
Frontiers of Computer Science CN 10-1014/TP
https://doi.org/10.1007/s11704- ISSN 2095-2228
RESEARCH ARTICLE

HACMony: Automatically Detecting Hopping-related
Audio-stream Conflict Issues on HarmonyOS

Jinlong He1, Binru Huang2,4, Changwei Xia2,4, Hengqin Yang2,4, Jiwei Yan1, Jun Yan1,2,3,4

1. Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences,
Beijing, China
2. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou,
China
3. University of Chinese Academy of Sciences, Beijing, China
4. Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Front. Comput. Sci., Just Accepted Manuscript •
https://journal.hep.com.cn on

© Higher Education Press 2025

Just Accepted
This is a “Just Accepted” manuscript, which has been examined by the peer-review process and
has been accepted for publication. A “Just Accepted” manuscript is published online shortly
after its acceptance, which is prior to technical editing and formatting and author proofing.
Higher Education Press (HEP) provides “Just Accepted” as an optional and free service which
allows authors to make their results available to the research community as soon as possible
after acceptance. After a manuscript has been technically edited and formatted, it will be
removed from the “Just Accepted” Web site and published as an Online First article. Please note
that technical editing may introduce minor changes to the manuscript text and/or graphics which
may affect the content, and all legal disclaimers that apply to the journal pertain. In no event
shall HEP be held responsible for errors or consequences arising from the use of any information
contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital
Object Identifier (DOI(r)), which is identical for all formats of publication.”

https://doi.org/10.1007/sxxxxx-yyy-zzzz-1

RESEARCH ARTICLE

HACMony: Automatically Detecting Hopping-related Audio-
stream Conflict Issues on HarmonyOS
Jinlong He1, Binru Huang2,3, Changwei Xia2,3, Hengqin Yang2,3, Jiwei Yan1B, Jun Yan1,2,3,4

1. Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China
2. Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
3. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
4. University of Chinese Academy of Sciences, Beijing, China

Received month dd, yyyy; accepted month dd, yyyy
E-mail: {hejinlong,yanjiwei,yanjun}@otcaix.iscas.ac.cn, yanghq@ios.ac.cn, {huangbinru24,xiachangwei24}@mails.ucas.ac.cn.
© Higher Education Press 2025

Abstract
HarmonyOS is emerging as a popular distributed operating system for diverse mobile devices. One of its standout features is app-hopping, which
allows users to switch apps seamlessly across different HarmonyOS devices. However, when apps play audio-stream-hop between different
devices, they can easily trigger Hopping-related Audio-stream Conflict (HAC) scenarios. Improper resolution of HAC will lead to significant
HAC issues, which are hard to detect comprehensively due to the unclear semantics of HarmonyOS’s app-hopping mechanism and the lack
of effective multi-app hopping testing methods. To fill the gap, this paper introduces an automated and efficient approach to detecting HAC
issues. We formalized the operational semantics of HarmonyOS’s app-hopping mechanism for audio streams for the first time. Leveraging this
formalization, we designed an Audio-stream-aware State Transition Graph (ASTG) to model the behaviors of audio-streams during window
transitions and proposed a model-based approach to detect HAC issues automatically. Our techniques were implemented in a tool, HACMony,
and evaluated on 20 real-world HarmonyOS apps. Experimental results reveal that 12 of the 20 apps exhibit HAC issues. Among the 53 HAC
issues detected, a total of 18 unique HAC issues were manually confirmed. Additionally, we summarized the detected issues into two typical
types, namely MoD and MoR, and analyzed their characteristics to assist and guide both app and OS developers.

Key words
HarmonyOS, Audio-Stream Conflict, App-Hopping, Mobile Testing, Large Language model

■ 1 Introduction

The use of audio-stream is prevalent in mobile applications, covering
a range of use cases from simple music playing to complex audio pro-
cessing and interaction. When more than one apps use audio streams
on a single device, their audio streams may conflict and require proper
handling. For example, users may launch a music app to play a song
first and then switch to a movie app to play a video, both of which in-
volve audio streams. However, if neither the music app nor the movie
app handles the played audio streams according to the scenario, i.e.,
just let the two started audios play at the same time, users may feel
confused and uncomfortable.

When there are conflicts on multiple audio-streams, there are spe-
cific coping solutions according to experience. In this example, users
usually expect the music-playing can be paused automatically to en-
sure the normal playing of the newly launched video. To enhance
users’ experience, existing mobile systems typically offer an audio-
focus feature to resolve such Audio-stream Conflicts (ACs). When an
app attempts to play an audio, the system requests focus for the audio

stream. Only the audio stream that gains the focus can be played, i.e.,
if the request is rejected, the audio stream cannot be played. If an
audio stream is interrupted by another one, it loses audio focus and
is expected to take actions like pause, stop, or lower volume to avoid
unexpected AC-related issues.

As we can see, handling multiple audio app interaction scenarios
on a single device is inherently complex. Fortunately, as apps undergo
iterative updates, most app developers have made efforts to design
proper and effective conflict-handling solutions for their apps. Nowa-
days, with the rise of multi-device distributed operating systems [1],
applications can not only be used on a single device but can also be
migrated to other devices through hopping operations. These emerg-
ing operating systems aim to enhance users’ experience, but they also
make audio app interactions scenarios much more complex. In such
a context, the existing conflict-handling solutions designed for single-
device scenarios often lose effectiveness. Thus, when developing apps
working on distributed operating systems, the audio-stream conflict
handling scenarios on multiple devices should be comprehensively

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–1

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

tested.
In recent years, as the most representative distributed mobile op-

erating system, HarmonyOS has achieved remarkable success and is
running on more than one billion devices [2]. Developed by Huawei,
HarmonyOS is a distributed platform designed for seamless integration
across smartphones, tablets, smart TVs, and more. A standout feature
of HarmonyOS is app-hopping [3], a distributed operation mode that
plays a fundamental role in its ecosystem. This functionality allows
users to seamlessly transfer apps across different devices, enhancing
convenience and flexibility. However, this innovation also compli-
cates the resolution of ACs due to the increased interplay between de-
vices. Through a preliminary investigation, we found that many users
had complained about poor experiences caused by Hopping-related
Audio-stream Conflict (HAC) issues [4, 5], where the audio-stream
conflicts that occur during HarmonyOS’s app-hopping are improperly
handled. Given the significant disruption HAC issues cause to the user
experience during app-hopping across multiple HarmonyOS devices,
this paper focuses on how to detect HAC issues automatically and ef-
ficiently, alongside analyzing existing HAC issues to provide deeper
insights.

To achieve that, it is crucial first to understand how HarmonyOS’s
app-hopping mechanism operates and design an efficient test gener-
ation approach tailored for app-hopping scenarios. The first major
challenge lies in the lack of semantics for the app-hopping mech-
anism. Through an investigation of the official documentation, we
found that existing materials focus on highlighting the benefits of app-
hopping but lack detailed descriptions of the underlying mechanism.
This lack of clarity significantly complicates the design of effective
testing approaches for app-hopping. Specifically, it increases the diffi-
culty of determining when and how to perform hopping operations that
are more likely to trigger HAC issues. Moreover, this omission also im-
pedes other hopping-related research efforts. The second challenge is
lacking hopping-specific models designed for efficient testing. Al-
though there are various models designed for mobile apps’ GUI testing
[6–18], there is no HAC-specific model, that describes the behaviors
of audio streams of an app and can guide a compact test case genera-
tion. Without such a model, it would be difficult to design an effective
testing strategy to detect HAC issues.

To address Challenge 1, we meticulously picked several repre-
sentative HarmonyOS native apps, designed and conducted a group
of semantic experiments on app-hopping operations, and summarized
the behaviors of app-hopping operations according to the experimental
results. Based on that, we first present the formalized operational se-
mantics of HarmonyOS’s app-hopping mechanism in the aspect of au-
dio stream. To address Challenge 2, we propose an extended FSM [6]
called Audio-stream-aware State Transition Graph (ASTG) to de-
scribe the behaviors of audio streams. Its node, Audio-Stream-aware
State (ASS), denotes the window and its audio stream status in a run-
ning app; while its edge describes the transition rule between ASSs
with the label of GUI events. To accurately and efficiently construct
ASTG model, we propose an ASS-targeted and LLM-driven model ex-
ploration approach, which adopts LLM to identify and prioritize GUI

events capable of triggering audio-stream interactions, then utilizes
this information to guide the dynamic exploration of the app under
test. As this exploration approach can only explore the audio-stream
statuses without multiple apps’ interaction, we also propose an ASS-
guided enhancement approach to simulate the multi-app environment
for extracting the extra ASSs and then construct a more precise ASTG.
Based on both the operational semantics of HarmonyOS’s app-hopping
mechanism and the fine-grained ASTG model, we can finally generate
targeted test cases and execute them to detect HAC issues.

We implemented our proposed techniques into a tool called HAC-
Mony (Hopping-related Audio-stream Conflict issues for HarMonyOS)
and evaluated it on 20 real-world popular HarmonyOS apps. The ex-
perimental results demonstrate that the proposed testing approach can
efficiently detect HAC issues. Among the 20 apps, 12 were found to
have HAC issues. Among the 53 HAC issues detected, there are 18
unique HAC issues, which are all manually confirmed. Through issue
analysis, we categorized the identified HAC issues into two types: Mis-
use of Device (MoD) and Misuse of Resolution (MoR). We further
summarized their characteristics and possible causes to provide deeper
insights for both application and OS developers.

The main contributions of this work are summarized as follows:
• We present the first formal semantics of the HarmonyOS app-

hopping mechanism, which serves as a foundation for HAC issue
testing and could inspire further research.

• We design the ASTG model to describe the transitions of ASSs in
HarmonyOS apps and propose a LLM-driven dynamic exploration
approach to construct ASTG models. The approach is implemented
into a tool HACMony 1, which is evaluated on 20 real-world apps
and successfully discovered 18 unique HAC issues.

• We summarize two typical types of HAC issues, namely MoD and
MoR, and analyze their possible causes. These findings can assist
and guide both app and OS developers in improving the apps’ quality
on distributed mobile systems.

■ 2 Background
This section introduces the basic concepts around HarmonyOS apps
and audio streams. We also give a motivating example to illustrate the
behavior of a real HAC issue.

2.1 HarmonyOS: Architecture and Application
HarmonyOS is designed with a layered architecture, which from bot-
tom to top consists of the kernel layer, system server layer, framework
layer, and application layer. Figure 1 illustrates the layered architec-
ture of HarmonyOS [19, 20]. The application layer is composed of
Android (AOSP) apps and HarmonyOS native (OpenHarmony) apps,
which achieves binary compatibility. In the framework layer, the ABI-
compliant Shim (application binary interface compliant layer) redirects
Linux syscalls into IPCs, channeling them towards appropriate OS ser-
vices. This mechanism effectively addresses compatibility issues with
AOSP and OpenHarmony, as noted in [20]. The system service layer
offers a comprehensive set of capabilities crucial for HarmonyOS to

1Available at https://github.com/SQUARE-RG/hacmony

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–2

https://github.com/SQUARE-RG/hacmony

Front. Comput. Sci., 2025, 0(0): 1

Application Layer

Android/Harmony native App Binary Compatible
AOSP/OpenHarmony

Framework Layer

ABI-compliant Shim

Kernel Layer

System Server Layer

IPC
…

Linux Syscall

Basic system
capability

Hardware
service

Basic software
service

Enhanced
software service

IPC

Core Kernel

Proc. Mgr.
Mem
Mgr.

