to-end checker production pipeline.

Another natural next step is to extend AutoChecker’s support to other
popular static analysis frameworks like CodeQL or Sonarcube, as well as
other programming languages such as Python and C++. As established
in our validity analysis, this extension requires a manageable, one-time
investment to construct the necessary API-context database for each new
framework. By broadening its compatibility, AutoChecker could bring the
benefits of automated, test-driven checker development to a much wider
audience of developers.

7 Related Work
7.1 Code Checker Development
In static analysis studies, researchers develop code checkers for various dis-
covered bug patterns [17, 21, 70]. For instance, Chen et al. [21] summarized
anti-patterns in logging code, and Zhang et al. [70] designed bug patterns for
exception handling. These patterns are then manually encoded as a static
checker for real-world issue detection. While effective, manual checker
implementation is time-consuming and requires significant expertise.

Code checker development requires highly specialized, flexible imple-
mentations, which traditional code generation approaches cannot handle.
Traditional pattern/template-based code generation approaches synthe-
size code by expanding templates with static schema (design-time) and
dynamic data inputs (run-time) [59], commonly used for structured tasks
with reusable patterns (e.g., class synthesis [19, 38], algorithmic transforma-
tion [36, 64]). Though checkers also need to follow basic structural design
(e.g., the PMD template we summarized in Sec. ), they demand variable and
flexible checking logic (implementations) for different rules—unpredictable
at design-time and impossible to predefine in templates.

Recently, the advent of Machine Learning (ML) and LLMs has inspired
researchers to analyze and scan code with models instead of implementing
code checkers [15, 33, 53, 72]. Most studies directly apply ML models to
detect various vulnerabilities, such as GNN-based Devign [73], Transformer-
based LineVul [32], LLM-based Llm4Vuln [58], etc. However, these ap-
proaches mostly focus on function-level detection and only identify limited
types of vulnerabilities, which are not effective at detecting vulnerabilities
in real-world projects [27, 57].

In order to scan real-world projects, researchers recently explore combin-
ing static analysis tools (code checkers) with models like LLMs. Specifically,
Wang et al. [62] and Li et al. [44] leverage LLMs to infer source-sink specifi-
cations to augment taint checkers for a given project and CWE, while some
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studies [22, 41, 42] directly use LLMs to reduce the false positive alarms
of static analysis tools. However, these efforts focus on improving existing
checkers rather than creating new ones. In contrast, AutoChecker generates
custom checkers through an automated end-to-end way based on LLMs.

7.2 LLM-based Repo-level Code Generation
Recently, code generation tasks have been revolutionized by LLMs [31,
34, 39]. LLMs have shown incredible capability in generating individual
programs [23, 47]. Repo-level code generation aims at generating code
using the APIs defined in the repository [69]. Compared to function-level
generation, this task is more challenging and downstream, requiring repo-
specific API knowledge. A recent survey [26] categorized methods for repo-
level generation into two types: fusion-based and ranking-based.

Fusion-based approaches [14, 28, 54] jointly model repo-context into the
LLM. Among these studies, MGD [14] queried static analysis tools in the
background, and the answers participated in the model’s decoding stage to
influence code generation. These approaches usually need to modify the
model decoding process, while AutoChecker augments related contexts
directly into the prompt.

Ranking-based methods [49, 55, 68, 69, 71] retrieve the most similar code
context from the repository into the prompt, which are primarily used in
most studies. For example, Liu et al. [49] find relevant import statements and
similar code snippets into the prompt for repo-level code generation, while
Zhang et al. [69] apply two-stage retrieval for fine-grained API retrieval. In
AutoChecker, the logic-guided API-context retrieval method is also ranking-
based, with optimizing settings (the decomposed logic-guided retrieval and
Meta-Op DB) specifically designed for checker generation.

8 Conclusions
We propose AutoChecker, an LLM-powered approach to automatically write
static code checkers with the rule description and the corresponding test
suite. To the best of our knowledge, this is the first attempt to explore
test-guided static checker generation using LLMs. AutoChecker employs
a novel test-driven checker development process to incrementally gener-
ate and refine the checker case by case. During each round, it retrieves
related API-contexts as additional knowledge for the LLM through the
logic-guided API-context retrieval method. Experimental results show that
AutoChecker’s effectiveness outperforms baseline approaches across all the
metrics, including the average test pass rate. Furthermore, with adequate
test cases, AutoChecker is able to generate checkers that perform nearly as
well as official ground truth checkers in real-world projects.
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