File
System …Native Driver

Fig. 1 HarmonyOS Architecture

provide services to applications. It consists of a basic system ca-
pability subsystem, a basic software service subsystem, an enhanced
software service subsystem, and a hardware service subsystem. The
kernel layer, through its core kernel, furnishes memory management,
file system management, process management, and native driver func-
tionality.

With this architecture, especially the design of ABI-compliant shim,
HarmonyOS can support both AOSP [21] (for Android apps) and
OpenHarmony [22] (for native apps). Notably, the distributed oper-
ation app-hopping is implemented within the basic system capability
subsystem, which transports Android and HarmonyOS native apps to
another HarmonyOS device through the distributed soft bus in the
same way. In this paper, we take both of the two supported types of
apps on HarmonyOS as HarmonyOS apps.

2.2 Audio Stream
Audio streaming is a technology that allows users to transmit and
receive audio data in real-time over the internet. Audio streaming is
commonly used in online music services, internet radio, podcasts, and
other applications that require instant audio content transmission.

In general, an app typically has three fundamental audio-stream sta-
tuses when no other app is playing audio stream, i.e., STOP, PAUSE,
and PLAY. In real-world scenarios, audio streams are prone to con-
flicts when apps interact. When such conflicts occur, the behavior of
the audio playback in an app becomes more complex. To mitigate
the interference impact of the conflict on users, the app will often
temporarily lower the volume or pause the audio stream to avoid si-
multaneous playback. As a consequence, during the occurrence of
these conflicts, an app has two extra audio-stream statuses, i.e., PLAY↓

and PLAY∥ . Specifically, when an app play together with another app,
PLAY↓ signifies one app lower the volume, and PLAY∥ signifies one
app pause the playback and play again when the conflict disappears.
As shown in Table 1, we consider the listed five audio stream statuses
in this paper.

Furthermore, HarmonyOS adopt audio focus to manage audio streams
from different apps to reconcile the audio-stream conflicts. When an

Table 1 Description of Audio Stream Statuses

Audio-stream Status Description
STOP stop the playback

PAUSE pause the playback
PLAY play the playback

PLAY↓ lower the volume,
restore after conflict disappear

PLAY∥ pause the playback,
play after conflict disappear

audio stream requests or releases audio focus, the system manages fo-
cus for all streams based on predefined audio focus policies. These
policies determine which audio stream can operate normally and which
must be interrupted or subjected to other actions. The system’s default
audio focus policy primarily relies on the type of audio stream and the
order in which the audio streams are initiated [23]. In HarmonyOS,
“StreamUsage” is an enumeration type to define audio stream cate-
gories. It plays a crucial role in audio playback and management. The
commonly used values include STREAM USAGE MUSIC (MUSIC),
STREAM USAGE MOVIE (MOVIE), STREAM USAGE NAVIG
ATION (NAVIG), and STREAM USAGE VOICE COMMUNICAT
ION (COMMU) [24].

Table 2 lists typical resolutions for solving ACs based on audio
stream types by HarmonyOS, where app “pre” plays audio streams first
and then app “post” plays at a later time. Although these resolutions
are recommended ones, HarmonyOS also allows developers to handle
conflicts on their own. This leads to different proper resolutions for
solving conflicts for real-world apps in practice.

Table 2 Typical Resolutions for Solving the ACs, where : app “pre” lowers the vol-
ume, after app “post” releases the audio focus, app “pre” restores the volume. : app
“post” lowers the volume, after app “pre” releases the audio focus, app “post” restores
the volume. : app “pre” and “post” play together. : app “pre” pauses the playback,
after app “post” releases the audio focus, app “pre” plays again. : app “pre” stops the
playback.

Type of app “post”
MUSIC MOVIE NAVIG COMMU

Type
of

app
“pre”

MUSIC
MOVIE
NAVIG

COMMU

2.3 Motivating Example
To show the motivation for this work, we use a navigation app,
AMap [25], running on a phone, and a music app, Kugou Music [26],
running on a tablet for illustration. As shown in Figure 2, the initial
scenario is depicted in 1 , where both apps, AMap and Kugou Music,
play their audio streams at normal volume. When the user launches
Amap on the tablet and navigating in 1 , the app AMap plays the audio
stream with the normal volume, but Kugou Music lowers the volume to
avoid the audio-stream conflict, whose status is displayed in 2 . When
the user clicks the “recent” button on the phone in 1 , the interface

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–3

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

1h 30km
1h 30km

1h 30km

1h 30km

1h 30km

Launch Amap
on the tablet
& navigate

Click the “recent” button
on the phone

Drag Amap
to the tablet

tablet

3 4

1 2

Amap plays audio

Kugou Music plays audio Kugou Music lowers the volume

Amap plays audio Amap plays audio

Amap plays audio

Kugou Music plays audio Kugou Music plays audio
Amap plays audio

Fig. 2 Motivating Example

on the phone changes the interface for selecting the hopping app and
target device, which is shown in 3 . When the user drags the app
Amap to the tablet on the phone in 3 , the app Amap will be hopped
to the tablet. However, in this situation, both AMap and Kugou Music
play their audio streams at normal volume on the tablet, which is not
expected. Since Kugou Music fails to lower its volume, users may have
difficulty hearing navigation instructions from AMap. In the context of
in-vehicle infotainment systems, such conflicts could even pose safety
risks.

To uncover hidden vulnerabilities that can be triggered by the app-
hopping operation on HarmonyOS, two key tasks must be accom-
plished. First, it is essential to understand the operational semantics
of HarmonyOS’s app-hopping mechanism. Besides, an efficient test
generation approach tailored specifically for app-hopping scenarios
should be designed.

■ 3 The Operational Semantics of App-Hopping Mechanism on
HarmonyOS

In this section, we describe the overview of the app-hopping mecha-
nism and specify the mechanism as an operational semantics.

3.1 The Overview of App-Hopping
HarmonyOS provides the Virtual Super Device (Super Device) to in-
tegrate multiple physical devices and allow one device to share data
and apps among devices with distributed communication capabilities.
App-hopping is the fundamental feature of the Super Device to share
the apps among devices [3].

When hopping an app 𝑎 from device 𝑑 to device 𝑑′, the app 𝑎 will
seamlessly transfer from device 𝑑 to 𝑑′, i.e., it will be displayed on the
screen of device 𝑑′ only. Users could end a hop at any time when there
is an app hop in the super device. Ending the hop of app 𝑎 will let app
𝑎 return to device 𝑑. To obtain HarmonyOS’s hopping mechanism,
We picked several representative HarmonyOS native apps to explore
the behavior of app-hooping among multiple devices. By checking
the official documents as well as conducting a group of experiments,
we found that there is at most one app hop held in the super device
in HarmonyOS. That is, if app 𝑎 has been hopped from device 𝑑 to
device 𝑑′ and the users hop another app 𝑎′ in the super device, the hop
of app 𝑎 will be ended automatically. Furthermore, when considering

the audio stream of apps, the behaviors of starting a hop and ending a
hop will be more complicated. When starting a hop of app 𝑎 that is
playing music on device 𝑑 to another device 𝑑′, then app 𝑎 will play
music on device 𝑑′. If there is another app playing music on device
𝑑′ before the hop of app 𝑎, the audio-stream conflict will occur on the
device 𝑑′, which should be carefully addressed to avoid HAC issue
happen.

3.2 The operational Semantics of App-Hopping
According to our literal and experimental investigation, we first sum-
marize the formal semantics of HarmonyOS’s app-hopping mecha-
nism, where the semantics of this mechanism have also been verified
through the review of official materials. In this part, we specify its op-
erational semantics to help users to better understand the app-hopping
behaviors. Figure 3 defines domains, stacks, and operations to de-
scribe the operational semantics. We write 𝑎 for an app name, and
𝑑 for a device name. An app instance is a pair of its activity name,
and audio stream status (𝑎, 𝜇). An app stack 𝛼 is a sequence of app
instances. A device instance is a pair of its device name and its app
stack (𝑑, 𝛼). A device stack 𝛽 is a sequence of device instances. A
hopping relation 𝑟 is either a triple of source device name, app name
and target device name (𝑑, 𝑎, 𝑑′), or a dummy symbol 𝜖 representing
no hop exists in the super device.

The operational semantics are defined as the relation of the form

⟨𝛽, 𝑟⟩ 𝐶⊢−→ ⟨𝛽′, 𝑟′⟩, where the current devices stack is 𝛽 and the current
hopping relation is 𝑟, the operation𝐶 resulting in the new devices stack
𝛽′ and the new hopping relation 𝑟′. The typical behaviors of StartHop
and EndHop operations are as follows:

𝛽 = 𝛽1 :: (𝑑𝑠 , 𝛼𝑠) :: 𝛽2 :: (𝑑𝑡 , 𝛼𝑡) :: 𝛽3 𝛼𝑠 = 𝛼1 :: (𝑎, 𝜇) :: 𝛼2
𝐴 = (𝑎, 𝜇) 𝑟 = (𝑑𝑠 , 𝑎, 𝑑𝑡) 𝛼′𝑠 = rmv(𝐴, 𝛼𝑠) 𝛼′𝑡 = add(𝐴, 𝛼𝑡)

⟨𝛽, 𝜖⟩ 𝑑𝑠 .StartHop(𝑎,𝑑𝑡)⊢−−−−−−−−−−−−−−−−→ ⟨𝛽1 :: (𝑑𝑠 , 𝛼′𝑠) :: 𝛽2 :: (𝑑𝑡 , 𝛼′𝑡) :: 𝛽3, 𝑟⟩

𝛽 = 𝛽1 :: (𝑑𝑠 , 𝛼𝑠) :: 𝛽2 :: (𝑑𝑡 , 𝛼𝑡) :: 𝛽3 𝛼𝑡 = 𝛼1 :: (𝑎, 𝜇) :: 𝛼2
𝐴 = (𝑎, 𝜇) 𝑟 = (𝑑𝑠 , 𝑎, 𝑑𝑡) 𝛼′𝑠 = add(𝐴, 𝛼𝑠) 𝛼′𝑡 = rmv(𝐴, 𝛼𝑡)

⟨𝛽, 𝑟⟩ EndHop⊢−−−−−−→ ⟨𝛽1 :: (𝑑𝑠 , 𝛼′𝑠) :: 𝛽2 :: (𝑑𝑡 , 𝛼′𝑡) :: 𝛽3, 𝜖⟩

𝑎 ∈ App application name

𝑑 ∈ Device device name

𝜇 ∈ Audio = {PLAY, PAUSE, STOP, PLAY↓, PLAY∥}
𝑟 ∈ HopRelation = Device × App × Device ∪ {𝜖}
𝐴 ∈ AppInst = App × Audio
𝐷 ∈ DeviceInst = Device × AppStack
𝛼 ::= 𝜖 | 𝐴 :: 𝛼 ∈ AppStack

𝛽 ::= 𝜖 | 𝐷 :: 𝛽 ∈ DeviceStack

𝐶 ::= EndHop | 𝑑.StartHop(𝑎, 𝑑)

Fig. 3 Domains, Stacks, and Operations

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–4

Front. Comput. Sci., 2025, 0(0): 1

(𝑎!, PLAY)

d1

(𝑎", PLAY)

d2

(𝑎# , PLAY)

d3

(𝑎$, PLAY)

d1

(𝑎", PLAY↓)

d2

(𝑎# , PLAY)

d3

𝑎!

d1 d2 d3

𝑎#

(𝑎!, PLAY)

(𝑎$, PLAY)

d1

(𝑎", PLAY)

d2

(𝑎# , PLAY)

d3

𝑎!

𝑠𝑑!

𝑠𝑑"𝑠𝑑#

𝑠𝑑$

𝑑! . StartHop(𝑎!, 𝑑$)

𝑑". StartHop(𝑎# , 𝑑$)

(𝑎!, PLAY)

(𝑎# , PLAY)

𝑑!. StartHop(𝑎!, 𝑑")

(𝑎$, PLAY↓)

(𝑎$, PLAY↓) (𝑎", PLAY‖)

(𝑎!, PALY)

EndHop

EndHop
EndHop

Fig. 4 Example of HarmonyOS’s App-Hopping Mechanism

The first specifies that if a user hops an app when there is no hop in the
super device, the app will be moved to the target device, and the other
apps in the source (resp. target) device will change the audio stream
status according to the function rmv (resp. add). The second describes
that if a user ends a hop of an app, the behavior of this operation is
dual to that of the first.

Intuitively, the function rmv(𝐴, 𝛼) (resp. add(𝐴, 𝛼)) indicates the
behaviors of removing (resp. adding) an app instance 𝐴 from (resp.
into) a given app stack 𝛼. Moreover2,
• if app instance 𝐴 is in the status PLAY, and there exists another app

instance 𝐴′ in the status PLAY↓ or PLAY∥ , rmv(𝐴, 𝛼) will let 𝐴′

turn into PLAY,
• if 𝐴 is in the status of {PLAY,PLAY↓,PLAY∥ }, and there exists an-

other app instance 𝐴′ in the status PLAY, add(𝐴, 𝛼) will lead to the
audio-stream conflict, the status of app instance 𝐴′ will change ac-
cording to the resolution to solve the conflicts (refer to Section 4.3.3).
Multiple-Device App-Hopping Example. In the following, we

use an example to illustrate the operational semantics of the Har-
monyOS app-hopping mechanism. Suppose that there are three de-
vices 𝑑1, 𝑑2, 𝑑3 in the super device, and four apps 𝑎1, 𝑎2, 𝑎3, 𝑎4 run-
ning on these devices. The types of audio streams used for each
app are as follows, 𝑎1 : NAVIG, 𝑎2 : MOVIE, 𝑎3 : MUSIC, and
𝑎4 : COMMU. To simplify the complicated process, we suppose all
the resolutions to solve audio stream conflicts following the typical
resolutions listed in Table 2. As shown in Figure 4, there are four
cases of the super device 𝑠𝑑1, 𝑠𝑑2, 𝑠𝑑3, 𝑠𝑑4. For each 𝑖 ∈ [1, 4], we
let 𝑠𝑑𝑖 = ⟨𝛽𝑖 , 𝑟𝑖⟩ where 𝛽𝑖 = (𝑑1, 𝛼𝑖,1) :: (𝑑2, 𝛼𝑖,2) :: (𝑑3, 𝛼𝑖,3). For
instance, 𝛼1,1 = (𝑎1,PLAY) :: (𝑎2,PLAY↓) is the app stack of the
device 𝑑1 in the super device 𝑠𝑑1. The semantics of the app-hopping
mechanism are illustrated by the following cases.
• When the operation 𝑑1.StartHop(𝑎1, 𝑑2) is applied to 𝑠𝑑1, the app

instance (𝑎1,PLAY) will be removed from 𝛼1,1 = (𝑎1,PLAY) ::
(𝑎2,PLAY↓). Since the audio stream status of 𝑎2 is PLAY↓, it will
turn to PLAY , resulting in 𝛼2,1 = (𝑎2,PLAY). Moreover, the app
instance (𝑎1,PLAY) will be added into the device 𝑑2, and request

2Due to the space limitation, we describe the remaining rules and helper functions in a
companion report [27].

Main
STOP

Player
PLAY

Click song

Player
PAUSE

Click “Play”Click “Play”

Main
PAUSE Back

Click song

Main
STOP

Player
PLAY

Click song

Player
PAUSE

Click “Play”
Click “Play”

Main
PAUSE Back

Click song

Player
DUCK

Player
PAUSE*

Start app1

Start app2

1. ASS-Targeted LLM-Driven Model Exploration

2. ASS-Guided Model Enhancement

App Under Test Initial ASTG Model

Multi Audio-associated Apps ASTG Model

Phase 1. Model Construction

3. Test Generation4. Test Execution5. Issue Detection

Issue Report Multi Devices Test Cases

Phase 2. Model-Based Testing

LLM

Fig. 5 HACMony’s Workflow

the audio focus of device 𝑑2, then app instance of 𝑎3 will turn to
PLAY↓, resulting in 𝛼2,2 = (𝑎1,PLAY) :: (𝑎3,PLAY↓).

• When the operation EndHop is applied to 𝑠𝑑2, since there is already
a hop 𝑟2 = (𝑑1, 𝑎1, 𝑑2), the app instance (𝑎1,PLAY) will be moved
back to device 𝑑1 from 𝑑2. Moreover, (𝑎1,PLAY) will be removed
from 𝛼2,2 = (𝑎1,PLAY) :: (𝑎3,PLAY↓). Since the audio stream
status of 𝑎3 is PLAY↓, it will then turn to PLAY, resulting in 𝛼1,2 =

(𝑎3,PLAY). Then the app instance (𝑎1,PLAY) will be added into
the device 𝑑1, and request the audio focus of device 𝑑1, then app
instance of 𝑎2 will turn to PLAY↓, resulting in 𝛼1,1 = (𝑎1,PLAY) ::
(𝑎2,PLAY↓).

• When the operation 𝑑3.StartHop(𝑎4, 𝑑2) is applied to 𝑠𝑑2, since
there is already a hop 𝑟2 = (𝑑1, 𝑎1, 𝑑2), it will end the previous
hop first. That is, the case turns to 𝑠𝑑1. Then it will hop 𝑎4 from
device 𝑑3 to device 𝑑2. Since the audio stream conflict resolution
for app pair (pre:𝑎3, post:𝑎1) is different from pair (pre:𝑎3, post:𝑎4)
according to their types, the audio stream status of 𝑎3 is PLAY∥

instead of PLAY↓ in this case.
• When the operation 𝑑1.StartHop(𝑎1, 𝑑3) is applied to 𝑠𝑑2, it is

similar to the previous case.
It shows that during the app-hopping, audio-stream conflicts may

arise between the hopping app and audio-stream-using apps on both
original device and target device, thereby altering their audio-stream
statuses.

■ 4 Model-based Testing Approach for HAC Issue Detection
In this section, we present the overview and design details of the
model-based testing approach for automatically detecting HAC issues.

4.1 Approach Overview
Based on the knowledge of the HarmonyOS’s app-hopping mechanism,
we design a model-based automatic testing approach for HAC issue
detection. Figure 5 presents an overview of HACMony’s architecture
and workflow, which has two key phases.

Phase 1: Model Construction. To obtain the GUI events that can
influence the statuses of audio streams in further audio-directed testing,
we designed a new model called Audio-stream-aware State Transition
Graph (ASTG). The node, Audio-Stream-aware State (ASS), of ASTG

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–5

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

denotes a pair of the window and its associated audio-stream sta-
tus. This binding arises from the fact that audio stream utilization
is normally achieved through windows within an app, where multiple
windows may coexist to manage audio streams. Therefore, we employ
ASSs to explicitly define the audio-stream statuses of these windows,
with the aim of testing HAC issues.

To construct ASTG model, We first employ a dynamic ASS-targeted
app exploration strategy enhanced by large language model (LLM)
analysis to identify and prioritize GUI events capable of triggering
audio-stream interactions. Specifically, for each single app, the LLM-
driven analysis examines its window components and corresponding
event handlers to identify events that may activate audio streams (e.g.,
play buttons, volume sliders). This refined process of identifying
events is then used to construct the initial ASTG model (step 1, details
in Section 4.2.1). As the single-app exploration misses the audio-
stream statuses (e.g., PLAY↓ and PLAY∥) that happen during the in-
teraction of multiple apps, we enhance the initial ASTG model by
collaborating with multiple apps to explore extra ASSs (step 2, details
in Section 4.2.2).

Phase 2: Model-Based Testing. To generate the compact test
suite for audio-aware hopping behavior testing, we select the ASSs
that are in the PLAY-like statuses (called ASSPLAY) from the ASTG
model constructed by Phase 1, and configure the devices according
to different app-hopping operations (step 3, details in Section 4.3.1).
Then we execute the test cases on multiple devices to detect whether
there are HAC issues (step 4, details in Section 4.3.2). Finally, by
analyzing the resolution to solve the audio-stream conflicts during
hopping and checking whether it is consistent with the resolution on a
single device, HACMony can automatically report HAC issues (step 5,
details in Section 4.3.3).

4.2 ASTG Model Construction
To generate the test case for detecting the HAC issues, we define an ex-
tended FSM, Audio-stream-aware State Transition Graph (ASTG),
to represent the audio-stream-level behavior of an app. An ASTG
model is a triple 𝐺 = (𝑆, 𝑇, 𝑠0), where
• 𝑆 is a finite set of app’s Audio-Stream-aware States (ASSs). A state
𝑠 ∈ 𝑆 is a pair ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩ where 𝑤𝑖𝑛 denotes the GUI window,
which contains the screenshot as well as the element hierarchical
tree, 𝑠𝑡𝑎𝑡 ∈ Audio denotes audio-stream status, and 𝑠0 ∈ 𝑆 is the
initial ASS of the app.

• 𝑇 denotes the set of transitions. An element 𝜏 ∈ 𝑇 is a triple ⟨𝑠, 𝑒, 𝑡⟩
representing the transition from the source ASS 𝑠 to the destination
ASS 𝑡 caused by a GUI event 𝑒, e.g., click or drag.

4.2.1 ASS-Targeted and LLM-Driven Model Exploration
To conduct more effective ASS-targeted GUI exploration, we utilize an
LLM-driven analysis to comprehensively understand the tested app to
obtain the available audio-stream types, e.g. MUSIC, and the semantics
of GUI components to pick the optimal event that can enable the app
to play the audio stream corresponding to the available type. After
identifying the optimal audio-related event in current window, we
proceed to execute the event on the device and collect the information

about the changes (e.g., GUI window changes). If the app has deviated
from the exploration goal after previous event execution, the LLM
will re-evaluate the identified event and select an alternative event
that are more likely to lead the app towards playing the audio stream.
This iterative process of event identification, execution, information
collection, and verification continues until the app successfully plays
the audio stream.

Algorithm 1 describes the ASS-targeted LLM-driven exploration
approach. The input of the approach is the tested app to be explored
and the empty ASTG 𝐺, the output is the ASTG 𝐺 of the tested app.
First, it initializes the variable feedback, which indicates the feedback of
the event execution, as empty (line 1). It also obtains the audio-stream
types audios available for the tested app via UnderstandApp() func-
tion (line 2). Then, for each audio to explore from the available audios,
it repeats the following process until the variable feedback.terminated
becomes True, i.e., the app successfully play audio (lines 3-19).
1. Obtain the current ASS = (𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡) via the function GetASS(),

and pass the current window 𝑤𝑖𝑛 to the LLM for understanding, so
as to obtain a set of GUI elements containing semantic information
via UnderstandWin() function (lines 6-7).

2. Send the audio to explore, the current GUI elements, the current
ASTG 𝐺, and the 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 of the previous event execution, to the
LLM. The LLM then selects the “optimal” event from all possible
events based on the goal of enabling the app to play the audio
stream (line 8). Then it execute the “optimal” event event (line 9).

3. Obtain the current ASS = (𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′) after executing the “opti-
mal” event via GetASS() again (line 10), then update the ASTG 𝐺

(lines 11-13).
4. Verify whether the “optimal” event deviates from the exploration

goal and whether the current exploration can be terminated, and
record such information in the feedback. If it does deviate from
the goal, then restart the test app to conduct a more target-directed
exploration (lines 14-17).

LLM Prompt construction: The prompts used for interaction with
the LLM in each exploration step are presented in Table 3, which will
be elaborated as follows.

• UnderstandApp. The prompt directs the LLM to identify an
application’s supported audio stream types by analyzing its in-
terface screenshots. This classification is governed by a set of
heuristic rules that associate specific visual cues with four pre-
defined categories, where: media controls such as play/pause
buttons and playback sliders are indicative of the Music type;
video thumbnails and player windows correspond to Video; map
interfaces and route indicators signify Navigation; and call but-
tons or voice message icons suggest Communication.

• UnderstandWin. This prompt asks LLM to understand the se-
mantics of each GUI element and specifies the output format.
The LLM describes each element’s function based on screen-
shots and individual element images. Each element is num-
bered to ensure descriptions are in order and no descriptions are
missed, preventing parsing errors.

• GetOptimalEvent. This prompt asks the LLM to generate the

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–6

Front. Comput. Sci., 2025, 0(0): 1

Algorithm 1: Exploration()
input : 𝐺 = (𝑆, 𝑇, 𝑠0), 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑝𝑝

1 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ← [];
2 𝑎𝑢𝑑𝑖𝑜𝑠← UnderstandApp(𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑝𝑝);
3 for each 𝑎𝑢𝑑𝑖𝑜 in 𝑎𝑢𝑑𝑖𝑜𝑠 do
4 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘.𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
5 while 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘.𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 do
6 ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩ ← GetASS();
7 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠← UnderstandWin(𝑤𝑖𝑛);
8 𝑒𝑣𝑒𝑛𝑡 ← GetOptimalEvent(

𝑎𝑢𝑑𝑖𝑜, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝐺, 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘);
9 𝑒𝑣𝑒𝑛𝑡.execute();

10 ⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩ ← GetASS();
11 𝑆 ← 𝑆 ∪ {⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩, ⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩};
12 𝜏 ← ⟨⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩, 𝑒𝑣𝑒𝑛𝑡, ⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩⟩;
13 𝑇 ← 𝑇 ∪ {𝜏};
14 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘 ← Verify(𝑠𝑡𝑎𝑡′, 𝑒𝑣𝑒𝑛𝑡, 𝑤𝑖𝑛, 𝑤𝑖𝑛′);
15 if 𝑓 𝑒𝑒𝑑𝑏𝑎𝑐𝑘.𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = False then
16 Restart the 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑝𝑝;
17 end
18 end
19 end

next event based on the current app state (GUI elements and the
step for exploration goal). The LLM selects the optimal event,
considering previous steps and feedback to avoid repetition.

• Verify. This prompt asks LLM to validate the executed event to
checks if the event meets the exploration goal and causes GUI
changes. It analyzes deviations, screen changes, and completion.
It also suggests the next step to guide future event selection, and
determine whether the audio-stream with the current audio type
is played.

4.2.2 ASS-Guided Model Enhancement
As mentioned in Section 2.2, the audio stream statuses PLAY↓ and
PLAY∥ occur only when there is another app requesting the audio
stream focus. To explore the extra audio stream statuses, we need
to launch another app and execute specific events to make it use the
audio stream and cause audio-stream conflicts. For different audio
stream statuses, the collaborating apps may be different in general, so
we select a set of representative apps that use different types of audio
streams to explore these statuses. The principle of the collaborating
apps selection is primarily based on the typical resolutions for solving
the ACs (see Table 2). For example, the app with the type NAVIG
(resp. COMMU) is more likely to be selected to explore PLAY↓ (resp.
PLAY∥) status for the app with MUSIC type.

Algorithm 2 describes the ASS-guided model enhancement ap-
proach. It takes the previously constructed ASTG 𝐺 = (𝑆, 𝑇, 𝑠0)
by Algorithm 1, the previously tested app tested app and an audio-
associated app set enhanced apps as inputs, and takes the ASTG 𝐺

enhanced with extra ASSs as output. First, for the tested app, it finds
out all the ASSs in its ASTG where 𝑠𝑡𝑎𝑡 = PLAY as the target ASSs.
Then for each target ASS, according to the ASTG 𝐺, it obtains and
executes the events to switch the tested app to the ASS status (lines

1-3). For each enhanced app in the audio-associated apps set en-
hanced apps, it launches enhanced app and switches enhanced app
to PLAY status to make its audio stream conflict with the explored app
(lines 4-6). Finally, if the target app reaches a new ASS, we add the
new ASS as well as the corresponding transition into the ASS set 𝑆
and transition set 𝑇 , respectively (lines 7-13).

Algorithm 2: Enhancement()
input : 𝐺 = (𝑆, 𝑇, 𝑠0), 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑝𝑝, 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝𝑠

1 for each ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩ in S do
2 if 𝑠𝑡𝑎𝑡 = PLAY then
3 Switch to ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩;
4 for each 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝 in 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝𝑠 do
5 Launch 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝 and switch

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝 to PLAY status;
6 ⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩ ← GetASS();
7 if 𝑠𝑡𝑎𝑡 ≠ 𝑠𝑡𝑎𝑡′ then
8 𝑆 ← 𝑆 ∪ {⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩};
9 𝑒 ← launch 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝 and execute

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑎𝑝𝑝;
10 𝜏 ← ⟨⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩, 𝑒, ⟨𝑤𝑖𝑛′, 𝑠𝑡𝑎𝑡′⟩⟩;
11 𝑇 ← 𝑇 ∪ {𝜏};
12 end
13 End 𝑡𝑒𝑠𝑡𝑒𝑑 𝑎𝑝𝑝 and switch back to ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩;
14 end
15 end
16 end

4.3 Model-Based HAC Issue Detection
Upon ASTG model construction, this section presents our model-based
testing approach for detecting HAC issues3.

4.3.1 HAC-Directed Test Generation
According to the operational semantics of HarmonyOS’s app-hopping
mechanism, we have two typical app-hopping commands StartHop and
EndHop, hence two types of hopping-related test cases TestStartHop
and TestEndHop should be generated for each tested app. The basic
test generation idea is to select ASSPLAY, the ASSs in the PLAY-like
statuses in the ASTG model, and configure the devices according to
different app-hopping operations. For an ASTG𝐺 = (𝑆, 𝑇, 𝑠0), an ASS
= ⟨𝑤𝑖𝑛, 𝑠𝑡𝑎𝑡⟩ ∈ 𝑆 is an ASSPLAY, if 𝑠𝑡𝑎𝑡 ∈ {PLAY,PLAY↓,PLAY∥ }.
Intuitively, ASSPLAY indicates the audio stream status of the window
is PLAY or will turn to PLAY after other apps release the focus.

Generate TestStartHop. A test case TestStartHop is to perform the
process of hopping the tested app where the window is in the PLAY-
like status to another device that is utilizing the audio stream. With a
tested app 𝑎 and an audio-associated app 𝑎′, for each ASSPLAY 𝑠 in
the ASTG of app 𝑎, we can get the following test case, 𝐸𝑠 :: 𝐸𝑎′ ::
𝑑1.StartHop(𝑎, 𝑑2), where
• 𝐸𝑠 is the event sequence that should be executed on device 𝑑1 to let

app 𝑎 reach ASSPLAY 𝑠 from the initial ASS 𝑠0.

3We mainly consider the two-device hopping testing scenario as it is the most basic and
common scenario and can cover many basic HAC issues.

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–7

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

Table 3 The LLM Prompt Templates for ASS-Targeted Exploration
UnderstandApp UnderstandWin GetOptimalEvent Verify
Prompt:
Based on the information of
the provided screenshots of a
mobile app interface, complete
the task of identifying which
audio-stream types the app sup-
ports. Note that, return the
answer as a Python list; base
your identification on UI ele-
ments: use maps or routes as
evidence for Navigation; media
controls or thumbnails for Mu-
sic or Video; and call icons or
”Messages” tabs for Communi-
cation.

Prompt:
Based on the information of
the provided screenshot of a mo-
bile app interface and images
of clickable components, com-
plete the task of analyzing each
component image in order to de-
scribe its function. Note that,
return the answer as a Python
list; each description should be
concise and functional; merge
components with identical func-
tions into a single, generalized
description, while keeping main
navigation tabs separate.

Prompt:
Based on the information of
the target scenario, current screen,
clickable elements, and previous
feedback, complete the task of de-
termining the next event. Note that,
focus on functionality and adapt
to the current screen; choose the
most appropriate element with the
same purpose; avoid repeating pre-
vious events; if the target element is
not visible, your priority operation
should be to swipe to reveal more
content; respond only in JSON for-
mat.

Prompt:
Based on the information of the
target scenario, screenshots and el-
ements changes before and after the
event, complete the task of evalu-
ating whether the event follows pre-
vious steps and progresses toward
the exploration goal. Note that,
check for unnecessary repetition of
operations; verify if the played au-
dio stream type matches the explo-
ration type; assess whether to ter-
minate based on the audio stream
type and status; provide sugges-
tions for the next step.

Example outputs:
["Navigation",

"Music", "Video",

"Communication"]

Example outputs:
["Return button",

"Search box", "Settings

button", "Add device"]

Example outputs:
{"event type": "click",

"id": 3}
{"event type": "input",

"id": 2, "text": "music"}

Example outputs:
{"validity": true/false,

"terminated": true/false,

"suggestion": "Select a

"Search" button"}

• 𝐸𝑎′ is the event sequence that should be executed on device 𝑑2 to
let app 𝑎′ reach an ASS whose status is PLAY from 𝑠0.

• 𝑑1.StartHop(𝑎, 𝑑2) is the event that hopping the tested app 𝑎 from
device 𝑑1 to 𝑑2.
Generate TestEndHop. A test case TestEndHop is to perform

the process of ending a hop of the tested app where a window is
in the PLAY-like status to another device that is utilizing the audio
stream. Generating the test case TestEndHop is more complicated than
TestStartHop, since before ending a hop, we need to construct a hop
between these two devices. Similarly, a test case TestEndHop generated
can be formally defined as 𝐸𝑠 :: 𝐸𝑎′ :: EndHop, where
• 𝐸𝑠 could be divided into three parts: (1) the event that starts app 𝑎

on the device 𝑑1; (2) the StartHop event that transfers app 𝑎 from
the device 𝑑1 to the device 𝑑2; (3) the event sequence should be
executed on device 𝑑2 to let app 𝑎 reach ASSPLAY 𝑠 from the initial
ASS 𝑠0.

• 𝐸𝑎′ is the event sequence that should be executed on device 𝑑1 to
let app 𝑎′ reach an ASS which status is PLAY from 𝑠0.

• EndHop is the event that ending the hop of 𝑎 between 𝑑1 and 𝑑2.

4.3.2 HAC-Directed Test Execution
After test generation, HACMony connects two devices 𝑑1 and 𝑑2
via HarmonyOS Device Connector [28] (HDC) or Android Debug
Bridge [29] (ADB) to automatically execute the test cases for the target
HarmonyOS app. For general click events or the EndHop operation,
HACMony directly invokes the click command in HDC (or ADB) to
execute the event. Note that, the EndHop operation can also be re-
garded as a click event. The StartHop operation could be regarded as
a sequence of events, HACMony needs to click the “Recent” button,
and then drag the current app to the target device. Finally, HACMony
records the ASSs of the tested app 𝑎 and the conflicting app 𝑎′.

4.3.3 HAC Issue Detection
After each test execution, HACMony will analyze the recorded ASSs,
and report how the hopping-related audio-stream conflict between
apps is resolved, i.e., the conflict resolution. To detect the HAC is-
sues, our key idea is that the conflict resolutions that show up in the
multiple-device scenario, i.e., the “hopping” resolutions, should be
consistent with the ones in the single-device scenario, i.e., the “nor-
mal” resolutions. Thus, for each target app 𝑎 and its collaborating
app 𝑎′ in app-hopping testing, for each ASS 𝑠 = ⟨𝑤𝑖𝑛,PLAY⟩ (resp.
𝑠′ = ⟨𝑤𝑖𝑛′,PLAY⟩) in the ASTG, we perform the following operations
to obtain the “normal” resolutions:
1. Start app 𝑎 on the device, and execute it to the ASS 𝑠;
2. Start app 𝑎′ on the device, and execute it to the ASS 𝑠′;
3. Obtain the current ASSs for app 𝑎 and 𝑎′.
We compare the “normal” resolutions with the “hopping” resolutions
obtained by HACMony’s test execution. If there is any inconsistency,
a HAC issue will be reported.

■ 5 Evaluation
To evaluate the effectiveness of our approach, we raise several research
questions as follows:
• RQ1 (ASTG Construction) Is the ASTG construction process ef-

fective and efficient?
• RQ2 (HAC Issue Detection) To what extent can HACMony detect

real-world HAC issues?
• RQ3 (HAC Issue Analysis) What are the categories and character-

istics of the detected HAC issues?

5.1 Evaluation Setup
To answer these research questions, we collect 20 real-world Har-
monyOS apps from Huawei AppGallery [30]. More specifically, we

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–8

Front. Comput. Sci., 2025, 0(0): 1

take four categories associated with audio, i.e., Music, Video, Naviga-
tion, and Social, into account, which are respectively have the highest
possibility of using the audio stream type MUSIC, MOVIE, NAVIG, and
COMMU. For each type, we download its top five apps that support
app-hopping as well as available for both phone and tablet versions.
Table 4 lists the detailed information of these experimental apps. All
of the following experiments are done on a phone HUAWEI P40 Pro
and a tablet HUAWEI Matepad, both with HarmonyOS 4.2.

5.2 RQ1: ASTG Construction
Table 4 shows the results of the ASTG model of each experimental
app constructed by HACMony. The fifth column gives the number
of audio-stream types (#Audio-Type) that are analyzed by an LLM,
i.e., Gemini-2.0-Flash [31] by Google. The sixth and seventh columns
give the statistics of the ASS: the number of ASSs that are detected by
exploration (#ASS-Init), and the number of the extra ASSs (#ASS-
Extra) extracted by collaborating with multiple apps. Besides, the
number of total ASSs, the edges in the model, and the dynamical
exploration time are shown in the last three columns.

As we can see, HACMony can successfully explore all apps with an
average of 1.4 audio-stream types and 6.1 ASSs in an average of 55
seconds. Additionally, 7 (35%) apps with Music or Social category
have discovered 2 audio-stream types, and the types of these apps
additionally found are all MOVIE type. We have manually verified that
all audio-stream types detected by the LLM are accurate. Among all
categories, the Navigation apps require more exploration time, which
typically explore around 4 ASSs (GUI windows). This is because
Navigation app usually involves complex events such as selecting a
destination and means of transportation before starting navigation.
This observation also demonstrates the effectiveness of the LLM-based
exploration approach. Furthermore, the number of the extra ASSs
extracted by the ASS-guided enhancement is twice the number of
the audio-stream types in all apps with the Music or Video categories,
indicating that these apps all discovered the PLAY↓ and PLAY∥ statuses
during the enhancement process.

The preceding results validate the effectiveness of HACMony for
application exploration tasks. However, a critical consideration is
whether the performance of HACMony is determined by a specific
LLM. To assess the generalizability and scalability of HACMony across
different models, we designed and conducted a comparative evaluation
study.

For this study, we evaluated Gemini-2.0-Flash, alongside two other
state-of-the-art multimodal LLMs: GPT-4o [32] by OpenAI and Qwen-
VL-Plus [33] by Alibaba. We integrated each of the three models
into HACMony and executed exploration tasks on the benchmark. As
shown in Figure 6, all three LLMs successfully completed the tasks,
which validates the broad model compatibility of HACMony. While
the mean exploration times varied (Gemini-2.0-Flash: 55.0s, Qwen-
VL-Plus: 67.9s, and GPT-4o: 127.6s)—likely due to differences in
inference latency and response verbosity—their overall performance
trends remained highly consistent. Crucially, exploration time corre-
lated strongly with the application’s intrinsic complexity rather than

model-specific artifacts. All models required more time on complex
apps (e.g., Xiaohongshu) and less on simpler ones (e.g., Kuaiyin).
This low sensitivity to the choice of LLMs confirms that HACMony
can operate effectively with various state-of-the-art LLMs, enhancing
its generalizability and scalability for real-world deployment.

T
im
e(
s)

0

50

100

150

200

250

App	name

Kugou	M
usic

QQ	M
usic

Kuwo	M
usic

Fanqie

Kuaiyin

Tencent	Video

Xigua	Video

Youku	Video

Mangguo	TV

HaoKan	Video

AMap
Baidu	Map

Tencent	Map

Petal	Maps

Beidouniu

Douyin

Soul
Xiaohongshu

Zhihu
M
om
o

gemini-2.0-flash
gpt-4o
qwen-vl-plus

Fig. 6 LLM exploration time comparison on 20 apps

To further validate the effectiveness of LLM-based exploration
of HACMony, we conducted a comparative evaluation against three
widely-adopted and state-of-the-art exploration strategies: random
search, depth-first search (DFS), and breadth-first search (BFS). We
configured DroidBot [34], a lightweight exploration tool for Android
applications, to employ three distinct exploration strategies, i.e., ran-
dom, DFS, and BFS. We set the maximum exploration duration to
30 minutes and recorded both the number of audio-stream types dis-
covered by DroidBot using these strategies and the corresponding
exploration time.

As illustrated in Table 5, HACMony significantly outperforms ran-
dom, DFS, and BFS strategy in almost all applications, achieving a
100% superiority over both DFS and BFS, and surpassing the random
strategy in 95% of the cases. Notably, in navigation apps, the random,
DFS, and BFS strategies failed to locate GUI corresponding to the
audio-stream type within the 30-minute time limit, whereas HACMony
succeeded on average in just 66.8 seconds. Furthermore, in apps with
multiple audio-stream types (e.g., Kugou Music and Douyin), only
HACMony managed to discover GUIs for every type within a short
duration. In contrast, conventional strategies, i.e., random, DFS, and
BFS perform poorly in audio-stream-related GUI exploration tasks,
due to the inherent challenges of such complex GUI logic, deeply
hidden targets, and scattered distributions of multi-type audio streams.

5.3 RQ2: HAC Issue Detection
Table 6 displays information of the real-world HAC issues detected by
HACMony. Columns #Test Cases and Avg. L show the number of
test cases and their average length. Columns #HAC and #Unq. HAC
show the number of the total and unique HAC issues detected. And
the column Time shows the time of testing.

In total, with the ASTG model, HACMony generates an average

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–9

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

Table 4 Experimental Apps and Model Size

App name Categories Size(MB) Version #Audio-Type #ASS-
Init

#ASS-
Extra #ASS #Edge Time(s)

Kugou Music Music 156.6 12.4.2 2 4 4 8 7 64
QQ Music Music 188.7 13.9.0.8 2 5 4 9 8 89

Kuwo Music Music 181.4 11.0.0.0 2 4 4 8 7 53
Fanqie Music 71.5 7.41.18 1 2 2 4 3 42

Kuaiyin Music 75.8 5.57.11 1 2 2 4 3 6
Tencent Video Video 145.9 8.11.71 1 2 2 4 3 24
Xigua Video Video 65.6 8.8.6 1 1 2 3 2 6
Youku Video Video 123.5 11.0.99 1 2 2 4 3 23
Mangguo TV Video 133.2 8.13.0 1 2 2 4 3 25

HaoKan Video Video 49.5 7.64.0.10 1 2 2 4 3 7
AMap Navigation 254.9 15.01.0 1 4 1 5 4 128

Baidu Map Navigation 171.5 20.7.30 1 4 1 5 4 51
Tencent Map Navigation 162 10.11.1 1 4 1 5 4 51
Petal Maps Navigation 83.9 4.5.0.303 1 5 1 6 5 58
Beidouniu Navigation 59.1 3.3.1 1 4 1 5 4 46

Douyin Social 271.9 31.4.0 2 6 3 9 8 75
Soul Social 158.5 5.40.0 2 7 3 10 9 88

Xiaohongshu Social 164 8.52.0 2 7 3 10 9 160
Zhihu Social 87.8 10.22.0 1 3 2 5 4 38
Momo Social 127 9.13.10 2 6 3 9 8 76

Avg./Max. - 136.6/271.9 - 1.4/2 3.8/7 2.3/4 6.1/10 5.1/9 55/160

Table 5 Exploration performance comparison of different input generation strategies

App name Audio-stream types / Time(s)
HACMony Random DFS BFS

Kugou Music 2 / 64 1 / 1800 1 / 1800 1 / 1800
QQ Music 2 / 89 1 / 1800 1 / 1800 0 / 1800

Kuwo Music 2 / 53 1 / 1800 1 / 1800 0 / 1800
Fanqie 1 / 42 1 / 11 1 / 28 1 / 23

Kuaiyin 1 / 6 1 / 12 1 / 52 1 / 51
Tencent Video 1 / 24 1 / 63 1 / 242 1 / 356
Xigua Video 1 / 6 1 / 12 1 / 34 1 / 33
Youku Video 1 / 23 1 / 31 0 / 1800 0 / 1800
Mangguo TV 1 / 25 1 / 128 1 / 87 1 / 221

HaoKan Video 1 / 7 1 / 12 1 / 37 1 / 24
AMap 1 / 128 0 / 1800 0 / 1800 0 / 1800

Baidu Map 1 / 51 0 / 1800 0 / 1800 0 / 1800
Tencent Map 1 / 51 0 / 1800 0 / 1800 0 / 1800
Petal Maps 1 / 58 0 / 1800 0 / 1800 0 / 1800
Beidouniu 1 / 46 0 / 1800 0 / 1800 0 / 1800

Douyin 2 / 75 1 / 1800 1 / 1800 1 / 1800
Soul 2 / 88 1 / 1800 1 / 1800 0 / 1800

Xiaohongshu 2 / 160 1 / 1800 1 / 1800 0 / 1800
Zhihu 1 / 38 0 / 1800 0 / 1800 0 / 1800
Momo 2 / 76 1 / 1800 1 / 1800 1 / 1800

of 137 test cases for each app, with an average length of 6.1 events.
There are 12 out of 20 (60%) apps detected to have HAC issues, which
involve a total of 18 unique HAC issues out of 53 HAC issues. This
indicates that HAC issues are relatively likely to occur during the
HarmonyOS app-hopping. The video demonstrations of HAC issues
found by HACMony can be viewed [35].

Recall that during the exploration phase, we leverage LLMs to
explore multiple audio-stream types (MT) within apps, while in the
enhancement phase, we utilize other apps to explore multiple audio-
stream statues (MS), e.g., PLAY↓ and PLAY∥ , with the aim of discov-
ering as many PLAY-like ASSs as possible to detect more HAC issues.
To validate the effectiveness of MT and MS in our approach, we con-
ducted additional experiments, as shown in Table 7. The second to
fifth columns shows the number of HAC issues and unique HAC issues
of each configuration, specifically,

• The Base column represents the baseline configuration without us-
ing either MS or MT.

• The MT column denotes the configuration using only multi audio-
type (without MS).

• The MS column denotes the configuration using only multi audio-
status (without MT).

• The MT+MS column represents the full configuration that combines
both MS and MT.

The results demonstrate that the full configuration (MT+MS) outper-
forms all other configurations, with a 35.9% increase in detection of
the HAC issues and a 12.5% increase in detection of the unique HAC
issues compared to the baseline. Individually, MT and MS improve
the detection of the HAC issues by 25.6% and 7.7% over the base-
line, respectively, but show limited improvement in the detection of
the unique HAC issues (only one new unique HAC issue each). This
reflects that both the MT- and MS-aware exploration are important
in achieving comprehensive HAC issues detecting. Testers should fo-
cus their efforts on generating test cases for different audio-types and

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–10

Front. Comput. Sci., 2025, 0(0): 1

audio-statuses to detect HAC issues.

Table 6 Detected HAC Issues by HACMony

App name #Test
Cases Avg. L #HAC #Unq.

HAC Time(s)

Kugou Music 228 5.7 0 0 2891
QQ Music 228 6.7 3 1 3402

Kuwo Music 228 6.2 5 1 3202
Fanqie 114 5.2 0 0 1407

Kuaiyin 114 6.2 0 0 3221
Tencent Video 114 5.2 5 2 1337
Xigua Video 114 6.2 0 0 1634
Youku Video 114 5.2 5 1 1367
Mangguo TV 114 5.4 0 0 1417

HaoKan Video 114 5.2 4 1 2793
AMap 76 7.3 7 3 1241

Baidu Map 76 7.3 5 2 1375
Tencent Map 76 8.4 2 2 1187
Petal Maps 76 7.3 5 2 1793
Beidouniu 76 7.1 3 1 1857

Douyin 190 5.6 0 0 1450
Soul 190 5.4 0 0 1415

Xiaohongshu 190 5.4 3 1 1453
Zhihu 114 5.4 0 0 1417
Momo 190 6.2 5 1 1572
Avg. 137 6.1 2.7 0.9 1872

Table 7 Impact of Multi Audio-Type (MT) and Multi Audio-Status (MS) on HAC
Detection

App name #HAC (Unq.)
Base MT MS MT+MS

QQ Music 2 (1) 2 (1) 3 (1) 3 (1)
Kuwo Music 5 (1) 5 (1) 5 (1) 5 (1)

Tencent Video 3 (1) 3 (1) 5 (2) 5 (2)
Youku Video 5 (1) 5 (1) 5 (1) 5 (1)

HaoKan Video 4 (1) 4 (1) 4 (1) 4 (1)
AMap 4 (3) 7 (3) 4 (3) 7 (3)

Baidu Map 3 (2) 5 (2) 3 (2) 5 (2)
Tencent Map 2 (2) 2 (2) 2 (2) 2 (2)
Petal Maps 3 (2) 5 (2) 3 (2) 5 (2)
Beidouniu 3 (1) 3 (1) 3 (1) 3 (1)

Xiaohongshu 0 (0) 3 (1) 0 (0) 3 (1)
Momo 5 (1) 5 (1) 5 (1) 5 (1)
Sum. 39 (16) 49 (17) 42 (17) 53 (18)

5.4 RQ3: HAC Issue Analysis
To assist both the developer of Harmony apps and OS better under-
standing the real-world HAC issues. We category issues and perform
case studies to investigate their characteristics.

First, we summarize the specific behaviors of the apps where HAC
issues occur and category issues into two types, Misuse of Device
(MoD) and Misuse of Resolution (MoR). MoD issue refers to the sit-
uation where, during the hopping of an app, the usage of the audio
streams fails to be transferred to the target device along with the app.
The MoR issue refers to the situation where, during the hopping of

an app, an audio-stream conflict occurs on the target device, but the
“normal” resolution to solve the conflict is not applied. In our exper-
iments, HACMony detected four apps with MoD issues and nine apps
with MoR issues.

Then, we count the number of HAC issues of different app cate-
gories. As shown in Figure 7(a), the MoD issues are more likely to
occur in the Video applications, while the MoR issues are more likely
to occur in the Navigation applications. Furthermore, we count the
number of HAC issues of different types of test cases. As shown in
Figure 7(b), all the MoD issues are detected through the test cases
in the form of TestStartHop, and few (26%) MoR issues are detected
through the test cases in the form of TestEndHop. Although most of the
HAC issues are detected through the TestStartHop test cases, there are
still some issues identified by the TestEndHop test cases, this indicates
that it is necessary to consider different operations when generating
test cases (See Section 4.3.1). Therefore, Navigation apps trigger more
HAC issues than all other types. They suffer severe MoR issues, es-
pecially in the process of StartHop operation. Besides, Video apps
are easier to trigger MoD issues. Testers and developers can perform
testing/developing according to the type of the target app.

1

2

9

1

1

2

1

1

0 1 2 3 4 5 6 7 8 9 10

Music

Movie

Navigation

Social

Number

C
at
eg
or
y

Unq. MoD Issues

Unq. MoR Issues

1

(a) Issue-related apps and unique issues

5

9

3

5

2

3

15

2

1

2

4

1

0 2 4 6 8 10 12 14 16 18 20

Music

Movie

Navigation

Social

Number

C
at
eg
or
y

MoD Issues of StartHop
MoD Issues of EndHop
MoR Issues of StartHop
MoR Issues of EndHop
1

(b) Issues triggered with different ops

Fig. 7 Number of HAC Issues

To further study the characteristics of HAC issues, we analyze the
two types of HAC issues with case studies, respectively.

5.4.1 Misuse of Device: MoD issues
Recall that MoD issues are more likely to occur in the Video applica-
tions, hence we pick a Video app to investigate the characteristic of
MoD issue.

Case study 1: MoD. When Youku Video [36] is playing a video
normally on the mobile phone, if the user hop it to the tablet, the
video continues to play on the tablet, but the audio is still playing on
the mobile phone. It leads to the audio-visual inconsistency problem

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–11

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

which makes it difficult for the users to focus on the video content and
affects users’ understanding and enjoyment of the video.

Analysis: We noticed that, the MoD issues may not occur in all test
cases of the same app, i.e., sometimes the issue do not occur. Thus, we
infer that such sporadic issues may be caused by the lack of synchro-
nization of commands and data between devices, which prevents the
new device from taking over audio playback in a timely manner, so the
audio playback on the original device does not stop. Moreover, since
the MoD issues are only detected though the TestStartHop test cases,
it indicates that the handling process between StartHop operation and
EndHop operation is different. EndHop operation may force all re-
sources related to the hopping app in the target device to be transferred
back to the original device.

To further analyze the cause of the MoD issue, we conducted an
analysis by decompiling the apk file and manually auditing the code.
For the MoD issue, there were a total of 5 applications, and 4 of them
were successfully decompiled. Inspection of the decompiled code
suggests that the most likely cause of the reason for the MoD issue is
that when the application is hopped from the original device to the new
one, the application on the original device fails to release the audio
focus in a timely and correct manner. If the application on the original
device does not release the focus, the system will not granting the
focus to the application on the new device, which will cause the audio
to continue playing on the original device. The occasional occurrence
of MoD in the same application also indicates the complexity of its
causes, which may be related to complex audio focus management
strategies, timing issues, or specific application states.

Moreover, in Kuwo Music [37], the core issue is its shared audio
focus management based on the listener list, which only releases the
focus when all listeners have been removed. If there are other listeners
during the hopping, the release will fail and the MoD issue will occur.
Momo [38], on the other hand, has introduced a strong binding with the
Activity lifecycle in “AudioFocusManager”, which may cause conflicts
during hopping. When the app hopping starts, the system will change
the lifecycle state of the Activity on the original device. At this time,
the application may release the focus as expected. However, during the
complex process of hopping, the scheduling sequence of the Activity
lifecycle by the system might precisely trigger the refocus logic in
“onActivityResumed”, which is equivalent to regain the audio focus
that is about to be transferred to the new device.

5.4.2 Misuse of Resolution: MoR issues
As MoR issues involve more statuses, we categorize them into three
sub-types according to the status changes, namely PLAY↓→PLAY,
PLAY↓→STOP, and STOP→PLAY. The first (resp. second) issue
refers to the situation where the “hopping” resolution for solving audio-
stream conflict changes from lowering the volume to playing (resp.
stopping) compared to the “normal” one. The third issue refers to
the situation where the “hopping” resolution for solving audio-stream
conflict changes from stopping to playing. Table 8 shows the sub-types
of MoR issues HACMony have detected. Next, we pick two Navigation
apps and a Video app as the case study hopping apps to investigate the
characteristic of MoR issue.

Table 8 Sub-types of the App that Detected MoR Issues

App name #PLAY↓→PLAY #PLAY↓→STOP #STOP→PLAY
QQ Music ★

Tencent Video ★

AMap ★ ★ ★

Baidu Map ★ ★

Tencent Map ★ ★

Petal Maps ★ ★

Xiaohongshu ★

Case study 2: PLAY↓→PLAY type MoR. When Baidu Map [39]
is running on the mobile phone and navigating, the user hops it to the
tablet for further navigation, on which Kuaiyin [40] is playing music.
The expected behaviour is that Kuaiyin lower the volume. However,
in this situation, both Baidu Map and Kuaiyin play their audio streams
at normal volume on the tablet. As a result, it makes difficult for users
to clearly hear the navigation instructions or information from Baidu
Map, which brings inconvenience or safety risks to their travels.

Case study 3: PLAY↓→STOP type MoR. When Petal Map [41]
is running on the mobile phone and navigating, the user hops it to the
tablet for further navigation, on which QQ Music [42] is playing music.
The expected behaviour is that QQ Music lower the volume. However,
QQ Music stops its audio stream. On the one hand, it ruins the user’s
immersive music-listening experience, where the sudden interruption
breaks the continuity of the music. On the other hand, the unexpected
stop of the music may force the user to interrupt other ongoing oper-
ations to check and resume the music playback, distracting the user’s
attention from using Petal Map for navigation or other tasks.

Case study 4: STOP→PLAY type MoR. When Tencent Video [43]
is playing the video on the mobile phone, the user hops it to the tablet
for further playing, on which Kugou Music is playing music. The
expected behaviour is that Kugou Music stops playing. However, both
Tencent Video and Kugou Music play their audio streams at normal
volume on the tablet. As a result, users can’t clearly distinguish the
dialogue in the video from the music, leading to extreme auditory
discomfort and ruining the original audio-visual enjoyment.

Analysis: After conducting all the experiments, we observed that
while Kuaiyin and Kugou Music exhibit MoR issues as the “pre” apps
in hopping, no HAC issues were detected when they served as the
“post” apps, i.e., the hopped apps. Although an STOP→PLAY issue
was detected in QQ Music as shown in Table 8, it occurred in the audio-
stream conflict with Kugou Music, not with Tencent Video. This shows
that MoR issues are generally asymmetric, meaning that a change in
the order of audio-stream conflict can influence the occurrence of MoR
issues.

Similarly, to further analyze the causes of the MoR issue, we con-
ducted the analysis by decompiling the apk file and manually auditing
the code. For the MoR issue, there were a total of 10 applications,
and all of them were successfully decompiled. Inspection of the de-
compiled code indicates that the MoR issue most likely stems from
the abnormal transmission and processing of the audio focus state
during the cross-device hopping process, which leads to its behavior

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–12

Front. Comput. Sci., 2025, 0(0): 1

being inconsistent with the standard audio focus strategy within a sin-
gle device. After analysis, we concluded that the happening of MoR
issue is due to the relevant applications have not fully adapted to the
cross-device hopping function of HarmonyOS. The cross-device hop-
ping feature of HarmonyOS requires applications to proactively and
accurately manage their audio focus states across different devices.
When an application is transferred to a new device and starts playing
audio, it needs to handle the application and release of audio focus in
accordance with the specific mechanism of HarmonyOS hopping.

For instance, Petal Maps should request focus type AUDIOFO-
CUS GAIN TRANSIENT CAN DUCK during regular playback. How-
ever, in the hopping scenario, due to the application’s failure to properly
handle the state changes brought about by the hopping, its focus re-
quest was wrongly identified as AUDIOFOCUS GAIN TRANSIENT,
thereby triggering conflicts with audio playback in other applications
(PLAY↓→STOP issue). Similarly, the AMap application also changed
its focus requests due to the lack of adaptation to the hopping, and
eventually played simultaneously with the Kugou Music. The MoR
issue has exposed that during the development process of related ap-
plications, they failed to follow HarmonyOS’s development norms for
cross-device hopping and did not make corresponding adaptations and
adjustments to the management of audio focus. It is precisely because
the application layer code lacks compatibility with this new system
feature that in the specific scenarios of hopping, the application fails
to correctly respond to the native audio focus strategy, ultimately pre-
senting audio behavior that does not meet expectations.

While code-level inconsistencies in audio focus management are
the primary cause, potential network-level factors could also exacer-
bate or trigger the MoR issue. For example, network latency during
cross-device hopping might delay the transmission of audio focus state
messages between devices, leading to temporary desynchronization in
focus management. Similarly, out-of-order delivery of critical state-
update messages could further disrupt the application’s ability to align
with native audio focus strategy.

This indicates that the MoR issues are related to the resolution of
conflicts between two apps, which are generally asymmetric. Testers
should not design test cases merely based on the conventional sym-
metric assumption.

■ 6 Discussion
This section primarily discusses the threats to the validity (including
limited generalizability due to restricted app sampling and version
dependency on HarmonyOS) and proposes future research directions
(testing in multi-device scenarios, generating test cases with complex
hopping operations, and root-cause analysis combining static analysis).

6.1 Threats to Validity
There are two main threats to the validity of our study.
⋆ The representativeness of selected benchmarks can affect the fidelity

of our conclusions. To mitigate this threat, we have selected 20 real-
world apps from Huawei AppGallery, which are: (1) Highly popular
(Ranked within the top 5 in their respective categories); (2) Diverse
in categories (Specifically aligned with audio-stream types, e.g.,

music players, video platforms, live streaming apps); (3) Large-
scale (An avarage of 136.6 MB size). Future work could expand
the app sample to include diverse categories and low-download
apps, ensuring a more comprehensive assessment of the approach’s
robustness.

⋆ The version of HarmonyOS, e.g., 3.1, 4.2, Next, etc., may affect
the semantics of app-hopping mechanism. Besides, the latest Har-
monyOS version currently faces challenges in experimental valida-
tion due to limited device support and a scarcity of available apps,
which restricts our ability to assess the framework’s compatibility
with emerging system architectures. To mitigate this, we selected
the version HarmonyOS 4.2, which is the most widely used version
of HarmonyOS up to now, as well as has a large number of available
HarmonyOS apps.

6.2 Directions for Further Research
According to the previous investigation, we will provide several direc-
tions for further researches.
⋆ Testing hopping behaviours by generating more complex test

cases. In this paper, the test cases designed are restricted to in-
corporating only a single hopping operation. However, users may
frequently perform multiple consecutive hopping operations. To ac-
count for this real-world behavior, more complex test cases should
be generated in the future, aiming to more comprehensively detect
HAC issues.

⋆ Combining static analysis technique to make in-depth root cause
analysis. In this paper, the cause of HAC issues are analyzed solely
based on their phenomena. However, to uncover the root causes of
issues, in-depth analysis of the application is required using static
analysis techniques to figure out the audio stream related code pat-
terns. Future research works could combine static analysis tech-
nique, e.g., data-flow, control-flow, to analyze the root cause of
HAC issues.

■ 7 Related work
This section introduces the research works related to HarmonyOS and
model-based testing.

7.1 Analysis and Testing for HarmonyOS
Since HarmonyOS is an emerging system, there are few research works
of analysis and testing for it. Ma et al. [44] are the first to provide an
overview of HarmonyOS API evolution to measure the scope of sit-
uations where compatibility issues might emerge in the HarmonyOS
ecosystem. Zhu et al. [45] propose the HM-SAF framework, a cross-
layer static analysis framework specifically designed for HarmonyOS
applications. The framework analyzes HarmonyOS applications to
identify potential malicious behaviors in a stream and context-sensitive
manner. Chen et al. [46] design a framework ArkAnalyzer for Open-
Harmony Apps. ArkAnalyzer addresses a number of fundamental
static analysis functions that could be reused by developers to im-
plement OpenHarmony app analyzers focusing on statically resolving
dedicated issues such as performance bug detection, privacy leaks de-
tection, compatibility issues detection, etc. These works are all static

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–13

Jinlong He et al. HACMony: Automatically Detecting Hopping-related Audio-stream Conflict Issues on HarmonyOS

analyses of HarmonyOS apps and do not focus on the ACs studied in
this paper.

7.2 Model-Based Testing of GUI
Model-based testing (MBT) technique is commonly used in automated
GUI testing for applications. Existing woks mainly extract models
through static analysis, dynamic analysis and hybrid analysis. FSM [6]
is the first to model the GUI behaviors of Android apps using static
analysis for MBT. WTG [7], an extension of FSM with back stack and
window transition information, is a relatively classic model in MBT.
Based on WTG, some models [8–10,16–18] which can be considered
as a finer-grained WTG, are built by dynamic analysis. There are also
some works [11–14, 47] that extend the WTG through a hybrid tech-
nique of static and dynamic analysis. With the rise of large language
models (LLMs), the GUI exploration methods based on LLMs are
capable of extracting the WTG more quickly and accurately. This new
approach leverages the powerful language understanding and genera-
tion capabilities of LLMs, which can effectively analyze the complex
interactions and transitions within the GUI [48, 49]. However, the
models proposed in these works are almost used to describe the tran-
sitions of GUIs. They do not take into account information related to
audio streams, nor do they consider the interactions among multiple
applications. These two factors are the key points that ASTG takes into
account.

■ 8 Conclusion
Hopping-related audio-stream conflict (HAC) issues are common on
the distributed operating system HarmonyOS. To test them automat-
ically and efficiently, we design the Audio Service Transition Graph
(ASTG) model and propose a model-based testing approach. To sup-
port it, we also present the first formal semantics of the HarmonyOS’s
app-hopping mechanism. The experimental results show that, with the
help of the formal semantics of the app-hopping mechanism and the
ASTG model, the HACMony can detect real-world HAC issues effec-
tively and efficiently. For the detected issues, we also analyze their
characteristics to help app and OS developers improve apps’ quality
on distributed mobile systems.

■ Acknowledgement
This project was partially funded by the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grant No. XDA0320102),
National Natural Science Foundation of China (Grant No. 62132020),
and Major Project of ISCAS (ISCAS-ZD-202302).

■ References
[1] Community H. Huawei’s HarmonyOS Gains Market Share. See
consumer.huawei.com/en/community/details/topicId-225

051/ website, 2024
[2] Times G. China’s first fully home-grown mobile operating system

HarmonyOS NEXT launched. See www.globaltimes.cn/page/20
2410/1321670.shtml website, 2024

[3] Huawei . Hopping Overview. See developer.huawei.com/c
onsumer/en/doc/design-guides-V1/service-hop-overvie

w-0000001089296748-V1 website, 2024

[4] HarmonyOS Developer Issue. See developer.huawei.com/c
onsumer/cn/forum/topic/0202700699545450014?fid=01015

87866109860105 website, 2021
[5] HarmonyOS Developer Issue. See developer.huawei.com/c
onsumer/cn/forum/topic/0202646978991840491?fid=01015

91351254000314 website, 2021
[6] Yang W, Prasad M R, Xie T. A grey-box approach for auto-

mated gui-model generation of mobile applications. In: Proceedings
of Fundamental Approaches to Software Engineering. 2013, 250–265

[7] Yang S, Zhang H, Wu H, Wang Y, Yan D, Rountev A. Static
window transition graphs for android (T). In: Proceedings of 30th
IEEE/ACM International Conference on Automated Software Engi-
neering. 2015, 658–668

[8] Gu T, Sun C, Ma X, Cao C, Xu C, Yao Y, Zhang Q, Lu J, Su Z.
Practical GUI testing of android applications via model abstraction
and refinement. In: Proceedings of the 41st International Conference
on Software Engineering. 2019, 269–280

[9] Ma Y, Huang Y, Hu Z, Xiao X, Liu X. Paladin: Automated
generation of reproducible test cases for android apps. In: Proceedings
of the 20th International Workshop on Mobile Computing Systems and
Applications. 2019, 99–104
[10] Su T, Meng G, Chen Y, Wu K, Yang W, Yao Y, Pu G, Liu Y,
Su Z. Guided, stochastic model-based GUI testing of android apps.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering,. 2017, 245–256
[11] Yan J, Wu T, Yan J, Zhang J. Widget-sensitive and back-stack-
aware GUI exploration for testing android apps. In: Proceedings of
2017 IEEE International Conference on Software Quality, Reliability
and Security. 2017, 42–53
[12] Yan J, Liu H, Pan L, Yan J, Zhang J, Liang B. Multiple-entry test-
ing of android applications by constructing activity launching contexts.
In: Proceedings of the 42nd International Conference on Software En-
gineering. 2020, 457–468
[13] Liu C, Wang H, Liu T, Gu D, Ma Y, Wang H, Xiao X. PROMAL:
precise window transition graphs for android via synergy of program
analysis and machine learning. In: Proceedings of 44th IEEE/ACM
44th International Conference on Software Engineering. 2022, 1755–
1767
[14] Azim T, Neamtiu I. Targeted and depth-first exploration for
systematic testing of android apps. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications. 2013, 641–660
[15] Wu T, Deng X, Yan J, Zhang J. Analyses for specific defects
in android applications: a survey. Journal of Frontiers Comput. Sci.,
2019, 13(6): 1210–1227
[16] Chen T, He J, Song F, Wang G, Wu Z, Yan J. Android stack
machine. In: Proceedings of Computer Aided Verification. 2018,
487–504
[17] He J, Chen T, Wang P, Wu Z, Yan J. Android multitasking mecha-
nism: Formal semantics and static analysis of apps. In: Proceedings of
the 17th Asian Symposium on Programming Languages and Systems.
2019, 291–312

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–14

consumer.huawei.com/en/community/details/topicId-225051/
consumer.huawei.com/en/community/details/topicId-225051/
www.globaltimes.cn/page/202410/1321670.shtml
www.globaltimes.cn/page/202410/1321670.shtml
developer.huawei.com/consumer/en/doc/design-guides-V1/service-hop-overview-0000001089296748-V1
developer.huawei.com/consumer/en/doc/design-guides-V1/service-hop-overview-0000001089296748-V1
developer.huawei.com/consumer/en/doc/design-guides-V1/service-hop-overview-0000001089296748-V1
developer.huawei.com/consumer/cn/forum/topic/0202700699545450014?fid=0101587866109860105
developer.huawei.com/consumer/cn/forum/topic/0202700699545450014?fid=0101587866109860105
developer.huawei.com/consumer/cn/forum/topic/0202700699545450014?fid=0101587866109860105
developer.huawei.com/consumer/cn/forum/topic/0202646978991840491?fid=0101591351254000314
developer.huawei.com/consumer/cn/forum/topic/0202646978991840491?fid=0101591351254000314
developer.huawei.com/consumer/cn/forum/topic/0202646978991840491?fid=0101591351254000314

Front. Comput. Sci., 2025, 0(0): 1

[18] He J, Wu Z, Chen T. Formalization of android activity-fragment
multitasking mechanism and static analysis of mobile apps. Journal of
Form. Asp. Comput., 2025, 37(2): 1–86
[19] Huawei . About HarmonyOS. See developer.huawei.com/c
onsumer/en/doc/harmonyos-guides-V3/harmonyos-overvie

w-0000000000011903-V3 website, 2025
[20] Chen H, Miao X, Jia N, Wang N, Li Y, Liu N, Liu Y, Wang F,
Huang Q, Li K, Yang H, Wang H, Yin J, Peng Y, Xu F. Microkernel
goes general: Performance and compatibility in the hongmeng pro-
duction microkernel. In: Proceedings of 18th USENIX Symposium
on Operating Systems Design and Implementation. 2024, 465–485
[21] Google . Android Open Source Project. See source.android
.com website, 2025
[22] Foundation O. OpenHarmony Project. See gitee.com/open

harmony/docs/blob/master/en/OpenHarmony-Overview.md

website, 2025
[23] Huawei . Processing Audio Interruption Events. See develope
r.huawei.com/consumer/en/doc/harmonyos-guides-V5/au

dio-playback-concurrency-V5 website, 2025
[24] Huawei . StreamUsage. See developer.huawei.com/consu

mer/en/doc/harmonyos-references-V13/js-apis-audio-V

13#streamusage website, 2025
[25] AMap. See url.cloud.huawei.com/tXaf6tZ5sY website,
2025
[26] Kugou Music. See url.cloud.huawei.com/tXafXtrfyM

website, 2025
[27] HACMony . Operational Semantics of App-Hopping Mechanism
on HarmonyOS. See github.com/SQUARE-RG/hacmony/blob/m

ain/Semantics_of_HarmonyOS_App_Hopping.pdf website, 2025
[28] Huawei . hdc. See developer.huawei.com/consumer/en/d
oc/harmonyos-guides-V5/hdc-V5 website, 2025
[29] Google . Android Debug Bridge (adb). See developer.andr

oid.com/tools/adb website, 2024
[30] Huawei . Huawei Appgallery. See consumer.huawei.com/en
/mobileservices/appgallery/ website, 2025
[31] Google . Gemini 2.0 Flash. See cloud.google.com/vertex-a
i/generative-ai/docs/models/gemini/2-0-flash website,
2024
[32] OpenAI . GPT-4o. See openai.com/index/hello-gpt-4o/
website, 2024
[33] Alibaba . Qwen-VL-Plus. See github.com/QwenLM/Qwen-VL
website, 2024
[34] Li Y, Yang Z, Guo Y, Chen X. Droidbot: a lightweight ui-guided
test input generator for android. In: Proceedings of 2017 IEEE/ACM
39th International Conference on Software Engineering Companion

(ICSE-C). 2017, 23–26
[35] HACMony . HAC Issues Detected by HACMony. See www.yo

utube.com/playlist?list=PL9InyCjzL53mWIbPP5ixylr7Qwd

-kzUTa website, 2025
[36] Youku Video. See url.cloud.huawei.com/tXLQZi7oZi

website, 2025
[37] Kuwo Music. See url.cloud.huawei.com/x7rkqpzQ1W

website, 2025
[38] Momo. See url.cloud.huawei.com/x7rZfOT2I8 website,
2025
[39] Baidu Map. See url.cloud.huawei.com/tXQg34wJXy

website, 2025
[40] Kuaiyin. See url.cloud.huawei.com/u2T5hQKLjW website,
2025
[41] Petal Map. See url.cloud.huawei.com/tXRdtLucnu web-
site, 2025
[42] QQ Music. See url.cloud.huawei.com/tXRhftsDPW web-
site, 2025
[43] Tencent Video. See url.cloud.huawei.com/tXRhNDqDWo

website, 2025
[44] Ma T, Zhao Y, Li L, Liu L. Cid4hmos: A solution to harmonyos
compatibility issues. In: Proceedings of 38th IEEE/ACM International
Conference on Automated Software Engineering. 2023, 2006–2017
[45] Zhu Y, Guo J, Xu F, Chen R, Zhang X, Yi S, Yu J. Hm-saf:
Cross-layer static analysis framework for harmonyos. In: Proceedings
of 2023 IEEE Smart World Congress (SWC). 2023, 1–10
[46] Chen H, Chen D, Yang Y, Xu L, Gao L, Zhou M, Hu C, Li L.
Arkanalyzer: The static analysis framework for openharmony. In:
Proceedings of 47th IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice. 2025, 136–147
[47] Chen Z, Liu J, Hu Y, Wu L, Zhou Y, He Y, Liao X, Wang K,
Li J, Qin Z. Deuedroid: Detecting underground economy apps based
on UTG similarity. In: Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2023,
223–235
[48] Liu Z, Chen C, Wang J, Chen M, Wu B, Huang Y, Hu J, Wang Q.
Unblind text inputs: Predicting hint-text of text input in mobile apps
via LLM. In: Proceedings of the CHI Conference on Human Factors
in Computing Systems. 2024, 51:1–51:20
[49] Liu Z, Chen C, Wang J, Chen M, Wu B, Che X, Wang D, Wang Q.
Make LLM a testing expert: Bringing human-like interaction to mobile
GUI testing via functionality-aware decisions. In: Proceedings of the
46th IEEE/ACM International Conference on Software Engineering.
2024, 100:1–100:13

Frontiers of Computer Science | Issue 0 | Volume 0 | January 2025 | 1–15

developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-0000000000011903-V3
developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-0000000000011903-V3
developer.huawei.com/consumer/en/doc/harmonyos-guides-V3/harmonyos-overview-0000000000011903-V3
source.android.com
source.android.com
gitee.com/openharmony/docs/blob/master/en/OpenHarmony-Overview.md
gitee.com/openharmony/docs/blob/master/en/OpenHarmony-Overview.md
developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/audio-playback-concurrency-V5
developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/audio-playback-concurrency-V5
developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/audio-playback-concurrency-V5
developer.huawei.com/consumer/en/doc/harmonyos-references-V13/js-apis-audio-V13#streamusage
developer.huawei.com/consumer/en/doc/harmonyos-references-V13/js-apis-audio-V13#streamusage
developer.huawei.com/consumer/en/doc/harmonyos-references-V13/js-apis-audio-V13#streamusage
url.cloud.huawei.com/tXaf6tZ5sY
url.cloud.huawei.com/tXafXtrfyM
github.com/SQUARE-RG/hacmony/blob/main/Semantics_of_HarmonyOS_App_Hopping.pdf
github.com/SQUARE-RG/hacmony/blob/main/Semantics_of_HarmonyOS_App_Hopping.pdf
developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/hdc-V5
developer.huawei.com/consumer/en/doc/harmonyos-guides-V5/hdc-V5
developer.android.com/tools/adb
developer.android.com/tools/adb
consumer.huawei.com/en/mobileservices/appgallery/
consumer.huawei.com/en/mobileservices/appgallery/
cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash
openai.com/index/hello-gpt-4o/
github.com/QwenLM/Qwen-VL
www.youtube.com/playlist?list=PL9InyCjzL53mWIbPP5ixylr7Qwd-kzUTa
www.youtube.com/playlist?list=PL9InyCjzL53mWIbPP5ixylr7Qwd-kzUTa
www.youtube.com/playlist?list=PL9InyCjzL53mWIbPP5ixylr7Qwd-kzUTa
url.cloud.huawei.com/tXLQZi7oZi
url.cloud.huawei.com/x7rkqpzQ1W
url.cloud.huawei.com/x7rZfOT2I8
url.cloud.huawei.com/tXQg34wJXy
url.cloud.huawei.com/u2T5hQKLjW
url.cloud.huawei.com/tXRdtLucnu
url.cloud.huawei.com/tXRhftsDPW
url.cloud.huawei.com/tXRhNDqDWo

	Introduction
	Background
	HarmonyOS: Architecture and Application
	Audio Stream
	Motivating Example

	The Operational Semantics of App-Hopping Mechanism on HarmonyOS
	The Overview of App-Hopping
	The operational Semantics of App-Hopping

	Model-based Testing Approach for HAC Issue Detection
	Approach Overview
	ASTG Model Construction
	ASS-Targeted and LLM-Driven Model Exploration
	ASS-Guided Model Enhancement

	Model-Based HAC Issue Detection
	HAC-Directed Test Generation
	HAC-Directed Test Execution
	HAC Issue Detection

	Evaluation
	Evaluation Setup
	RQ1: ASTG Construction
	RQ2: HAC Issue Detection
	RQ3: HAC Issue Analysis
	Misuse of Device: MoD issues
	Misuse of Resolution: MoR issues

	Discussion
	Threats to Validity
	Directions for Further Research

	Related work
	Analysis and Testing for HarmonyOS
	Model-Based Testing of GUI

	Conclusion

